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Abstract: Patients with type 1 diabetes must continually decide how much insulin to inject before
each meal to maintain blood glucose levels within a healthy range. Recent research has worked on a
solution for this burden, showing the potential of reinforcement learning as an emerging approach for
the task of controlling blood glucose levels. In this paper, we test and evaluate several deep Q-learning
algorithms for automated and personalized blood glucose regulation in an in silico type 1 diabetes
patient with the goal of estimating and delivering proper insulin doses. The proposed algorithms
are model-free approaches with no prior information about the patient. We used the Hovorka
model with meal variation and carbohydrate counting errors to simulate the patient included in this
work. Our experiments compare different deep Q-learning extensions showing promising results
controlling blood glucose levels, with some of the proposed algorithms outperforming standard
baseline treatment.

Keywords: reinforcement learning; type 1 diabetes; Q-learning; deep learning; artificial pancreas

1. Introduction

Diagnoses of blood sugar conditions are determined by the insulin secretion from
the pancreas [1]. In this regard, type 1 diabetes (T1D) is a chronic disease that occurs
when the pancreas is no longer able to produce enough insulin because of the autoimmune
destruction of insulin-producing beta cells in the pancreas [2]. This metabolic disorder
leads to high blood glucose (BG) levels (hyperglycemia), causing damage, dysfunction,
and failure of various organs in the long term [1]. T1D treatment consists of regulating
BG levels using external insulin doses, whereas administering more insulin than needed
might cause dangerous low BG levels (hypoglycemia) [3]. The fear of hypoglycemia is a
major concern for most T1D patients, since it can be fatal if unnoticed [4]. The goal of the
treatment is to maintain BG levels in a healthy target range between 70 and 180 mg/dL,
referred as normoglycemia [5]. Figure 1 shows the results from a glucose tolerance test
where the BG values from a healthy subject and a diabetic subject are compared. In this test,
oral glucose is given to the subjects and blood samples are taken afterward to determine
BG clearance. This test is usually used in diabetes diagnosis, since diabetic BG rises to
hyperglycemic values due to the lack of insulin.
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Figure 1. Glucose tolerance test for diagnosis of diabetes: healthy and diabetic subjects [6].

Insulin is subcutaneously administered by the patients either through multiple daily
injections or an insulin pump providing a continuous infusion [7]. Patients under multiple
daily injections treatment follow a basal–bolus insulin regimen, taking a basal long-acting
insulin dose approximately once a day to regulate fasting BG levels, and short-acting
insulin boluses at mealtimes to reduce the effect of carbohydrate intake. Alternatively, the
insulin pump continuously delivers short-acting insulin as a basal rate, whereas boluses
are manually activated by the patient to deal with high BG levels associated with meal
intakes. In addition, BG levels have to be monitored by the patients either several times
per day using manual finger-prick measurements, or using a continuous glucose monitor
(CGM) embedded in the subcutaneous tissue [8].

The artificial pancreas (AP) is the combination of an insulin pump, a CGM, and a
control algorithm to automatically regulate BG concentrations [9,10]. The control algorithm
translates BG levels measured by the CGM into the insulin amount to be delivered by the
pump. The subcutaneous administration of insulin causes a delay in the insulin action,
whereas subcutaneous BG measurements from the CGM are also delayed. Apart from
the insulin action and CGM delays, the dynamic factors causing variation in the patient-
specific parameters, the non-stationary daily disturbances, and the noisy data from the
sensors provide a challenging control problem complicating the achievement of healthy BG
levels [11,12]. The commercial available AP systems [13–16], do-it-yourself systems [17],
and academic systems [18] are all hybrid closed-loop systems. A hybrid system fully
automates the basal insulin deliveries, whereas the patient has to provide information
about carbohydrate ingestion to calculate boluses during meals.

The requirement for an adaptive algorithm that personalizes the system for each
patient is one of the major limitations of the AP [11]. The state-of-the-art in AP controller
algorithms consists mainly of either proportional–integral–derivative control [15,19], or
model predictive control [20,21]. Traditional reactive controllers based on momentary
BG changes cannot thus keep up with the delays inherent to the AP systems to avoid
hyperglycemic events after meals. In addition, the variability in BG concentration due
to meal intake, exercise, sleep, and stress are not yet modeled efficiently [10], hindering
the development of an adaptive AP. The control algorithm should be able to learn rich
enough models that adapt to the system as a whole [11], encouraging the use of model-
free approaches. At this stage, reinforcement learning (RL) has emerged as a promising
alternative to traditional paradigms for controlling insulin infusion in the AP [22].

