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Abstract: Skin lesion classification plays a crucial role in dermatology, aiding in the early detection,
diagnosis, and management of life-threatening malignant lesions. However, standalone transfer
learning (TL) models failed to deliver optimal performance. In this study, we present an attention-
enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for
extracting features for the classification of skin lesions. This technique holds significant promise in
enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-
based DL (EBDL) models were created using stacking, softmax voting, and weighted average
techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and
created seven attention-enabled transfer learning (aeTL) models before branching out to construct
three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and
generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-
based paradigm increased it by 4.22%, to 99.52%. The aeTL models’ performance was superior to
the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%.
Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index
for the aeEBDL models. The approach is highly effective and generalized for the classification of
skin lesions.
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1. Introduction

An abnormality or a change in the appearance of the skin is referred to as a lesion [1-3].
In addition to moles, rashes, growths, discolorations, and other abnormalities, it can repre-
sent a variety of conditions. For several reasons, it is crucial to classify skin lesions [4-8].
A timely diagnosis and treatment of skin cancer depends on early detection and accurate
classification of skin lesions. Detecting and treating skin cancer early can save lives. Sec-
ondly, healthcare professionals may have limitations in terms of accuracy and consistency
when inspecting skin lesions manually [9-11]. To visually analyze skin lesions, dermatolo-
gists rely on their expertise and experience, but human error is common. By developing
automatic classification systems using neural networks, we can enhance the accuracy and
objectivity of skin lesion classification [12,13].

Convolutional Neural Networks (CNN) have been dominantly used in medical image
classification and segmentation because of their property to automatically extract features
that are different from a traditional neural network [14]. But for CNN models to perform,
they require large training data, and thus, pre-trained models on large-scale datasets have
been used as base models and fine-tuned for specific classification called transfer learning
(TL) [15,16]. Various studies have been conducted on the use of pre-trained TL models for
classification purposes [17-21], and they have performed well, but also these pre-trained
models can have limitations like overfitting on a specific task [22,23]. Ensemble-based deep
learning (EBDL) represents a significant improvement in the field of deep learning (DL),
providing better performance than standalone models [24,25]. It enables the training of
data of different types on different architectures to produce one single predictive output.
To further enhance the performance of ensemble-based models, an attention mechanism
is incorporated into the model architecture to increase its robustness and enable a more
focused analysis of skin lesions.

We discussed the innovative application of aeTL models and aeEBDL approaches for
skin lesion categorization. CNN models have traditionally been employed in medical image
processing with promising results, although the requirement for large training datasets
can be a disadvantage. To get around this, the work fixes them specifically for skin lesion
classification by employing pre-trained models from large-scale datasets as foundation
models. However, employing pre-trained models to overfit a certain job may have some
downsides. The research introduces EBDL models, which mix different data kinds and
architectures into a single predicted output to outperform solo TL models. Attention
mechanisms are also included in the system for targeted classification of skin lesions. We
designed various experiments for our study and achieved excellent performance on the
models. We also preprocessed the dataset and balanced the classes to mitigate the bias in
the models. Also, we performed statistical tests like the Wilcoxon p-test and Cohen’s Kappa
for system reliability and robustness. Lastly, we performed a thorough reliability analysis,
using misclassification of the models over the entire dataset and averaging the rate for each
type of model. For the validation, we developed three hypotheses in this study based on the
investigation of skin lesions. Our first hypothesis is that EBDL models will perform better
than solo TL models due to their ability to capture various representations. Second, we
expected that integrating an attention mechanism will improve the system'’s performance
over non-attention models. Attention models improve performance by allowing the model
to focus on critical areas or skin lesion traits. Our final hypothesis is that attention-enabled
EBDL (aeEBDL) models are superior to solo attention models due to the advantage of
capturing multiple representations while focusing on salient elements.

In the spirit of our hypotheses, we developed seven TL models with six EBDL models
using techniques like max voting, stack, and weighted average. An attention mechanism al-
lows models to focus on salient features, thus improving accuracy. We embedded attention
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mechanisms into our TL models to envision seven new attention-enabled transfer learning
(aeTL) models. Also, we incorporated three additional aeEBDL models. All of these models
were evaluated on the HAM10000 dataset using five experimental protocols.

