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Abstract: Neoadjuvant chemotherapy plus radical surgery could be a safe alternative to chemo-
radiation in cervical cancer patients who are not willing to receive radiotherapy. The response to
neoadjuvant chemotherapy is the main factor influencing the need for adjunctive treatments and
survival. In the present paper we aim to develop a machine learning model based on cervix magnetic
resonance imaging (MRI) images to stratify the single-subject risk of cervical cancer. We collected MRI
images from 72 subjects. Among these subjects, 28 patients (38.9%) belonged to the “Not completely
responding” class and 44 patients (61.1%) belonged to the ’Completely responding‘ class according to
their response to treatment. This image set was used for the training and cross-validation of different
machine learning models. A robust radiomic approach was applied, under the hypothesis that the
radiomic features could be able to capture the disease heterogeneity among the two groups. Three
models consisting of three ensembles of machine learning classifiers (random forests, support vector
machines, and k-nearest neighbor classifiers) were developed for the binary classification task of
interest (“Not completely responding” vs. “Completely responding”), based on supervised learning,
using response to treatment as the reference standard. The best model showed an ROC-AUC (%) of
83 (majority vote), 82.3 (mean) [79.9–84.6], an accuracy (%) of 74, 74.1 [72.1–76.1], a sensitivity (%) of 71,
73.8 [68.7–78.9], and a specificity (%) of 75, 74.2 [71–77.5]. In conclusion, our preliminary data support
the adoption of a radiomic-based approach to predict the response to neoadjuvant chemotherapy.
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1. Introduction

Cervical cancer is the third most common gynecologic cancer and cause of death
among gynecologic tumors in developed countries [1]. Although its incidence is decreas-
ing in developed countries, in countries that do not have easy access to screening and
prevention programs, cervical cancer remains a significant cause of cancer morbidity and
mortality [1–4].

In early-stage disease, surgery is the mainstay of treatment, while in the locally ad-
vanced stage, chemoradiation is the most appropriate treatment. In women with locally
advanced cervical cancer, guidelines suggest offering primary chemoradiation [5,6], al-
though it is well known that the benefits of treatment are greater with an earlier (FIGO
(International Federation of Gynecology and Obstetrics) stage IB2 to IIB) versus more
advanced stage (FIGO stage III to IVA) [7–9].

The ESGO (European Society of Gynaecological Oncology)/ESTRO (European Society
for Radiotherapy and Oncology)/ESP (European Society of Pathology) guidelines suggest
the avoidance of tri-modality treatment in locally advanced cervical cancer (with negative
lymph nodes on radiological staging). The treatment strategy should aim at avoiding the
combination of radical surgery and external radiotherapy because of the significant increase
in morbidity and no evident impact on overall survival (grade B). Definitive platinum-
based chemoradiotherapy plus brachytherapy is the preferred treatment (grade A) [10].
Neoadjuvant chemotherapy (NACT) prior to radical hysterectomy does not offer an overall
survival (OS) advantage compared to primary chemoradiation and, in randomized trials
discussed below, it has been associated with worse disease-free survival (DFS).

However, in parts of Europe, Asia, and South America, where access to radiotherapy
is limited, neoadjuvant chemotherapy before radical hysterectomy can be an appropriate
option for women with locally advanced disease. In a phase III trial, 633 women with
stage IB2, IIA, or IIB squamous cervical cancer were randomly assigned to either three
cycles of NACT (paclitaxel and carboplatin administered every three weeks) followed
by a radical hysterectomy or standard chemoradiation. Compared with the standard
chemoradiation, women receiving neoadjuvant chemotherapy followed by surgery ex-
perienced worse five-year DFS (69.3 versus 76.7 percent, respectively; hazard ratio [HR]
1.38, 95% CI 1.02–1.87) [11]. Five-year OS was similar between the two groups (75.4 versus
74.7 percent, respectively; HR 1.025, 95% CI 0.75–1.40) [11]. The preliminary results of
a separate phase III trial (European Organisation for Research and Treatment of Cancer
[EORTC] 55994), among 620 patients with stage IB2 to IIB cervical cancer showed that the
patients randomly assigned to neoadjuvant chemotherapy followed by surgery experienced
worsened five-year progression-free survival rates (57% versus 66%; difference 9 percent,
95% CI 2 to 18%) and comparable five-year OS rates (72% versus 76%; HR 0.87, 95% CI
0.65–0.15) to women receiving concomitant chemoradiation [12].

