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Abstract: Purpose: By incorporating the cost of multiple tumor-marker tests, this work aims to
comprehensively evaluate the financial burden of patients and the accuracy of machine learn-
ing models in diagnosing malignant pleural effusion (MPE) using tumor-marker combinations.
Methods: Carcinoembryonic antigen (CEA), carbohydrate antigen (CA)19-9, CA125, and CA15-3
were collected from pleural effusion (PE) and peripheral blood (PB) of 319 patients with pleural
effusion. A stacked ensemble (stacking) model based on five machine learning models was utilized
to evaluate the diagnostic accuracy of tumor markers. We evaluated the discriminatory accuracy of
various tumor-marker combinations using the area under the curve (AUC), sensitivity, and speci-
ficity. To evaluate the cost-effectiveness of different tumor-marker combinations, a comprehensive
score (C-score) with a tuning parameter w was proposed. Results: In most scenarios, the stacking
model outperformed the five individual machine learning models in terms of AUC. Among the eight
tumor markers, the CEA in PE (PE.CEA) showed the best AUC of 0.902. Among all tumor-marker
combinations, the PE.CA19-9 + PE.CA15-3 + PE.CEA + PB.CEA combination (C9 combination)
achieved the highest AUC of 0.946. When w puts more weight on the cost, the highest C-score
was achieved with the single PE.CEA marker. As w puts over 0.8 weight on AUC, the C-score
favored diagnostic models with more expensive tumor-marker combinations. Specifically, when w
was set to 0.99, the C9 combination achieved the best C-score. Conclusion: The stacking diagnostic
model using PE.CEA is a relatively accurate and affordable choice in diagnosing MPE for patients
without medical insurance or in a low economic level. The stacking model using the combination
PE.CA19-9 + PE.CA15-3 + PE.CEA + PB.CEA is the most accurate diagnostic model and the best
choice for patients without an economic burden. From a cost-effectiveness perspective, the stacking
diagnostic model with PE.CA19-9 + PE.CA15-3 + PE.CEA combination is particularly recommended,
as it gains the best trade-off between the low cost and high effectiveness.

Keywords: malignant pleural effusion; cost-effectiveness analysis; tumor marker; stacked ensemble

1. Introduction

Malignant pleural effusion (MPE) is the abnormal accumulation of fluid and malignant
cells or tumor issues in the pleural space, which is mainly caused by primary cancers such
as breast cancer, lung cancer, lymphomas, or secondary cancers that have metastasized
to the pleura [1,2]. Unlike benign pleural effusion (BPE), which often results from non-
malignant diseases like congestive heart failure and pleural inflammation, the presence
of MPE signals adverse clinical outcomes. MPE is associated with high mortality and a
poor prognosis, with its median survival time ranging from 4 to 7 months [3]. Therefore,
an early diagnosis of the benign or malignant pleural effusion is critical to the intervention
and treatment accordingly [4,5].
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Traditionally, pleural effusion cytology was the simplest diagnostic method of MPE,
but its accuracy ranged widely from 62% to 90% [6,7]. Utilizing the strong association
between tumor markers and malignant tumors, the analysis of tumor-marker concentra-
tions has been recognized as a fast and less invasive method to diagnose MPE. Clinically,
tumor markers such as carcinoembryonic antigen (CEA), carbohydrate antigen (CA)19-9,
CA125, and CA15-3 have been frequently employed, and show satisfying diagnostic
accuracy [7–11]. Therefore, using cut-off values of tumor-marker concentrations to diag-
nose MPE has been popular in past years [6,7,10,11]. To handle the complex associations
between tumor markers, machine learning methods, such as logistic regression, support
vector machine (SVM), random forest, etc., have been widely used in this field and show
good performance [12–14]. However, faced with so many algorithms, which one to choose
in a real application becomes a challenging issue. The stacked ensemble, or stacking, is a
heterogeneous ensemble method that learns from the outputs of several distinct algorithms,
providing a combined output and thus sidestepping the model selection dilemma. What
is more, it has proved to perform at least comparably with the best individual algorithm
included in the ensemble [15]. Since its introduction in the early 1990s [16], the method has
been utilized in many fields because of its potential to enhance the diagnostic accuracy, as
well as the convenience of avoiding the model selection procedure [17–22].