Figure 1 portrays the online system of our scheme. With the data acquisition from
the HAM10000 dataset, we perform quality control, including data resizing, categorical
label encoding, data augmentation, and class balancing. The processed images are then
classified using our classifier system, incorporating TL and EBDL classifiers. Finally,
we enhance the robustness, reliability, and stability of our system by employing cross-
validation protocols, receiver operating characteristics (ROC) curves, reliability analysis,
and conducting statistical tests.
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Figure 1. Online DermAI 1.0 of the proposed study. TL: transfer learning; EBDL: ensemble-based
deep learning; and ROC: receiver operating characteristic.

This paper follows a systematic flow, beginning with Section 2, which describes the
literature review. Section 3 holds the methodology of our approach, including the dataset
we have used, types of the classifiers, and the experimental protocols. Section 4 has
the results of our performed experiments. Section 5 covers the performance evaluation
of our proposed models, followed by Section 6 with a discussion of our approach and
benchmarking of the models. Finally, the conclusions are drawn in Section 7.

2. Literature Review

Cancer is a disease that occurs through the uncontrolled multiplication of body cells,
occupying peripheral tissues. Although skin cancer occurs less frequently than many other
types of cancer, it is highly important due to its high mortality rate [26].

For a long time, machine learning (ML) algorithms like k-Nearest Neighbors (KNN)
and Decision Trees (DT) have been widely used as supervised ML algorithms for image clas-
sification [27]. Sajid et al. [28] proposed a KNN-based classification system for skin lesions.
The system incorporates filters to remove noise and extracts features from the lesion images.
Their system successfully classifies the lesions into cancerous and non-cancerous categories.
However, it is important to note that KNN systems are computationally expensive and do
not perform well with high-dimensional inputs, which makes the algorithm expensive and
unsuitable for skin lesion classification systems. Senan et al. [29] proposed a Support Vector
Machine (SVM)-based system. They employed a Gaussian filter as part of the preprocessing
process for image enhancement and utilized the active contour technique (ACT) to separate
the lesion area from the healthy body. To extract features from the region of interest, they
applied the Gray Level Co-occurrence Matrix (GLCM) method. While SVM can convert
observations of possibly correlated variables into linearly uncorrelated variables using an
orthogonal transformation, it may encounter difficulties in managing noisy input [30].

DL methods have enabled the development of intelligent medical-imaging-based
diagnosis systems for medical image analysis. Lopez et al. [31] incorporated a VGG-net TL
model for classifying skin lesions in their system. Serte et al. [32] proposed a deep CNN
(DCNN) based on Gabor wavelets to detect malignant melanoma and seborrheic keratosis.
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In their method, an input image is decomposed into seven directional sub-bands, and
eight parallel CNNSs are used to generate probabilistic predictions based on these sub-band
images and the input image. The sum rule is employed for decision fusion to classify the
skin lesion.

Mirunalini et al. [33] developed an automated classification system using the Incep-
tionV3 model to classify skin lesions as malignant or benign, and they also considered
the cause of cancer for image classification. Mahbod et al. [34] proposed an automatic
classification system using three pre-trained deep models: AlexNet, VGG16, and ResNet18,
as deep feature generators. They then trained an SVM classifier using these features and
obtained classification results by fusing the outputs. Younis et al. [35] developed a fast and
reliable model using a pre-trained MobileNet, achieving good categorical accuracy over
the HAM10000 dataset. Additionally, EBDL models have played a major role in improving
detection accuracy. Harangiet et al. [36] proposed aggregating robust CNN models into
one neural architecture, achieving classification using the weighted output of the member
CNN models, outperforming all individual CNN models. Another ensemble-based model
was introduced by Shehzal et al. [37], combining the abilities of EfficientNetV2S and Swin
Transformer models to detect the early focal zone of skin cancer. This ensemble-based
construction effectively minimized loss and increased the accuracy of the model.

After conducting a literature review, we concluded that there is a need for studies
with superior performance analysis, more generalization, and reliability. Further validation
is required for these Al models, as they have the potential to play a significant role in skin
lesion detection.

3. Methodology

In this section, we will discuss the dataset and data demography, overall architec-
ture, TL-based classification, EBDL paradigm, the use of attention in TL models and
ensemble-based models, along with training methods, experimental protocol, and perfor-
mance metrics.