RL algorithms have been used before to regulate the BG levels in in silico T1D patients,
showing that RL algorithms can improve BG control. Concretely, in Sun et al. [23], RL is
used to learn the insulin-to-carb ratio parameter of the insulin pump, but not the insulin
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action itself. In Fox and Wiens [24], the performance of some RL methods is compared
to a proportional–integral–derivative algorithm. Lee et al. [25] used a proximal policy
optimization method for automated insulin infusion with a reward function that mimics
the natural behavior of the missing beta-cells. Zhu et al. [26] propose a Q-learning approach
where the basal rate is modified by a discrete number of actions. They also operate in a dual-
hormone approach with glucagon infusion as one of the actions. In Yamagata et al. [27],
model-based RL combining echo state networks and a model predictive controller is
proposed for blood glucose control. Emerson et al. [28] evaluate the use of offline RL
methods to control blood glucose levels and avoid potentially dangerous patient interaction
during the training process. Viroonluecha et al. [29] propose deep RL approaches for blood
glucose control in a closed-loop system with a reduced frequency of observations and
rewards. For an extensive review of the role of RL and its applications in healthcare, refer
to [30,31]. Machine learning techniques have been also used in diabetes diagnosis and
screening [32]. Khaleel et al. [33] propose a machine learning model to predict whether a
patient has diabetes or not.

In this work, we implement and evaluate several state-of-the-art improvements to the
deep Q-learning (DQL) algorithms in the hybrid closed-loop AP to automatically regulate
the BG levels in a T1D patient. We perform in silico experiments using the Hovorka
model [20], demonstrating that RL can adapt to carbohydrate counting errors and in some
cases outperform traditional basal–bolus treatment. We compare the performance of the
different DQL extensions in terms of time-in-range (time spent on healthy BG levels), time
in hypo-/hyperglycemia, and BG level plots for visual inspection. This work is based on
the Master’s thesis of Sigurd Nordtveit Hjerde [34].

Structure of Paper

We begin introducing RL and the T1D simulation environment in Section 2. In Section 3
we present the results. In Section 4 we discuss the results of this work. Section 5 provides
concluding remarks and directions from possible future work.

2. Methods

In this section, we introduce the RL framework, the deep Q-learning algorithm and its
extensions, and the T1D simulator used in this work.

2.1. Reinforcement Learning

RL is characterized by the interactions between a decision-making agent and its un-
known environment. This framework is shown in Figure 2, where at each time step the
agent perceives the current state of the environment and takes an action based on that state.
As a consequence of this action, the environment moves to a new state and generates a
positive or negative reward for the agent. The goal of the agent is to maximize the reward
in the long run by taking actions that result in preferable states [35].

Figure 2. The reinforcement learning framework [35].

A RL problem can be formulated as a Markov decision process represented by the
tuple (S ,A,P ,R, γ), where S and A are the state and the action spaces, respectively. P
are the state transition probabilities p(s′|s, a), representing the transition from state s to s′



Diagnostics 2023, 13, 3150 4 of 15

when the agent takes action a. R represents the numerical rewards from reward function
r(s, a, s′), which defines the goal of the problem, and γ ∈ (0, 1) is the discount factor. The
policy represents the mapping from state to action and the goal of the agent is to learn
an optimal policy π∗ that maximizes the accumulated reward over time represented by
the expected return Gt = ∑∞

k=0 γkRt+k+1, where Rt = r(st, at, st+1). The total amount of
reward expected by the agent starting from the state s and thereafter following the policy π
is called the value function Vπ(s), which represents the long-term desirability of states:

Vπ(s) = Eπ [Gt|St = s] = Eπ [
∞

∑
k=0

γkRt+k+1|St = s].

Similarly, the total amount of reward expected by the agent starting from the state s,
taking action a, and thereafter following the policy π is called the action–value function
Qπ(s, a):

Qπ(s, a) = Eπ [Gt|St = s, At = a] (1)

= Eπ [
∞

∑
k=0

γkRt+k+1|St = s, At = a]. (2)

2.2. Q-Learning

The goal of RL is to find an optimal policy that is better than or equal to all other
policies based on the values of the states. Actions are then taken such that the agent spends
as much time as possible in valuable states. The policy is often simply a greedy search over
each action in the given state, where the action that gives the highest value is chosen [36].
In the case of an agent controlling insulin infusion in T1D, safe blood glucose levels would
represent states with high values, whereas high and low blood glucose levels would be
represented by states with lower values.

One of the most popular methods to estimate the Q-values is the Q-learning algo-
rithm [37], where the action–value function Q(s, a) is learned through temporal-difference
updates [35]. Assuming finite state and action spaces, the Q-learning algorithm is given by

Qi+1(st, at) = Qi(st, at) + α[rt+1 + γ max
a

Qi(st+1, a)−Qi(st, at)], (3)

where α ∈ (0, 1] is the learning rate. The Q-values will converge to an optimal action–value
function Q∗, where the optimal policy π∗(st) = arg maxa∈A Q(st, a) can be extracted [37].

2.2.1. Q-Learning Extensions

In this section, we briefly introduce the Q-learning extensions used in this work.
References to the original papers are included for a full description of the algorithms.