Despite the diagnostic accuracy of tumor markers, some studies discovered that the
discriminating ability of single tumor markers was not high enough to make a precise
MPE diagnosis, indicating the need for multi-marker combinations [13,14]. But the more
tumor markers tested, the more costs and medical resources are consumed. Most studies
focused only on the diagnostic accuracy, but ignored the financial burden on patients and
the medical system [12,13,23–26]. Moreover, many studies have found minimal differences
in AUC between single markers and multi-marker combinations. Notably, the diagnostic
accuracy of multi-marker combinations does not always rise with the inclusion of more
tumor markers [10,11,14]. Therefore, the cost-effectiveness issue, especially the necessity
of including many tumor markers in diagnosing MPE, needs to be evaluated to give
comprehensive recommendations on tumor-marker selection.

The objective of this study is to balance the diagnostic accuracy and economic burden
in diagnosing MPE using tumor-marker combinations. We first utilized a stacking algo-
rithm to enhance the diagnostic accuracy. Then, we proposed a cost-effectiveness analysis
framework incorporating both the diagnostic accuracy and the price of tumor markers’ test.
Finally, recommendations on choosing diagnostic models of MPE based on the results of
the cost-effectiveness analysis were tailored for patients in different economic levels.

2. Materials and Methods
2.1. Study Population and Diagnostic Criteria

A total of 319 patients with pleural effusion were included retrospectively from January
2018 to June 2020, where 174 patients were admitted to the Department of Respiratory and
Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, and 145
were admitted to the Central Hospital of Wuhan. Patients were categorized to MPE and
BPE groups based on pathological results, specifically the presence of malignant tumor
cells in pleural effusion or biopsy specimens.

BPE etiologies include tuberculosis, pneumonia, congestive heart failure, and others.
The diagnostic criteria for tuberculous pleural effusion are positive pleural effusion, sputum,
pleural biopsy specimens stained with a Ziehl–Neelsen/Lowenstein–Jensen culture, or
tuberculosis granuloma found in parietal pleural biopsy; pleural effusion associated with
bacterial pneumonia, lung abscess, and bronchiectasis infection was determined if the
effusion disappeared after anti-infective treatment; heart failure associated pleural effusion
was judged with cardiac color Doppler ultrasound, imaging examinations, and other
relevant diagnostic criteria. Pleural effusion with undetermined etiology was excluded
from this study.
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2.2. Specimen Collection and Measurement

Pleural effusion (PE) and peripheral blood (PB) samples were collected from patients
prior to any treatment. Samples from all patients were centrifuged on the same day
(below 4 ◦C, 1500 rpm, 10 min) and the supernatant was taken and frozen at −80 ◦C.
The concentration of 4 tumor markers including CEA, CA125, CA15-3, and CA19-9 was
detected from the PE and PB, respectively. The chemiluminescence method was used to
detect CEA (Abbott Ireland Diagnostics Division, Sligo, Ireland), CA125, CA15-3, and
CA19-9 (Abott Laboratories, Malvern, PA, USA) tumor markers.

2.3. The Construction of Stacking Model for Discriminating MPE

We employed five machine learning models, i.e., logistic regression, random forest,
Naïve Bayes, SVM, and XGBoost, to distinguish MPE from BPE. A stacked ensemble
(stacking) model built with these five learners was further utilized to enhance the diag-
nostic accuracy and avoid model selection problems. Logistic regression was taken as
the meta-learner to stack the output of the five learners and give the prediction of the
stacking model.

Baseline characteristics, including age and gender, were incorporated in the model
alongside tumor-marker concentrations. To avoid over-fitting, 3-fold cross-validation was
performed. Hyperparameters of machine learning methods were optimized using internal
cross-validation in the training sets. The area under the curve (AUC), sensitivity, and
specificity of the validation cohort were calculated to evaluate the model performance.

2.4. Cost-Effectiveness Analysis of Tumor-Marker Combinations

As previously mentioned, eight tumor markers were available from both PE and
PB samples. There were 255 different combinations (28-1) of the eight tumor markers.
Together with important clinical factors, the AUC, sensitivity, and specificity of all these
255 combinations were calculated to evaluate the effectiveness.

For the cost, the price of performing different tumor-marker tests was collected from
the public information on the website of the Healthcare Security Administration of Beijing
and Hubei province, respectively [27,28]. The price is set by the government and remains
fixed over the years, so there is no need to adjust for the inflation and variations. The cost
of each tumor-marker combination was calculated as the summation of the cost for each
single tumor-marker element.