3.1. Dataset and Data Demography

Dermatoscopy is a diagnostic technique that has shown promise in improving the diag-
nosis of pigmented skin lesions. The HAM10000 dataset, which stands for “Human Against
Machine with 10,000 training images” [38], comprises a collection of 10,015 dermatoscopic
images obtained from diverse Australian and Austrian patients using various imaging
modalities. The data acquisition was carried out by two institutions: Cliff Rosendahl in
Queensland, Australia, and the Medical University of Vienna, Austria. The dataset en-
compasses a representative range of important diagnostic categories related to pigmented
skin lesions.

The dataset visualized in Figure 2 is freely accessible for experimental purposes and
serves as a valuable resource for research. It includes dermatoscopic images representing
seven distinct classes: actinic keratoses and intraepithelial carcinoma/Bowen’s disease
(akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (solar lentigines/seborrheic
keratoses and lichen-planus-like keratoses, bkl), dermatofibroma (df), melanoma (mel),
melanocytic nevi (nv), and vascular lesions (angiomas, angiokeratomas, pyogenic granulo-
mas, and hemorrhage, vasc). The ground truth for this dataset was established through
pathology confirmation, master agreement, or confocal microscopy [39]. It is important to
note that the images in the dataset may differ from what a layperson or end-user would
provide in a real-world scenario. Images that were insufficiently magnified or out-of-focus
were removed during the dataset curation process.
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Figure 2. Images from the HAM10000 dataset. Top to bottom rows—Row 1: actinic keratoses (akiec),
Row 2: basal cell carcinoma (bcc), Row 3: benign keratosis-like lesions (bkl), Row 4: melanocytic
nevi (nv), Row 5: melanoma (mel), Row 6: vascular lesions (vasc), and Row 7: dermatofibroma (df),
samples than others. This class imbalance could introduce bias during model training, favoring the
majority classes over the minority ones.

3.2. Quality Control

The dataset used for this project consists of images with an initial size of 450 x 600 pixels,
which were later resized to 112 x 112 pixels to ensure uniformity for training a DL model.
The dataset includes various classes, but there is an imbalance in the distribution of these
classes, with some having significantly more samples than the other.

One specific class, “nv” (melanocytic nevi), had an excessive number of samples
and outweighed other classes. To address this issue, a class balancing technique was
implemented using data augmentation. Additional synthetic data were generated for the
underrepresented class by augmenting the existing images. Various augmentation tech-
niques were utilized, including cropping, image expansion, flipping (horizontal, vertical,
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and diagonal), color filtration, image shifting, and blurring. Some augmentations were also
applied to the other classes but to a lesser extent.

Finally, the image labels were encoded using categorical encoding. The categorical
class names were converted to single digits between zero and six, representing the classes
efficiently for multi-classification purposes.

3.3. Global Architecture of the Proposed System

The proposed overall architecture of DermAI 1.0 is depicted in Figure 3. In this system,
we utilized and preprocessed the HAM10000 [38] dataset. We mapped meta-data to the
corresponding images and ensured dataset cleanliness. The HAM10000 dataset contains
10,015 images, initially exhibiting an imbalance. To address this, we employed a one vs.
all class balancing technique and augmented the dataset to increase the training data size
for our models. Class weights were then applied to the processed data, enhancing the
model’s sensitivity. The dataset was split into training and testing sets, with 80% allocated
for training and 20% for testing purposes. The training data were used to train the tuned
TL models and EBDL models. Subsequently, attention mechanisms were incorporated into
these models to further improve accuracy and reliability.
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Figure 3. Global architecture of the proposed DermAI 1.0; TL: transfer learning; EBDL: ensemble-
based deep learning; ROC: receiver operating characteristic.
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In this study, we hypothesized that the mean accuracy of the EBDL models would
surpass that of the individual TL models. Additionally, we anticipated that the inclusion
of attention mechanisms would lead to better performance in the aeTL models compared
to the fine-tuned TL models alone. Furthermore, we hypothesized that aeEBDL methods
would outperform aeTL models. To evaluate the performance of the models, we conducted
scientific validation as well as statistical analysis and calculated metrics such as precision,
recall, Fl-score, and AUC. These evaluations allow us to assess the effectiveness and
reliability of our proposed system in detecting and classifying skin lesions accurately.