• Deep Q-Learning (DQN): In DQN, the Q-value function is approximated using a
neural network (NN). The input of the NN is the current state of the environment,
whereas the output is the Q-value of all the possible actions the agent can take [38].

• Double Q-Learning (DDQN): This approach proposes two Q-value approximators
represented by two NNs, one to estimate the target Q-values and the other one to
estimate the predicted Q-values. DDQN reduces the overestimation of the Q-values,
usually leading to a better performance compared to DQN [39].

• Dueling DQN and DDQN: This extension changes the standard DQN and DDQN
architectures presenting two separate estimators, one for the state-value function and
one for the advantage function. The advantage function is defined as the difference
between the Q-value function and the state-value function, A(s, a) = Q(s, a)−V(s),
and indicates the amount of reward that could have been obtained by the agent by
taking the action a over any other action. This method increases the stability of the
optimization [40].



Diagnostics 2023, 13, 3150 5 of 15

• Prioritized Experience Replay (PR): DQN training is not efficient since transitions are
randomly sampled to train the network parameters. PR gives priority measures to the
transitions, sampling important transitions more frequently [41].

• Noisy DQN: Standard DQN uses a random policy resulting in an inefficient explo-
ration, whereas noisy DQN adds parametric noise to the weights and biases for
exploration [42].

• Categorical DQN: This algorithm learns a distribution of the Q-values instead of an
estimation of the Q-value function, leading to a more stable and faster learning and
usually outperforming standard DQN [43].

• Rainbow DQN: This algorithm integrates all the previous extensions introduced in
this section, improving data efficiency and overall performance [44].

2.3. In Silico Simulation

There exist three main physiological models in in silico T1D research: the Bergman
minimal model [45], the Hovorka model [20], and the UVA/Padova model [46,47]. The
Bergman minimal model includes only two equations describing the internal insulin and
glucose dynamics, with no delays associated with the subcutaneous insulin infusion and
glucose measurements. Despite its simplicity, the minimal model glucose kinetics is still
widely used in diagnosis as a clinical tool to calculate insulin sensitivity index [48]. The
Hovorka and the UVA/Padova models both account for these significant delays. The Hov-
orka model consists of five compartments describing the insulin action and glucose kinetics
dynamics [49]: three internal compartments describing insulin action, glucose kinetics,
and glucose absorption from the gastrointestinal tract, and two external compartments
describing interstitial glucose kinetics and subcutaneous insulin absorption. We use the
Hovorka model in this work, which includes the virtual patient used in our experiments.

2.3.1. Experiment Setup

Three experiments were included in this work. The first experiment compares all the
DQN algorithms introduced in Section 2.2.1, while still using the same hyperparameters,
training duration, and batch size. The second experiment includes the same algorithms
from the first experiment, but uses a larger action space to explore how more actions affect
the performance of the RL agents. Lastly, the third experiment was organized to test how
well a trained agent would perform when skipping meal boluses at random.

State-of-the-art AP designs utilize commercially available insulin pumps and CGMs,
operating in the subcutaneous tissue and introducing serious delays into the control
task [50]. The hybrid closed-loop AP proposed in this work utilizes subcutaneous de-
vices with short-acting insulin, which starts to work after 30–60 min and peaks after around
2–4 h. This implies that the actions from an agent would not be immediately be reflected by
the CGM measurements and the state of the environment would not be well represented
by only including BG data [51]. In this work, we have included insulin information as
part of the state representation and considered 30 min time intervals as the time between
each updated state from the environment to alleviate the effect of the delays in the learning
process. Therefore, the insulin basal rate is kept constant during these 30 min and the
environment has enough time to significantly change between each time step.

The states st ∈ S consist of the previous 30 min of BG data, as well as the 4 last insulin
actions (last 2 h) at a time resolution of 1-min: st = [Gt, It], where Gt = [gt−29, gt−28, . . . , gt]
and It = [it−3, it−2, it−1, it], with gt ∈ R0:500, it ∈ R+ and t ∈ N0:72. Here, gt [mg/dL] are
the BG measurements, it [mU/min] are the insulin basal rates, and t is the time index,
where one time step is 30 min. The time step limit is at 72 because we simulate the patient
using episodes of 1.5 day = 36 h = 2160 min, and divided by the 30 min step, we obtain
2160/30 = 72. This is for taking into account the whole night before the next day.

The agent performs an action at ∈ A every t steps, i.e., every 30 min. We define
at as real positive numbers R+ in a discrete action space. In this work, we used two
different action spaces: A1 = {b0, b∗, 3b∗} and A2 = {b0, b∗/2, b∗, 2b∗, 3b∗}, where b0 is 0
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insulin (stop the insulin pump) and b∗ [mU/min] is the optimal basal rate, which is set
to 6.43 mU/min. The optimal basal rate is calculated as the minimum amount of insulin
required to manage normal daily BG fluctuations and keep the BG level at target value
during the steady state for this particular patient. Note that both action spaces have the
same minimum and maximum actions, but the A2 has a higher resolution including two
more actions in between. Decaying ε-greedy exploration was used during training for all
experiments, according to equation:

ε(t) = εF + (ε0 − εF)e−t/η , (4)

where the initial value was set to ε0 = 1.0, the final value εF = 0.01, and the decay
η = 3× 104. The exploration curve can be seen in Figure 3, and is approximately equivalent
to 50% exploration during training.