Historically, NACT followed by radical surgery has been reported as a controversial
alternative in locally advanced cervical cancer. The benefit of tumor downsizing regarding
prognosis has not been proven (grade C) [10]. NCCN (National Comprehensive Cancer
Network) guidelines have suggested that, although neoadjuvant chemotherapy followed
by surgery has been used in areas where radiotherapy is not available, the data suggest
no improvement in OS when compared with surgery alone for early-stage cervical cancer
or locally advanced cervical cancer. A meta-analysis of data on patients with stage IB1
to IIA cervical cancer found that neoadjuvant chemotherapy may reduce the need for
adjuvant radiotherapy by decreasing tumor size and metastases but indicated no OS benefit.
However, data from a second meta-analysis suggested that the response to neoadjuvant
chemotherapy was a strong prognostic factor for DFS and OS [6].

The response to neoadjuvant chemotherapy is the main factor predicting survival
outcomes and the need for further treatments. Patients not responding to chemotherapy
are characterized by the need for having adjunctive postoperative radiation therapy and
poor prognosis. Hence, one of the main issues related to neoadjuvant chemotherapy is the
inability to predict the response to chemotherapy. Having a practical tool able to predict
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the response to chemotherapy would be useful to select patients for receiving neoadjuvant
chemotherapy or definitive chemoradiation.

In patients with a diagnosis of cervical cancer, MRI is the gold standard to define
initial staging, to monitor the response to treatment, and to evaluate recurrences.

Radiomics represents a translational field of research which consists of the extraction of
data from standard radiological images from different imaging techniques (MRI, computed
tomography—CT, ultrasound, positron emission tomography—PET, X-ray). The extracted
data result in quantitative features describing the heterogeneity of the tumor and other
intrinsic characteristics that may correlate with its biological behavior, response to treatment,
and risk of recurrence.

The aim of our study was to develop a radiomics signature to predict the response to
NACT in locally advanced cervical cancer using MRI images at the basal evaluation.

2. Materials and Methods

This is a retrospective analysis conducted on patients enrolled in the study proto-
col 143-16 approved by the Institutional Review Board (IRB) of the Fondazione IRCCS
Istituto Nazionale dei Tumori di Milano). Consecutive patients with squamous cell carci-
noma, adenosquamous carcinoma, and adenocarcinoma of the cervix treated with neoadju-
vant chemotherapy at the Gynaecologic Oncology Unit of the Fondazione IRCCS Istituto
Nazionale dei Tumori di Milano between 2015 and 2020 have been considered. Patients
signed informed consent forms and gave their permission for data and imaging collection
for research purposes.

The inclusion criteria were as follows: (i) diagnosis of invasive cervical cancer; (ii) FIGO
stage IB2-IIB cervical cancer at diagnosis; (iii) available basal magnetic resonance imaging.
Exclusion criteria were as follows: (i) withdrawal of informed consent; (ii) lack of MRI
images at baseline; (iii) neuroendocrine carcinoma. All the patients underwent MRI per-
formed at the Fondazione IRCCS Istituto Nazionale dei Tumori at baseline as required by
the study protocol and NACT was scheduled within 2 weeks.

All the patients, according to the study protocol, were treated with 3 cycles of neoad-
juvant Carboplatin (AUC5) d1 and Paclitaxel (80 mg/m2) d1, 8, 15 q21 chemotherapy
(dose-dense regimen). After 4 weeks from completion of NACT, patients were submitted
to radical hysterectomy and pelvic lymphadenectomy. All the surgeries were performed at
the Fondazione IRCCS Istituto Nazionale dei Tumori and all the histologic examinations
were analyzed by a pathologist fully dedicated to gynecologic pathology.