3.4. Architecture of the Classifiers

For building the skin lesion detection system, we utilized four different sets of classi-
fiers: solo TL models, EBDL models, aeTL models, and aeEBDL models. All of these figures
are visualized in Figures 4-14.
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3.4.1. Solo Transfer Learning Models

TL [40] is considered a leading method for classification and offers several advantages
over DL-based classification [17,41,42]. In our study, we utilized seven state-of-the-art TL
models: ResNet101 [43], MobileNet [44], InceptionV3 [45], EfficientNet B3 [46], EfficientNet
B7 [46], DenseNet-201 [47], and NASNet Mobile [48]. These models were pre-trained on
the ImageNet dataset. By leveraging these advanced architectures as base models, we
designed custom top layers for each model. These top layers consisted of a pair of dense
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layers with 4096 units, employing the ReLU activation function, followed by a dropout
layer to mitigate overfitting. The final dense layer had 7 units, corresponding to the number
of classes in our classification task. It utilized the softmax activation function to output
probabilities for each class.

Using TL models like ResNet101, MobileNet, InceptionV3, EfficientNetB3, Efficient-
NetB7, DenseNet201, and NASNetMobile can be highly effective. These models allow
us to leverage pre-trained networks that were initially trained on large datasets to learn
important features from the data. ResNet is a renowned deep residual network that utilizes
skip connections. ResNet101, with its 101 layers, is particularly well-suited for complex
image recognition tasks, especially in multiclass classification scenarios. MobileNet, on the
other hand, is designed to be lightweight and efficient, making it ideal for processing on
mobile devices and low-resource systems. It employs depth-wise separable convolutions to
reduce the number of parameters and computations while maintaining reasonable accuracy,
which is advantageous for embedded systems in lesion classification.

InceptionV3 incorporates multiple levels of feature extraction and boasts a fast-
processing speed, outperforming other architectures in certain cases. EfficientNet provides
excellent feature extraction and strikes a good balance between model size and accuracy.
Among its architecture, EfficientNetB3 and EfficientNetB7 have shown remarkable per-
formance in challenging image classification tasks. DenseNet, with its feature reuse and
gradient flow mechanisms, is also notable. DenseNet201, with its 201 layers, is well-suited
for complex image recognition tasks. Lastly, Neural Architecture Search Network (NAS-
Net) is an architecture designed using neural architecture search methods, demonstrating
excellent performance on mobile devices and resource-constrained environments. Given
the unique characteristics of each model, it is highly beneficial to experiment with them
individually to determine their performance on our specific task.

Ensemble-based techniques play a crucial role in medical imaging, helping to strengthen
weak learners and improve overall performance and generalization. By combining multiple
models, EBDL methods leverage the diversity of individual TL models. In our study, we
utilized ensemble-based techniques to enhance the models’ capability to generalize. Each
TL model had a different architecture, allowing them to learn distinct features from the data.

Among the EBDL methods we employed were softmax voting, weighted ensemble,
and stack-based ensemble, with a specific focus on softmax voting. To create ensemble-
based predictions using softmax voting, we collected predictions from each solo model and
summed them along the prediction axis. The index of the highest value for each prediction
determined the class with the majority votes, representing the ensemble prediction. By
employing softmax voting, we effectively combined the predictions from multiple models,
harnessing their collective knowledge.

3.4.2. Ensemble-Based Transfer Learning Models

Additionally, we utilized the weighted average ensemble technique in our study.
This method involved assigning weights to the models based on their significance in
contributing to the ensemble prediction. The predictions from each model were averaged
along the prediction axis, and the index of the highest value indicated the class with the
highest weighted average ensemble prediction.

Furthermore, we incorporated a stack-based ensemble method for our EBDL models.
This approach involved stacking the predictions from our models together to create a
composite input, which was then used to train a meta-model. In our research, we used
Logistic Regression as the meta-model to generate our final ensemble prediction. This
process allowed us to further enhance the predictive power of our EBDL models.

3.4.3. Attention-Enabled Transfer Learning Models

Attention mechanisms in deep neural networks are employed to improve model
performance by enabling the network to selectively focus on crucial aspects of the input.
In our study, we incorporated attention into our TL models to assess their impact on
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classification performance. As displayed in Equations (1)—(3). The attention weights were
computed by considering the average prediction scores made with each model across the
classes” axis. Subsequently, self-attention was applied to the predictions of each model. By
multiplying the attention weights element-wise with the predictions, we assigned greater
importance to specific predictions based on their corresponding attention weights. This
approach effectively enhances the model’s performance by enabling it to concentrate on
relevant and significant features within the input.