To align with AUC values, we regularized the cost of tumor-marker combinations to
the [0,1] interval using minimum and maximum values. A comprehensive score (C-score)
was proposed to comprehensively evaluate the diagnostic accuracy and the cost, which
was defined as

C− score = w×AUC + (1− w)× (1− regularized(cost)),

where the regularized ({x1, . . . , xn}) =
{

xi−min({x1,...,xn})
max({x1,...,xn})−min({x1,...,xn}) : i = 1, . . . , n

}
; w indi-

cates the weight allocated to AUC. The larger the value of the C-score, the better cost-
effectiveness achieved. This C-score was simple but easy for interpretation and calculation.

2.5. Statistical Analysis

Concentrations of tumor markers and patients’ clinical factors were calculated as
the mean ± standard deviation or proportion. To compare the difference between MPE
and BPE groups, a Mann–Whitney–Wilcoxon test was used for continuous variables,
and a Pearson χ2 test or Fisher exact probability test was used for categorical variables,
which both have no assumptions on the distribution of data. The hypothesis tests were
performed using package stats (version 4.2.0) in R software (version 4.2.0); the diagnostic
models and statistical plots were generated with packages scikit-learn (version 0.24.1),
scipy (version 1.10.1), xgboost (version 1.4.2), matplotlib (version 3.7.1), and so on in Python
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(version 3.6.13). A p-value of the two-sided hypothesis test smaller than 0.05 was considered
statistically significant.

3. Results
3.1. Clinical Characteristics

The characteristics of the included patients are summarized in Table 1. In this study,
111 patients with MPE and 208 patients with BPE were included. For the etiology of BPE
patients, 139 were tuberculous, 27 were pneumonitis, 30 were congestive heart failure,
and 12 were others. In addition to tumor markers, demographic data such as age, gender,
and region of patients were collected. The analysis indicated a significant association
between MPE and factors such as age and gender, while regional differences were not
statistically significant, which was not included in the following model construction. The
concentrations of CEA, CA19-9, CA125, and CA15-3 from PE and PB in the MPE group
were all significantly higher than those from the BPE group (all p-values < 0.001).

Table 1. Clinical characteristics of patients and concentration of tumor markers.

Variable MPE (N = 111) BPE (N = 208) Total (N = 319) p-Value

Age (years) 60.94 (11.96) 49.78 (19.02) 53.67 (17.70) <0.001
Gender 0.002

Male 59 148 207
Female 52 60 112

Region 0.160
Beijing 67 107 174
Wuhan 44 101 145

Concentrations of tumor markers
PE.CEA (ng/mL) 967.15 (2307.31) 16.80 (105.81) 347.49 (1433.20) <0.001
PE.CA19-9 (U/mL) 2000.31 (4200.90) 5.74 (12.94) 699.77 (2647.65) <0.001
PE.CA125 (U/mL) 1807.16 (2473.70) 715.22 (796.83) 1095.17 (1673.73) <0.001
PE.CA15-3 (U/mL) 99.97 (199.45) 7.48 (7.80) 39.66 (125.49) <0.001
PB.CEA (ng/mL) 98.16 (254.14) 2.12 (1.74) 35.54 (156.34) <0.001
PB.CA19-9 (U/mL) 628.56 (2312.09) 13.88 (40.28) 227.76 (1391.48) <0.001
PB.CA125 (U/mL) 257.72 (502.10) 155.21 (147.49) 190.88 (322.11) <0.001
PB.CA15-3 (U/mL) 38.79 (47.97) 12.01 (9.21) 21.33 (31.85) <0.001

Note: Continuous variables are displayed using the mean and standard deviation (in parentheses) in each group;
discrete variables are displayed using the number in each group.

3.2. The Cost of Different Tumor-Marker Combinations

Prices for various tumor-marker tests were separately collected for both Beijing and
Wuhan. There was no difference between the price of CA125, CA15-3, and CA19-9. The
price of testing tumor markers from PB and PE was also the same. Therefore, although
there were 255 (28 − 1) different combinations of tumor markers, only twenty distinct cost
values were generated.

3.3. The Diagnostic Performance of the Stacking Model

The AUC of the five machine learning models and the stacking model is displayed in
Figure 1. Given that there were only twenty distinct cost values, only the model with the
highest AUC is displayed for each value (denoted as C1-C20; see Table 2). It is explicit that
the AUC of the stacking model was generally the best (at least no worse than the others)
among all tumor-marker models.