For the study purpose, we compared two groups of patients based on their response to
neoadjuvant chemotherapy: “Completely responding” and “Not completely responding”,
according to the histopathological analysis of the uterine cervix at the time of planned radical
surgery. In the “Completely responding” group we included patients with no residual tumor
or microscopic (<3 mm) disease on the surgical specimen. Patients achieving partial response,
stable disease, and progressive disease were grouped in the “Not completely responding”
cohort. Of note, patients with pathological partial response (>3 mm) were grouped in the
“Not completely responding” cohort since the goal of the study is to identify the cluster
of patients who would benefit most from NACT. This image set was used for the training,
cross-validation, and internal testing of 3 machine learning models. More specifically, in this
work, (i) the segmentation of the VOI (volume of interest) was performed manually, slice by
slice, by one expert examiner, using the Trace4Research segmentation tool (v1.0, DeepTrace
Technologies, SRL, Milan, Italy) and MRI T2-weighted images. (ii) The pre-processing of
image intensities within the segmented VOI included resampling to isotropic voxel spacing
(1.5 mm). (iii) The radiomics features computed from the segmented VOI belonged to different
families: morphology, intensity-based statistics, intensity histogram, gray level co-occurrence
matrix (GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM),
neighborhood gray tone difference matrix (NGTDM), neighboring gray level dependence
matrix (NGLDM). Their definition, computation, and nomenclature are compliant with the
IBSI (Image Biomarker Standardization Initiative) guidelines [13]. Steps from (ii) to (iii)
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were performed using the Trace4 Radiomics tool ((v1.0, DeepTrace Technologies, SRL, Milan,
Italy). It must be noted that intensity histogram features were computed after an intensity
discretization of the VOI, using a fixed bin width of 12. Texture features (GLCM, GLRLM,
GLSZM, NGTDM, NGLDM) were computed after an intensity discretization of the VOI, using
a fixed bin width of 12. Radiomic features were reported by Trace4Research according to
IBSI standards. The convolutional layers of a pre-trained ResNet50, were used to extract
a set of 2048 features from the images discretized using a fixed number of 256 bins and
resampled to a dimension of 224 × 224 × 9 voxels. This family, called DeepFeatures, is not
reported in the IBSI guidelines. Features with low variance (threshold = 0.1) were removed.
Highly intercorrelated features were removed by a mutual information analysis (removing
features with mutual information > 0.31). The selected radiomic features (informative and not
redundant) were reported by Trace4Research according to IBSI standards. Steps from (ii) to
(iv) were performed using the Trace4 Radiomics tool. Radiomic features were reported by
Trace4Research. Three different models of machine learning classifiers were trained, validated,
and tested for the binary classification task of interest (Not responding vs. Completely
responding), based on supervised learning, using response to treatment as reference standard.
For each model, a nested 6-fold cross validation method was used. The first model consisted
of 3 ensembles of 36 random forest classifiers combined with Gini index with majority vote
rule; the second model consisted of 3 ensembles of 36 support vector machines combined
with principal components analysis and Fisher’s discriminant ratio with majority vote rule;
the third ensemble consisted of 3 ensembles of 36 k-nearest neighbor classifiers combined
with principal components analysis and Fisher’s discriminant ratio with majority vote rule.
Oversampling technique for the minority class (Not responding) was applied by adaptive
synthetic sampling method (ADASYN). The performances of the 3 models were measured
across the 6 folds in terms of majority vote and mean area under the receiver operating
characteristic curve (ROC-AUC), accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), and corresponding 95% confidence intervals (CI). The
model with the best performance, according to ROC-AUC, was chosen as the best classification
model for the binary task of interest (Not responding vs. Completely responding).

Statistical analysis was conducted with embedded tools of the Trace4Research platform.
To describe the distribution of each of the most relevant features in the “Not responding”
and “Completely responding” classes, we calculated their medians with 95% CI and
presented graphically violin and box plots for intuitive visualization and interpretation. A
non-parametric univariate Wilcoxon’s rank-sum test (Mann–Whitney U test) was performed
for each of the relevant radiomic predictors to verify its significance in discriminating “Not
completely responding” and “Completely responding” classes. To account for multiple
comparisons, the p-values were adjusted using the Bonferroni–Holm method and the
significance levels were set at 0.05 (*) and 0.005 (**).