Figure 3. The ε-greedy exploration curve for all experiments. The ε-value shows the percentage of
exploration at the current time step.

We obtain a new state st every 30 min, and when the agent performs an action at we
receive the next state st+1 and a reward rt ∈ R ⊂ R. The reward function R is defined as a
Gaussian function:

R(gt) = e−
1
2 (gt−br)2/900, (5)

where gt is the BG level and br [mg/dL] is the BG reference, which is set to 108 mg/dL. In
addition to this, the simulator checks if the BG levels are within valid bounds, i.e., [g`, gh]
[mg/dL], where g` = 70 mg/dL is the lower bound and gh = 180 mg/dL is the higher
bound. If gt ∈ [g`, gh], then rt > 0. Otherwise, the agent receives a reward of rt = −1000,
which can be interpreted as a punishment.

To measure the performance of our simulations, we use the time-in-range (TIR),
which is the percentage of time the patient spends with its BG levels within the target
range, defined as the healthy BG range between 70 and 180 mg/dL [52]. This performance
measurement can also be perceived as the number of hours per day spent within the desired
target range. As an example, 12 h per day spent within the target range correspond to
50% TIR. Now, consider andincrease from 50% TIR to 55% TIR. This 5% increase translates
to one more hour per day spent within the target range, which is a significant increase
considering the small change in the TIR. We also define the metrics time-above-range (TAR)
and time-below-range (TBR) as the percentage of time the patient spends with its BG levels
above and below the TIR, respectively. Finally, we included the mean BG per episode, µ,
and the standard deviation of the BG per episode, σ.

An individual who weighs 70 kg was used during the experiments. For each training
episode, the virtual patient was given meals from a random meal generator. Fixed seed
was used to ensure each agent trained on the same dataset.
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The meal schedule was defined as follows: 4 meals per day with a set schedule lasting
up to 1 min. Uniform noise, v ∼ U(−20, 20), was added to each base meal to simulate meal
variation, as well as ±30 min to each meal time. The daily meal schedule is then:

• Breakfast: (40 + v1) [g] of CHO at 8:00 ± 30 min.
• Lunch: (80 + v2) [g] of CHO at 12:00 ± 30 min.
• Dinner: (60 + v3) [g] of CHO at 18:00 ± 30 min.
• Supper: (30 + v4) [g] of CHO at 22:00 ± 30 min.

Here, v1, v2, v3, and v4 are the four noise variables, one for each meal. The base meals
(40 g, 80 g, 60 g, and 40 g) of carbohydrates are taken from El Fathi et al.’s work [5]. Each
meal consists of an actual CHO intake and an estimated CHO intake. The estimated intake
is used for meal bolus calculation and is included in both training and testing to simulate
±30% carbohydrate counting error of the actual intake. To test the agents, we use a fixed
set of 100 episodes with 100 daily meal scenarios, sampled from the meal generator with a
different seed than the training meals.

Four different NN architectures were used in our experiments. The architectures
assigned to each of the algorithms are described below:

• DQN and DDQN: A 4 layer fully connected network with 64 hidden units each. ReLU
nonlinearity was used across all layers. The output layer has a linear output.

• Dueling DQN, dueling DDQN, PR DQN, and noisy DQN: A fully connected network
consisting of two blocks, each individual block, is similar to the DQN network. Each
output layer in the two blocks has linear outputs, representing the advantage and
value streams. For the noisy DQN algorithm, we simply added noise to the linear
layers and reset the noise parameters after every training batch.

• Categorical DQN: A 4 layer fully connected network with 64 hidden units each. The
two first layers are without noise and the following are with noise. ReLU nonlinearity
was used across all layers. The output layer has a linear output.

• Rainbow DQN: A fully connected network consisting of two blocks, each with a dense
layer of 3 fully connected noisy layers. The input layer consists of an additional linear
layer before splitting into the two streams. The amount of hidden units is 64, and ReLU
nonlinearity was used across all layers. Each output layer is linear and represents the
advantage and value streams as in the dueling DQN case.

Algorithms and NN implementations were conducted in Python 3.8.1 using PyTorch
1.4 [53]. The full code is available at repository https://github.com/sigurdhjerde/Masters-
Thesis. The in silico simulator was wrapped in the OpenAI Gym framework for simplified
testing [54], and its implementation can be viewed at repository https://github.com/
sigurdhjerde/gym/tree/master_student_branch. The mean squared error training loss of
the TD errors was optimized using Adam, with a learning rate of 10−3. Our NN weights
and biases were initialized using PyTorch default settings.