Diagnostics 2023, 13, 3136 5 of 10
Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 10 
 

 

 

Figure 1. The AUC of diagnosing models using different tumor-marker combinations. Note: Logistic 

represents logistic regression, XGB represents XGBoost model, RF represents random forest, Bayes 

represents Naïve Bayes, SVM represents SVM model, and Stacking represents the stacking model. 

Table 2. The AUC of stacking models using different tumor-marker combinations. 

Tumor-Marker Combination Cost AUC  SEN SPE 

C1: PE.CEA 56.5 0.902 0.748 0.937 

C2: PE.CA15-3 84 0.871 0.595 0.962 

C3: PE.CEA + PB.CEA 113 0.899 0.766 0.913 

C4: PE.CA19-9 + PE.CEA 140.5 0.932 0.757 0.933 

C5: PE.CA19-9 + PE.CA15-3 168 0.927 0.721 0.957 

C6: PE.CA19-9 + PE.CEA+PB.CEA 197 0.932 0.748 0.923 

C7: PE.CA19-9 + PE.CA15-3+PE.CEA 224.5 0.942 0.775 0.942 

C8: PE.CA19-9 + PE.CA15-3+PB.CA15-3 252 0.925 0.739 0.952 

C9: PE.CA19-9 + PE.CA15-3+PE.CEA+PB.CEA 281 0.946 0.748 0.928 

C10: PE.CA19-9 + PE.CA15-3+PE.CEA+PB.CA125 308.5 0.944 0.757 0.957 

C11: PE.CA19-9 + PE.CA15-3+PB.CA19-9+PB.CA125 336 0.921 0.712 0.947 

C12: PE.CA19-9 + PE.CA15-3+PE.CEA+PB.CA19-9+PB.CEA 365 0.942 0.748 0.942 

C13: PE.CA19-9 + PE.CA125+PE.CA15-3+PE.CEA+PB.CA125 392.5 0.941 0.829 0.966 

C14: PE.CA19-9 + PE.CA15-3+PB.CA19-9+PB.CA125+PB.CA15-3 420 0.913 0.730 0.961 

C15: PE.CA19-9 + PE.CA125+PE.CEA+PB.CA125+PB.CA15-3+PB.CEA 449 0.938 0.775 0.952 

C16: PE.CA19-9 + PE.CA125+PE.CA15-3+PE.CEA+PB.CA19-

9+PB.CA125 
476.5 0.944 0.793 0.957 

C17: PE.CA19-9 + PE.CA125+PE.CA15-3+PB.CA19-

9+PB.CA125+PB.CA15-3 
504 0.910 0.712 0.947 

C18: PE.CA19-9 + PE.CA125+PE.CA15-3+PE.CEA+PB.CA19-

9+PB.CA125+PB.CEA 
533 0.940 0.802 0.957 

C19: PE.CA19-9+PE.125+PE.CA15-

3+PE.CEA+PB.199+PB.125+PB.CA15-3 
560.5 0.939 0.820 0.942 

C20: PE.CA19-9+PE.CA125+PE.CA15-

3+PE.CEA+PB.199+PB.CA125+PB.CA15-3+PB.CEA 
617 0.937 0.793 0.961 

Note: AUC represents area under the curve; SEN represents sensitivity; SPE represents specificity. 

Cost is denominated in RMB. 

3.4. The Diagnostic Performance of Different Tumor-Marker Combinations 

The AUC, sensitivity, and specificity of the diagnostic models using C1-C20 tumor-

marker combinations are listed in Table 2. The AUC ranged from 0.871 to 0.946; the sensi-

tivity ranged from 0.595 to 0.829; and the specificity ranged from 0.913 to 0.966. Among 

single tumor markers, PE.CEA achieved the best AUC of 0.902, a sensitivity of 0.748, and 

specificity of 0.937. As depicted in Figure 1, combinations C2, C5, C8, C11, C14, and C17 

Figure 1. The AUC of diagnosing models using different tumor-marker combinations. Note: Logistic
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Table 2. The AUC of stacking models using different tumor-marker combinations.