3. Results

We collected MRI images from 72 patients meeting the inclusion criteria. Among
those subjects, 28 patients (38.9%) belonged to the “Not completely responding” class and
44 patients (61.1%) belonged to the “Completely responding” class, according to response
to treatment. The patients’ characteristics are presented in Table 1. Median age was 37 years
old and the most represented histotype was squamous cell carcinoma (76% of patients).
The Table 1 also shows the clinical and pathological differences between the two groups
of patients: in the “Completely responding” group the median age of the patients was
43 years, and in the “Not completely responding” it was 46 years. In the “Completely
responding” group, 35% of the patients had a FIGO stage IB disease and 28% had a stage
IIB disease, while in the “Not completely responding group”, 18% of the patients had a
stage IB disease and 34% a stage IIB disease.
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Table 1. Clinical and pathological characteristics of the patients included in the study. CR: “Com-
pletely responding” group, NCR: “Not completely responding” group.

Characteristics 72 pts CR (28 pts) NCR (44 pts)

Age (mean) 28–74 (37) 37–67 (43) 28–74 (46)

Histology

Squamous cell carcinoma 55 (76%) 18 (64%) 32 (73%)

Adenocarcinoma 13 (18%) 8 (29%) 10 (23%)

Adenosquamous 4 (6%) 2 (7%) 2 (4%)

FIGO stage

IB2 18 (25%) 10 (35%) 8 (18%)

IB3 15 (21%) 4 (14%) 11 (25%)

IIA1 8 (11%) 3 (11%) 5 (11.5%)

IIA2 8 (11%) 3 (11%) 5 (11.5%)

IIB 23 (32%) 8 (28%) 15 (34%)

Pathological response

pR0 28 (39%)

pR1–pR2 44 (61%)

Radiomic-Based Machine Learning Modelling

From each segmented VOI of each image considered in this study, 3738 IBSI-compliant
radiomic features were computed. Of these radiomics features, five resulted as being infor-
mative and not redundant (a variance above 0.1 and mutual information below 0.31). In
particular, of the five selected radiomic predictors, two were intensity-based features (inten-
sity histogram—logarithm filter—90th percentile, intensity histogram—Laplacian of Gaus-
sian filter—robust mean absolute deviation), two were textural features (GLRLM—original
image—Run entropy, GLCM—gradient filter—Correlation), and the last one was a deep
learning-based feature (MR-T2W_DeepFeature317).

For the classification task of interest (28 images from the “Not completely responding”
class vs. 44 images from the “Completely responding” class), these five predictors were
used for the training, cross-validation, and internal testing (nested 6-fold cross validation) of
three different models of machine learning classifiers considered in this work. Table 2A–C
show the ROC-AUC, accuracy, sensitivity, specificity, PPV, and NPV as obtained from
the training, cross-validation and internal testing of the three models consisting of three
ensembles of machine learning classifiers. The ROC-AUC, accuracy, sensitivity, specificity,
PPV, and NPV are reported with a 95% CI and p-value. Furthermore, for each model, the
ROC curves for the three ensembles are plotted in Figure 1A–C. Based on the ROC-AUC, the
model of random forest classifiers resulted as being the best model for the task of interest
(28 images from the “Not completely responding” class vs. 44 images from the “Completely
responding” class), with a ROC-AUC (mean) of 82% vs. the 67% of the support vector
machine (SVM) model and 64% of the k-nearest neighbors (k-NN) model. The five selected
radiomic predictors are shown in Table 3, together with their IBSI feature family and feature
nomenclature. The predictors are ranked according to their statistical significance and
to their frequencies among the selected predictors in the ensemble of the random forest
classifiers. The median values of each feature, 95% CIs, and results from the univariate
statistical rank-sum tests are also reported with the adjusted p-values. Furthermore, the two
most relevant radiomic predictors (Intensity histogram—logarithm filter—90th percentile,
Intensity histogram—Laplacian of Gaussian filter—Robust mean absolute deviation) also
resulted as being statistically significant in discriminating the “Not completely responding”
and “Completely responding” classes (the Bonferroni-corrected p-values < 0.05), according
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to the univariate statistical rank-sum tests. The violin plot and boxplot of the radiomic
predictors are shown in Figure 2.