3. Results

The main goal of the following experiments is to compare different DQN extensions
for the BG simulations, in which the diabetic patient should maximize the TIR while
minimizing the TAR and TBR. Different action space sizes will also be compared, as this
might affect the performance of the algorithms. The baseline refers to the patient using a
fixed basal rate with the optimal value b∗ = 6.43 mU/min. This baseline will serve as a
guideline when comparing trained RL agents for different DQN extensions. Note that the
baseline performance is already quite high and not realistic for our in silico patient, but the
results are still very valuable since we can still monitor the performance of the different
RL algorithms.

3.1. Experiment 1—Comparing Algorithms

In this experiment, we compare all the DQN algorithms introduced in Section 2.2.1.
The main goal here is to see which algorithm achieves the best TIR score calculated from

https://github.com/sigurdhjerde/Masters-Thesis
https://github.com/sigurdhjerde/Masters-Thesis
https://github.com/sigurdhjerde/gym/tree/master_student_branch
https://github.com/sigurdhjerde/gym/tree/master_student_branch
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the mean BG per minute over 100 episodes. We used the state space and the action space
with three actions as described in Section 2.3.1. The models were trained for 105 time steps,
with a batch size of 128, an experience replay buffer size of 105, and a discount factor of
γ = 0.99. The results are summarized in Table 1.

Table 1. Experiment 1—TIR, TAR, and TBR of the mean BG per minute of 100 episodes for the
different DQN extensions. µ is the mean BG per episode and σ is the standard deviation of the BG
per episode. Results better than baseline are written in blue text, with the best results highlighted
in blue bold text. Results worse than baseline are written in red text. Note that in the TBR column,
there are multiples of the same result, hence they are not highlighted.

Algorithm TIR (%) TAR (%) TBR (%) µ (mg/dL) σ (mg/dL)

Baseline 95.41 4.59 0.0 124.00 33.84
DQN 95.05 4.95 0.0 125.04 35.21

DDQN 92.82 1.90 5.28 111.67 33.31
Dueling DQN 93.33 0.45 6.25 124.32 32.24

Dueling DDQN 96.71 3.29 0.0 126.92 32.32
PR DQN 94.35 5.65 0.0 122.63 33.26

Noisy DQN 97.04 2.96 0.0 116.10 31.74
Categorical DQN 95.23 4.77 0.0 125.25 34.68

Rainbow DQN 94.35 0.0 5.65 100.66 32.20

These results show that it is possible to control BG levels using RL in the proposed
experimental setup. Analyzing and comparing the presented DQN extensions, we found
different levels of performance. The DQN algorithm performs very similarly to the baseline
in terms of the TIR, TAR, and TBR. The standard deviation of the BG per episode σ (35.21)
is slightly higher for DQN because the agent is not able to properly compensate for larger
meals, scoring the worst out of all the tested algorithms. We see that in general, the σ values
do not vary much. This can be perceived as that for each episode, the variation in BG does
not differ that much from algorithm to algorithm.

The DDQN algorithm presents a low TAR (1.90%) because the agent tends to choose
higher basal rate actions. As a consequence of the higher basal rates, the TBR increases
(5.28%) compared to baseline (0.0%), whereas the TIR and the mean BG per episode decrease,
presenting the worst results in terms of the TIR (92.82%) and the closest µ = 111.67 mg/dL to
the BG target value.

Regarding dueling DQN, we observe a TIR estimate approximately 2% lower than
the baseline TIR, whereas the TAR has also decreased (0.45%). The TBR estimate is higher,
scoring the highest TBR with a percentage of 6.25%. Similar to the DDQN algorithm, the
low performance achieved by dueling DQN is the result of a set of actions with a high
basal rate.

The dueling DDQN algorithm shows better performance than the baseline, presenting
a higher TIR (96.71%) and lower TAR (3.29%) while keeping the 0.0% TBR. The overall BG
is higher per episode, as we can see from the µ estimate (126.92 mg/dL), scoring the highest
value among the different tested algorithms. This algorithm proves to be competitive when
controlling BG levels in a simulated T1D patient.

The PR DQN agent presents the highest TAR (5.65%), scoring the worst among the
different algorithms. In addition, the TIR for this agent is 94.35%, not improving the results
obtained from the baseline (95.41%).

The noisy DQN algorithm obtains the best results in terms of the TIR (97.04%) and
BG standard deviation per episode σ = 31.74 mg/dL. This agent also presents a low TAR
(2.96%) and a good mean BG per episode µ = 116.10 mg/dL, considering that TBR is
kept to 0.0%. Noisy DQN outperforms the baseline with lower episodic BG levels and no
hypoglycemic events, emerging as our best solution for controlling BG concentrations.
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Similar to DQN, the categorical DQN extension follows a strategy close to the baseline,
obtaining results very similar to the baseline and DQN methods. This agent presents a
slightly lower TIR and higher TAR, mean, and standard deviation BG than the baseline.