Tumor-Marker Combination Cost AUC SEN SPE

C1: PE.CEA 56.5 0.902 0.748 0.937
C2: PE.CA15-3 84 0.871 0.595 0.962
C3: PE.CEA + PB.CEA 113 0.899 0.766 0.913
C4: PE.CA19-9 + PE.CEA 140.5 0.932 0.757 0.933
C5: PE.CA19-9 + PE.CA15-3 168 0.927 0.721 0.957
C6: PE.CA19-9 + PE.CEA+PB.CEA 197 0.932 0.748 0.923
C7: PE.CA19-9 + PE.CA15-3+PE.CEA 224.5 0.942 0.775 0.942
C8: PE.CA19-9 + PE.CA15-3+PB.CA15-3 252 0.925 0.739 0.952
C9: PE.CA19-9 + PE.CA15-3+PE.CEA+PB.CEA 281 0.946 0.748 0.928
C10: PE.CA19-9 + PE.CA15-3+PE.CEA+PB.CA125 308.5 0.944 0.757 0.957
C11: PE.CA19-9 + PE.CA15-3+PB.CA19-9+PB.CA125 336 0.921 0.712 0.947
C12: PE.CA19-9 + PE.CA15-3+PE.CEA+PB.CA19-9+PB.CEA 365 0.942 0.748 0.942
C13: PE.CA19-9 + PE.CA125+PE.CA15-3+PE.CEA+PB.CA125 392.5 0.941 0.829 0.966
C14: PE.CA19-9 + PE.CA15-3+PB.CA19-9+PB.CA125+PB.CA15-3 420 0.913 0.730 0.961
C15: PE.CA19-9 + PE.CA125+PE.CEA+PB.CA125+PB.CA15-3+PB.CEA 449 0.938 0.775 0.952
C16: PE.CA19-9 + PE.CA125+PE.CA15-3+PE.CEA+PB.CA19-9+PB.CA125 476.5 0.944 0.793 0.957
C17: PE.CA19-9 + PE.CA125+PE.CA15-3+PB.CA19-9+PB.CA125+PB.CA15-3 504 0.910 0.712 0.947
C18: PE.CA19-9 + PE.CA125+PE.CA15-3+PE.CEA+PB.CA19-9+PB.CA125+PB.CEA 533 0.940 0.802 0.957
C19: PE.CA19-9+PE.125+PE.CA15-3+PE.CEA+PB.199+PB.125+PB.CA15-3 560.5 0.939 0.820 0.942
C20: PE.CA19-9+PE.CA125+PE.CA15-3+PE.CEA+PB.199+PB.CA125+PB.CA15-3+PB.CEA 617 0.937 0.793 0.961

Note: AUC represents area under the curve; SEN represents sensitivity; SPE represents specificity. Cost is
denominated in RMB.

3.4. The Diagnostic Performance of Different Tumor-Marker Combinations

The AUC, sensitivity, and specificity of the diagnostic models using C1-C20 tumor-
marker combinations are listed in Table 2. The AUC ranged from 0.871 to 0.946; the sensi-
tivity ranged from 0.595 to 0.829; and the specificity ranged from 0.913 to 0.966. Among
single tumor markers, PE.CEA achieved the best AUC of 0.902, a sensitivity of 0.748, and
specificity of 0.937. As depicted in Figure 1, combinations C2, C5, C8, C11, C14, and C17
emerged like outliers, which presented relatively low AUC compared to other combinations
(see Figure 2). The common feature of these outlier combinations was they did not include
the best single tumor marker PE.CEA. Among all tumor-marker combinations, the combi-
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nation with the highest AUC was C9 (i.e., PE.CA19-9 + PE.CA15-3 + PE.CEA + PB.CEA),
which reached an AUC of 0.946, a sensitivity of 0.748, and specificity of 0.923.
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Figure 2. The AUC and the cost of different tumor-marker combinations using stacking model (in
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3.5. Cost-Effectiveness Analysis

Figure 2 presents a scatter plot illustrating the relationship between AUC and the
price of different tumor-marker combinations. After removing outliers, a distinct trend
emerged: single or two-marker combinations (C1-C4) had suboptimal AUC values. The
AUC increased with combinations of three and four tumor markers (C6-C10), but stagnated
when five or more markers were included (C12-C20).