Table 2. (A) Model of 3 ensembles of random forest classifiers. (B) Model of 3 ensembles of support
vector machine classifiers. (C) Model of 3 ensembles of k-nearest neighbors classifiers. Classification
performance in terms of AUC, accuracy, sensitivity, specificity, PPV, NPV, corresponding 95% con-
fidence interval, and statistical significance with respect to chance/random classification (p-value).
Performance is reported for training, validation, and internal testing.

Training Validation Internal Testing
(Mean)

Internal Testing
(Majority Vote—50%

Threshold)

(A) Random forest
classifiers

ROC-AUC (%)
[95% CI] 100 * [99–100] 83 ** [79–87] 82 ** [80–85] 83

Accuracy (%)
[95% CI] 100 * [99–100] 75 ** [71–78] 74 ** [72–76] 74

Sensitivity (%)
[95% CI] 100 * [99–100] 75 ** [69–80] 74 ** [69–79] 71

Specificity (%)
[95% CI] 100 * [99–100] 75 ** [69–80] 74 ** [71–78] 75

PPV (%) [95% CI] 100 * [99–100] 68 ** [64–71] 65 ** [62–67] 65

NPV (%) [95% CI] 100 * [99–100] 84 ** [82–85] 82 ** [79–84] 80

(B) Support vector
machines
classifiers

ROC-AUC (%)
[95% CI] 74 ** [73–75] 69 ** [65–72] 67 ** [56–77] 67

Accuracy (%)
[95% CI] 69 ** [66–71] 63 ** [63–64] 63 ** [53–73] 64

Sensitivity (%)
[95% CI] 68 ** [64–73] 64 ** [61–66] 63 ** [50–77] 64

Specificity (%)
[95% CI] 69 ** [68–70] 63 ** [61–65] 63 ** [54–72] 64

PPV (%) [95% CI] 69 ** [66–71] 55 ** [54–56] 52 ** [41–63] 53

NPV (%) [95% CI] 69 ** [66–71] 75 ** [73–77] 73 ** [63–82] 74

(C) K-nearest
neighbors
classifiers

ROC-AUC (%)
[95% CI] 85 ** [83–86] 55 ** [48–61] 64 ** [57–70] 65

Accuracy (%)
[95% CI] 77 ** [75–80] 53 ** [46–61] 65 ** [54–76] 67

Sensitivity (%)
[95% CI] 84 ** [81–86] 56 ** [47–66] 75 * [60–90] 75

Specificity (%)
[95% CI] 71 ** [67–75] 51 ** [45–58] 58 ** [44–73] 61

PPV (%) [95% CI] 75 ** [72–77] 44 ** [37–50] 53 ** [43–64] 55

NPV (%) [95% CI] 82 ** [79–84] 65 ** [56–75] 79 ** [66–91] 79

* p-value < 0.05/** p-value < 0.005.
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Table 3. Ensemble of random forest classifiers. The 5 predictors sorted in descending order according
to their statistical significance and relevance.

# Feature Family Feature Nomenclature
Median in the

Malignant Class
(95% CI)

Median in the Benign
Class (95% CI)

Uncorrected
p-Value

Corrected
p-Value

1 Intensity Histogram MR-T2W_logarithm_90th
Percentile 34 [32.22–35.78] 30 [28.22–31.78] <0.005 <0.05

2 Intensity Histogram MR-T2W_LoG_robust Mean
Absolute Deviation 7.5 [6.43–8.57] 9.58 [8.62–10.53] <0.005 <0.05

3 Gray Level Run
Length Matrix MR-T2W_Run Entropy 4.2 [4.07–4.33] 4 [3.92–4.08] <0.05 0.19

4 Gray Level
Co-Occurrence Matrix

MR-
T2W_gradient_correlation 0.46 [0.44–0.49] 0.45 [0.43–0.47] 0.26 1

5 Deep Learning-Based MR-T2W_DeepFeature317 4.75 × 10−2 [3.62 ×
10−2–5.88 × 10−2]

6.03 × 10−2 [4.64 ×
10−2–7.41 × 10−2]

0.66 1
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4. Discussion

In the present study, we developed and internally validated a diagnostic model based
on machine learning and radiomics applied to baseline MRI images that can predict the
response to NACT in patients with locally advanced cervical cancer. The baseline MRI
images were processed for radiomic analysis and stable, non-redundant features were
combined to create, train, and internally validate different models to classify the patients
into the “Completely responding” and “Not completely responding” classes.