Rainbow DQN drops BG levels due to higher basal rates, leading to the lowest episodic
BG with mean BG per episode µ = 100.66 mg/dL, TAR = 0.0%, and the second worst
TBR = 5.56%. The TIR = 94.35% is lower than the baseline (95.41%), while still able to avoid
hypoglycemic events.

Figure 4 shows the mean BG values obtained from baseline and noisy DQN agent, con-
sidered the most competitive RL approach from the results obtained in Table 1. Comparing
both methods, we see how the noisy DQN agent outperforms the baseline, increasing the
TIR by reducing the hyperglycemic events while avoiding hypoglycemia. Note how the
agent regulates the tail of the curve to the optimal BG value, showing that the agent was
able to learn the optimal basal rate of our simulated patient. The RL algorithm achieves an
overall reduction in the mean BG values and the standard deviation.

(a) (b)

Figure 4. The mean BG per minute with confidence bands (shaded red area), representing the
standard deviation, simulated for 100 episodes: (a) The baseline using only the optimal basal rate
b∗ = 6.43 mU/min as the selected action. (b) The noisy DQN agent. The blue dotted lines indicate
the normoglycemic range fixed at 70–180 mg/dL.

3.2. Experiment 2—Expanded Action Space

The goal of this experiment is to see what influence an increase in the action space
has on the agent. By increasing the action space, one would assume that learning the right
action at a certain state could be more difficult. If learned right, more actions could prove to
be more efficient for the agent and the BG regulation since there are more choices in insulin
amounts. Similar to experiment 1, we compare all the DQN algorithms using the same
procedure and metrics. We used the same state space as in experiment 1, but the action
space now has five actions in it, as described in Section 2.3.1. The only hyperparameter that
was changed from experiment 1 was the batch size of 512. The increase in batch size is to
compensate for the fact that we could need more data since more actions could complicate
the learning process. Table 2 summarizes the results from experiment 2.

Comparable to the results from experiment 1, the DQN algorithm performs similarly
to the baseline, with no hypoglycemic events and almost no differences in terms of the TIR
(95.23%) and TAR (4.77%). The mean BG per episode (124.46 mg/dL) is also close to the
value obtained from baseline (124.00 mg/dL), whereas the standard deviation is slightly
higher when using a DQN agent.

The DDQN agent also works similarly to the experiment 1 version, in which actions
with high basal rates lead to lower episodic BG levels, µ = 103.29 mg/dL. As a consequence
of the lower mean BG per episode, the DDQN extension presents a lower TIR (93.80%) than
baseline (95.41%), avoiding hyperglycemic events and scoring the worst TBR (6.20%) in
this experiment 2.

For the dueling DQN agent, we obtained the best TIR (97.04%). This agent also
decreases TAR (2.96%) compared with baseline (4.59%), reducing the mean BG per episode
(113.80 mg/dL) with no hypoglycemic events and slightly higher standard deviation
(34.03 mg/dL). Compared to experiment 1, the diversity in the action selection has helped
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the agent to learn a better usage of the different basal rates included in the action space,
proving a successful control of the BG concentrations.

Table 2. Experiment 2—TIR, TAR, and TBR of the mean BG per minute of 100 episodes for the
different DQN extensions using the expanded action space. µ is the mean BG per episode and σ is
the standard deviation of the BG per episode. Results better than baseline are written in blue text,
with the best results highlighted in blue bold text. Results worse than baseline are written in red text.
Note that in the TBR column, there are multiples of the same result, hence they are not highlighted.

Algorithm TIR (%) TAR (%) TBR (%) µ (mg/dL) σ (mg/dL)

Baseline 95.41 4.59 0.0 124.00 33.84
DQN 95.23 4.77 0.0 124.46 34.88

DDQN 93.80 0.0 6.20 103.29 31.65
Dueling DQN 97.04 2.96 0.0 113.80 34.03

Dueling DDQN 94.91 5.09 0.0 119.61 31.60
PR DQN 93.75 0.65 5.60 107.04 33.70

Noisy DQN 94.17 0.0 5.83 109.54 32.98
Categorical DQN 93.89 0.0 6.11 106.28 32.28

Rainbow DQN 90.56 3.43 6.02 118.35 42.50

The dueling DDQN method performs worse than the baseline, decreasing the TIR
(94.91%) and scoring the worst TAR (5.09%) while still able to avoid hypoglycemia. How-
ever, the agent reduces the mean BG per episode (119.61 mg/dL) and obtains the lowest
standard deviation (31.60 mg/dL). Compared to experiment 1, the inclusion of more actions
in the action space has hindered the learning process and so worsened the performance in
terms of the TIR and TAR.

The results in Table 2 reveal that PR DQN presents a worse TIR (93.75%) and TBR
(5.60%) than the baseline while reducing the TAR (0.65%). These undesired results are
a consequence of the high basal rate actions chosen by the agent, obtaining the closest
mean BG per episode (107.04 mg/dL) to the target value. The scenario was the opposite in
experiment 1, in which the agent scored the highest TAR and zero TBR.