Based on the median values of AUC and cost, the 20 combinations were segmented into
four subgroups: (1) combinations like C7, C9, and C10 with relatively high AUC and low
cost; (2) combinations like C1-C6 and C8 with lower AUC and low cost;
(3) combinations characterized by high AUC and high cost; and (4) combinations exhibiting
low AUC and high cost.

Figure 3 displays the C-score of C1-C20 in some representative w values. For each value
of w, each dot represents a tumor-marker combination. When w was no more than 0.80, the
combination with the highest C-score was always the cheapest combination C1, namely the
single marker PE.CEA, and the combination with the lowest C-score was always the most
expensive one, C20, i.e., the all-markers combination. The color of dots also confirmed that
combinations with lower cost usually achieved higher C-scores. But when w increased to
0.90 or higher, which meant much more importance was put on diagnostic accuracy rather
than cost, more expensive marker combinations gradually achieved higher C-scores, and
the combinations with the highest and lowest C-score were not C1 and C20 anymore. In
specific, the combinations with the highest and lowest C-score were C4 and C17 when
w equaled 0.90; C7 and C17 when w equaled 0.95; and C9 and C2 when w equaled 0.99.
The changes in C-scores of C1 and C20 across different ws are typical examples, which are
represented with the blue and green dashed lines. When w increased, the C-score of C20
increased rapidly and finally exceeded C1 (C-score: 0.928 vs. 0.903 when w equaled 0.99).
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4. Discussion

It has been a popular way to collect multiple tumor markers and combine them into a
model in diagnosing MPE. When multiple markers with high correlation and interaction
were included in a model, many machine learning methods performed well [23,24,29,30].
However, when dealing with real-world data, there are numerous methods. Selecting
the right model is critical. The stacking method provides a convenient way to avoid
the model selection procedure by synthesizing the outputs of different models [25]. By
incorporating the strength of different models, it also has the potential to enhance the
diagnostic performance. Our analysis revealed that the stacking model effectively improved
diagnostic accuracy for the majority of tumor-marker combinations. Higher diagnostic
accuracy will benefit the early diagnosis of malignant pleural effusion, which could result
in better outcomes with early and precise treatment [15].

Of the eight single tumor markers examined, the single marker model with PE.CEA
yielded the highest AUC at 0.902. In addition, in the multi-marker situation, each tumor-
marker combination without PE.CEA was an explicit outlier with a lower AUC compared
with other combinations (see Figure 1), indicating the strong relevance between PE.CEA and
MPE. This is similar to other studies [1,13,14], which also found that CEA performed best
compared with other tumor markers. Combining multiple tumor markers has the potential
to further enhance diagnostic accuracy [31,32]. Zhang [13] et al. also concluded that most
tumor markers had insufficient diagnostic accuracy to confirm or exclude MPE when used
alone. In this study, all combinations of the eight tumor markers were tested, and the AUC
was increased compared to single markers. The highest AUC of 0.946 was achieved with
the C9 combination (PE.CA19-9 + PE.CA15-3 + PE.CEA + PB.CEA), which is higher than
other relevant studies [14,24,25]. However, the AUC did not increase further when more
tumor markers were included (see Figure 1). A possible reason for this may be the strong
correlation of different tumor markers, which means that the combination with less markers
can include all useful information in diagnosing MPE. As a result, when incorporating
more markers on C9, the multicollinearity and model complexity issue resulted in a lower
model performance. It is explicit in Table 2 that the sensitivity ranging from 0.595 to 0.826
was lower and more variable than specificity (ranging from 0.913 to 0.966). This is also
consistent with many previous studies [1,4,14]. Therefore, when utilizing tumor markers
to diagnose MPE, patients with positive predictions are very likely to develop MPE. But
patients with negative predictions should receive more attention, and more invasive testing,
such as cytology sampling or pleural biopsies, should be considered if necessary.

As a serious syndrome associated with a poor prognosis, the diagnosing and treatment
of MPE have attracted much attention. There were also many studies investigating the
cost-effectiveness of MPE treatment or cytopathologic examination techniques [5,15,33].
For example, Aaron et al. [15] compared the Pleurx Catheter and Talc Pleurodesis treatment
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method for MPE by obtaining the cost and probability of treatment success, and concluded
that the Pleurx Catheter was more cost-effective when life expectancy was 6 weeks or
less. Varun et al. [5] used a decision analysis and found that tunneled pleural catheter
use was the preferred treatment for patients with malignant pleural effusion and limited
survival, and bedside pleurodesis was the most cost-effective treatment for patients with
more prolonged expected survival. In contrast, the cost-effectiveness of conducting MPE
prediction with tumor markers was less investigated.