The best model developed (ensembles of random forest classifiers, Table 2A) showed
an ROC-AUC (%) of 83 (majority vote), 82 (mean) [79.9–84.6], an accuracy (%) of 74,
74 [72.1–76.1], a sensitivity (%) of 71, 74 [68.7–78.9], and a specificity (%) of 75, 74 [71–77.5].

Although our results are preliminary, they represent an important step forward for
the adoption of radiomics and machine learning models for cervical cancer patients.

As mentioned previously, NACT is not the mainstay of treatment for locally advanced
cervical cancer patients, but it may be a treatment option in patients who cannot access
radiotherapy in a reasonable time and in young patients who want to preserve sexual
function or ovarian function [14]. In this pilot study, patients were divided into only
two groups (“Completely responding and “Not completely responding”) by eliminating
the gray area of partial responses and considering as responders to treatment only those
patients who did not require further treatment after the scheduled radical surgery. A
limitation of NACT is indeed the possibility for patients to undergo adjuvant treatments
after radical surgery with a massive increase in morbidity, and the possibility of identifying
chemo-responsive women as early as at diagnosis could allow for new scenarios and new
possibilities for personalized care.

The advantages of our study were the consideration of the histological specimen after
radical surgery as the gold standard for defining response and developing a model for the
different tumor histotypes in accordance with the IBSI guidelines [13].

The limitations of the study were the small sample size and the consequent biases of
the retrospective, single center study design. An important limitation is represented by the
restricted replicability of the patient’s setting, since as previously discussed, NACT does
not represent the standard of treatment in patients with locally advanced cervical cancer
and therefore is not a therapeutic strategy adopted by the majority of centers.

There are now many papers in the literature that consider radiomics in the diagnostic–
therapeutic process of the gynecological cancers. Our group has previously published
several studies of radiomics and machine learning use in the triage of adnexal masses or in
the differential diagnosis between uterine myomas and sarcomas [15–17].

Regarding the treatment of cervical cancer, there are many published studies, especially
focusing on the Asian population. Tian et al. proposed a radiomic signature to predict the
response to NACT using CT scans, which, however, is not the imaging method of choice for
the patient’s workup and staging [18]. Aerts proposed that radiomics can quantify tumor
heterogeneity by reflecting the different gene expression underlying the different responses
to treatment [19]. Autorino et al. studied the development of a radiomics model based
on MRI images to predict the long-term (2-year) survival in patients undergoing NACT
therapy followed by radical surgery [20]. Other research has evaluated the use of radiomics
applied to MRI and 18-FDG-PET in predicting the response to exclusive chemoradiation
(standard treatment) [21,22]; in particular, some experiences propose the mean ADC value
extracted from the baseline DWI MRI as an independent predictor of the disease-free
survival in cervical cancer patients [23].

Although accumulating data are available in this setting, to the best of our knowledge,
our study represents the first study of the use of baseline MRI images to extract the radiomic
features related to the response to NACT in locally advanced cervical cancer. The results
of our study are certainly encouraging, but we need external multicenter and prospective
validation studies in a larger cohort of patients. Interestingly, radiomics represents a
suitable tool for improving the characterization of different tumors and promotes a more
personalized approach [24–29].



Diagnostics 2023, 13, 3139 10 of 11

5. Conclusions

In conclusion, radiomics and machine learning can be applied to preoperative MRI
images to select the most appropriate treatment in patients affected by locally advanced
cervical cancer. Further studies are necessary to validate (externally) our results. More
importantly, large prospective studies are needed to better understand the role of artifi-
cial intelligence and deep learning in this setting. At present, radiomic-based artificial
intelligence seems a promising tool that might enhance the screening, early diagnosis,
risk stratification, and prognostication in cancer patients. Further prospective evidence
is warranted.
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