Noisy DQN presents a lower TIR (94.17%) than the baseline and zero TAR, resulting
in a mean BG per episode (109.54 mg/dL) closer to the target value. This agent struggles
with controlling the BG levels due to high basal rate choices leading to a high TBR (5.83%),
whereas noisy DQN emerged as the best solution for controlling BG in experiment 1.
High basal rate actions are a common wrong strategy learned by some of the agents after
expanding the action space. With more actions to choose from, the agent might be confused
since the added noise in the layers encourages the agent to explore even more than before.
This problem might be alleviated by a steeper decay on the ε-greedy action selection.
Moreover, sometimes more neurons increase the probability of learning useful information,
so a deeper network might help with exploration and exploitation.

Similar to PR DQN and noisy DQN, the strategy learned by categorical DQN is defined
by actions with a high basal rate leading to a low mean BG per episode (106.28 mg/dL).
These actions result in a very high TBR (6.11%) and zero TAR, with a lower TIR (93.89%)
than baseline (95.41%). Compared with experiment 1, the extension of the action space
worsens the results for this method, exposing the difficulties of the agents for learning with
an expanded action space.

The results from rainbow DQN are even worse than in experiment 1, with the agent
giving too high basal rates which lead to very high TBR (6.02%). The TIR (90.56%) is the
lowest, whereas the standard deviation (42.50 mg/dL) is the highest among the tested
methods, obtaining the worst results from Table 2. In both experiments 1 and 2, rainbow
DQN fails to control BG levels as intended.

Experiment 2 has shown that increasing the number of actions does not necessarily
improve the performance in the BG control task. The larger the action space, the more
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difficult the learning process, hindering the decision-making by the agent. DDQN, PR DQN,
noisy DQN, categorical DQN, and rainbow DQN agents did not succeed when regulating
BG concentrations better than baseline. Only the dueling DQN algorithm improved the
results from the baseline, whereas DQN and dueling DDQN obtained very similar results.

Figure 5 shows the mean BG values obtained from the baseline and dueling DQN
agent, considered the most competitive RL approach from the results obtained in Table 2.
Comparing both methods, we see how the dueling DQN agent improves the results
obtained from the baseline by decreasing the TAR and thus increasing the TIR while
avoiding hypoglycemia. Note how the agent regulates the tail of the curve to the optimal
BG value, showing that the agent was able to learn the optimal basal rate of our simulated
patient. The RL algorithm reduces the mean BG concentrations, working closer to the target
value, although slightly increasing the standard deviation.

(a) (b)

Figure 5. The mean BG per minute with confidence bands (shaded red area), representing the
standard deviation, simulated for 100 episodes: (a) The baseline using only the optimal basal rate
b∗ = 6.43 mU/min as the selected action. (b) The dueling DQN agent. The blue dotted lines indicate
the normoglycemic range fixed at 70–180 mg/dL.

3.3. Experiment 3—Meal Bolus Perturbation

Experiment 3 investigates the ability of a trained agent to deal with skipped meal
boluses. The agents are trained following the experimental setup from experiment 1. After
training the agents, a similar comparison to that of experiments 1 and 2 was performed, in
which the action variance per episode σA was also calculated. The BG data were obtained
from 100 simulated episodes, in which meal schedules were generated with a set seed
and meal boluses were skipped with a 10% probability. The goal of this experiment is to
compare the algorithms’ performances on an unstable meal schedule. Table 3 summarizes
the results from experiment 3.

Table 3. Experiment 3—TIR, TAR, and TBR of the mean BG per minute of 100 episodes for the
different DQN extensions including skipped meal boluses. µ is the mean BG per episode, σ is the
standard deviation of the BG per episode, and σA is the insulin action standard deviation per episode.
Results better than baseline are written in blue text, with the best results highlighted in blue bold
text. Results worse than baseline are written in red text. Note that in the TBR column, there are
multiples of the same result, hence they are not highlighted.

Algorithm TIR TAR TBR µ (mg/dL) σ (mg/dL) σA (mU/min)

Baseline 94.49% 5.51% 0.0% 125.95 36.47 0.0
DQN 91.57% 8.43% 0.0% 129.54 39.01 8.88× 10−16

DDQN 93.15% 2.45% 4.40% 113.33 35.59 4.72
Dueling DQN 92.18% 7.82% 0.0% 126.11 35.65 5.85

Dueling DDQN 96.16% 3.84% 0.0% 123.41 34.43 9.06
PR DQN 93.61% 6.39% 0.0% 123.50 34.41 6.92

Noisy DQN 96.20% 3.8% 0.0% 117.73 34.97 4.50
Categorical DQN 94.49% 5.51% 0.0% 125.95 36.47 8.88

Rainbow DQN 94.21% 0.0% 5.79% 101.41 33.57 7.91
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Starting with DQN, the TIR has dropped by roughly 3%, whereas the TAR (8.43%) and
the standard deviation of the BG per episode have increased as a consequence of skipping
insulin boluses during meals. The variance in the insulin action is very low, almost zero,
indicating that the agent chooses the same action most of the time.