Incorporating additional tumor markers in the diagnosis of MPE increases the associ-
ated costs. In this study, the price of detecting different tumor markers was collected and
used for the cost-effectiveness analysis. Among different tumor-marker combinations, the
AUC increased when two or three markers were included compared with a single marker.
But when five or more markers were included, the AUC failed to increase. Therefore, there
were several tumor-marker combinations that exhibited relatively low cost and high AUC,
such as C7, C9, and C10 (see Figure 2). A weighted average of AUC and negative regu-
larized cost, namely the C-score, was also proposed as an indicator of cost-effectiveness.
For most w values, combinations with less cost had a higher C-score. Specifically, the
cheapest combination C1, which only included the single marker PE.CEA, had the highest
C-score when w ranged from 0 to 0.8 (Figure 3). The reason behind that was that the
difference between the cost of tumor-marker combinations was much larger than AUC
values. The C-score favored more expensive combinations when the weight w put on AUC
got high, i.e., the diagnostic accuracy was valued more than cost. When w equaled 0.95, the
highest C-score was achieved with C7, which indicated its cost-effectiveness again. When
w equaled 0.99, meaning that almost all importance was put on diagnostic accuracy, the
combination C9, which achieved the best AUC, also had the highest C-score.

As a result, after taking the financial burden into consideration, different recommen-
dations could be given to patients in different economic levels on diagnosing MPE with
tumor-marker combinations. For patients without a sufficient budget on medical expenses,
the marker PE.CEA is the best choice with the lowest cost and not bad AUC of 0.902. For
most patients that aim to balance the cost and effectiveness, C7 is a good choice, which
balances the cost and effectiveness well. For patients in an excellent economic level, the
tumor-marker combination with the highest AUC, namely C9, is more suitable.

This study also had several limitations. Firstly, there are many types of tumor markers
associated with MPE, and some markers like the cytokeratin fragment (CYFRA) 21-1
and cluster of differentiation 66 (CD66) antigen, which showed good MPE diagnostic
performance in previous studies, were not considered in this study [12,26]. Secondly, as a
cost-effectiveness analysis, we only considered the money spent on performing different
tumor-marker tests. Other aspects such as the patient experiences on sampling PE and PB
could also be quantified and considered in the future. In addition, the cost collected in this
study was the price in tertiary hospitals in Beijing and Wuhan, but the price of secondary
hospitals and a primary care center was different, which limits the generalization of the
conclusion. Lastly, the results and discussion in this article, as well as the recommended
solutions, are purely from the cost-effectiveness perspective for a single diagnosis. However,
from a medical perspective, life is precious. In the face of major health problems, sometimes
the cost is even not an important factor, and sometimes it may require overall consideration
for the cost-effectiveness analysis, including costs in both diagnostic part and treatment
part. In practice, strict clinical guidelines and medical ethical standards are required to
determine which diagnostic model scheme is applicable to specific patients. In future
studies, more tumor markers will be tested and incorporated into our cost-effectiveness
study; more clinical baseline factors would be collected. To enhance the generalizability of
our findings, patients from other centers and hospitals will also be included, and some of
them could serve as external validation. As for the cost, more precise and individualized
data, such as the insurance and income of patients, will be collected under appropriate
ethical instruction and approval.
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5. Conclusions

This study employed the stacking model to improve the diagnostic accuracy of ma-
chine learning models for MPE using tumor markers. Among the eight tumor markers,
the most accurate one was PE.CEA. The most accurate tumor-marker combination was the
C9 combination (PE.CA19-9 + PE.CA15-3 + PE.CEA + PB.CEA). By factoring in the costs
associated with tumor-marker tests, this study assessed the cost-effectiveness of an MPE
diagnosis using various tumor-marker combinations. The findings provide guidance on
tumor-marker selection tailored to patients’ economic circumstances. For economically
constrained patients, extensive testing is unnecessary. The marker PE.CEA emerges as
the optimal choice due to its low cost and an AUC of 0.902. For most patients in favor of
cost-effectiveness, C7 is a good choice that balanced the cost and benefit well. For affluent
patients, greater emphasis can be placed on diagnostic accuracy, C9 is recommended, which
had the highest AUC of 0.946.
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