The DDQN agent’s performance is not affected by the skipped meal boluses, since
the results obtained in experiment 3 are very similar to the results obtained in experi-
ment 1. In this case, the agent presents a moderate variation in the insulin actions, with
σA = 4.72 mU/min.

For the dueling DQN, the performance improves in terms of TBR (0.0%) at the cost
of decreasing the TIR (92.18%) and increasing the TAR (7.82%). However, the low TBR
obtained might be an artifact due to the BG concentrations being higher as a consequence
of the skipped meal boluses and thus increasing the TAR.

The dueling DDQN also shows very similar results in both experiments 1 and 3 and
was the only algorithm able to reduce the mean BG per episode (123.41 mg/dL) when
compared with experiment 1, showing some robustness against skipped meal boluses. This
agent also presents the highest insulin action standard deviation per episode (9.06 mU/min),
showing a more rapid variation in insulin actions.

For PR DQN, noisy DQN, and categorical DQN, the TIR scores have lowered by
approximately 1% and the TAR have slightly increased. Similar to experiment 1, noisy
DQN scored the highest TIR (96.20%), with a low σA = 4.50 mU/min suggesting that less
insulin action variation might be beneficial for the controlling process.

Rainbow DQN seems to be unaffected by the meal disturbances at first glance. With
the lowest TBR score, rainbow DQN nearly obtained the same results as experiment 1.

4. Discussion

In this work, the current state-of-the-art DQN algorithms have been tested and evalu-
ated for the task of controlling the BG levels in a simulated T1D patient. These algorithms
were compared to a baseline, where only the optimal basal rate was given to the patient.
Concretely, three experiments were conducted. Goals with TIR vary from person to person
and may depend on the type of medication they use, type of diabetes, diet, health, age, and
risk of hypoglycemia [52]. Generally, any patient suffering from diabetes should spend
as much TIR as possible, which is the main goal of our first experiment. The results from
this experiment show the potential of DQN algorithms to successfully regulate BG levels
in T1D, with dueling DDQN performing better than the standard treatment and the noisy
DQN agent achieving the highest TIR.

Experiment 2 evaluates how a larger action space affects the performance of the agents.
Our experiments show that the DQN algorithms perform better with an action space with
three actions, rather than an action space with five actions. The extended action space is
hindering the training process of the agents, resulting in undesirable high insulin action
tendencies. In this setting, DQN and dueling DDQN performed close to the baseline,
whereas dueling DQN was the only algorithm able to outperform it. Compared to the
smaller action space, the experiments showed more promising results, with DQN and
categorical DQN performing similarly to the baseline and dueling DDQN and noisy DQN
outperforming it.

A final experiment was conducted, skipping meal boluses at random for an already
trained agent. The goal of this test is to gain a deeper understanding of which algorithm
performs best when the meal schedule is more unstable. When skipping meal boluses,
we found that the overall TIR was slightly lowered whereas the TAR was slightly higher.
The TBR was virtually unchanged, suggesting that this experiment led to more algorithms
failing during the BG control task and so neither adapting nor generalizing to the lack
of meal boluses. Only the dueling DDQN agent was able to obtain a similar TIR while
reducing mean BG per episode during experiment 3, showing some robustness against
skipped meal boluses.
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Given the current experimental setup, further experiments need to be carried out to
fully validate DQN as a realistic algorithm for the AP, since the extent of these experi-
ments is not sufficient to claim that the DQN algorithms are beneficial in a complete and
general sense.

5. Conclusions and Future Work

In this work, we have shown that some state-of-the-art DQN algorithms outperform
standard base bolus treatment in our experiments. The most competitive results were
obtained by noisy DQN for experiments 1 and 3 and by dueling DQN for experiment 2.
These DQN agents were able to cope with both carbohydrate counting errors and to a
certain degree skipped boluses. Therefore, we consider this work a strong proof of concept
for the use of DQN algorithms in the AP framework. However, most of the algorithms
did not perform better than the baseline when controlling BG levels in experiment 2,
indicating that there is room for improvement in both the algorithm’s implementation and
the environment setup.

Experimenting with different types of NN architectures might help to alleviate the
training problems associated with the larger action space, leading to better learning for
future work. One step further in this research direction would be to test policy gradient
algorithms, allowing the use of a continuous action space instead of a discrete one. More-
over, it would also be worth it to test different state spaces; for example, use the last 24 h of
BG and insulin data.

Due to the fact that T1D is a well-studied disease and multiple treatment strategies
already exist, there is a lot of domain knowledge that gets lost in our experiments. An
obvious research direction is including domain knowledge into the RL framework for T1D;
for example, through the reward function.
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