3.4.4. Attention-enabled Ensemble-based Deep Learning Models

In our study, we developed aeEBDL models by combining the predictions of multiple
models and incorporating a self-attention layer on the concatenated prediction layer. The
process of calculating attention weights involves considering the average prediction scores
made using each model across the classes” axis. As displayed in Equations (4)—(6) these
attention weights are then multiplied element-wise with the predictions, assigning greater
significance to specific predictions based on their corresponding attention weights.

Pm: [ Pm (C]), Pm (Cz) R Pm (C7)} (1)
om=[0om (c1), om (c2) - ... 0m (c7)] ()
C
Wy = Zc:l ?m (C) (3)
oy = Pm X W (4)
M
o(c) = Zmle"m(C) (5)
PaceBDL = argmax [0 (c) | VeinC ©)

To generate ensemble predictions, we identified the class with the highest score
from the attention-enabled combined prediction. This approach enhances the overall
prediction performance by leveraging the attention weights to prioritize and emphasize
certain predictions.

Here, P,, denotes the m™ model’s prediction score, oy, is the attention output of
the m™ model, C denotes the number of classes in the multiclass framework, w,, is the
attention weights of the m™ model, M represents the total models, o (c) denotes the
ensembled output from the solo M models, and P,epppy is the final attention-enabled
ensemble-based model output.

3.5. Training Parameters

We utilized the Idaho State University (ISU) GPU cluster to execute all models using
our dataset. The models were designed using libraries like Tensorflow 2.0, Pandas, Numpy,
and OpenCV. The GPU cluster is a one-head node with eight Nvidia RTX 3090s with a GPU
memory of 192 GB and a clock boost of 1.70 GHz; the cluster also has a storage of 12 TB for
the head node.

For better convergence during training, we set the learning rate to 0.0001. Since we
were dealing with multiclass classification, we employed categorical cross-entropy as our
loss function. The loss function denoted with Lk is defined as follows:

1 Ny §—~C
LCCE = _m 2121 ZCZl 1y € Cc log(Y1 € CC) (7)

where Ny, is the number of total images (input), C denotes the number of classes in the
multiclass framework, and y, € Cc is the indicator function representing the i term in
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the cth category. The models were trained over 50 epochs with a batch size of 16, which
allowed for efficient processing of the dataset. To mitigate overfitting, we applied a dropout
rate of 0.5. For the activation functions, we utilized softmax for the classification layer and
ReLU for the other layers. This software and hardware environment helped to optimally
train the DermAl system effectively.

3.6. Experimental Protocols

Based on our preliminary analysis, we developed an experimental workflow, which we
have mentioned in this section. Initially, we examined our fine-tuned TL models and evalu-
ated their performance. Subsequently, we investigated how we can make ensemble-based
models out of our fine-tuned TL models using techniques like softmax voting, weighted
average, and stack-based. We then evaluated the impact of the attention mechanism on the
models on the skin lesion classification task. We also researched making ensemble-based
models using the attention mechanism to see how they affect the classification performance.

3.6.1. Experiment 1: Performance of TL Models Using the HAM10000 Dataset

For this experiment, we utilized seven different types of TL models, namely ResNet101 [43],
MobileNet [44], InceptionV3 [45], EfficientNet B3 [46], EfficientNet B7 [46], DenseNet-
201 [47], and NASNet Mobile [48]. All these models were pre-trained on the ImageNet
dataset. The main focus of the experiment was to showcase the effectiveness of TL models
compared to scratch convolutional networks. To effectively predict skin lesions, we used
the HAM10000 dataset along with the K10 protocol.

3.6.2. Experiment 2: Comparison of EBDL Models vs. TL Models

The main objective of this study is to examine the effectiveness of an ensemble-based
paradigm in skin lesion classification. To achieve this, we designed EBDL models using tech-
niques such as softmax voting, weighted average, and stack-based. We generated six EBDL
models using these three techniques and compared them with seven TL models. To ensure
the reliability of the results, the experiment utilized the K10 cross-validation protocol.

3.6.3. Experiment 3: Comparison of TL Models vs. aeTL Models

In this experiment, our focus was to examine and compare the impact of employing
an attention mechanism on TL models for skin lesion classification. To achieve this, we
used an attention block and built seven aeTL models, which were then compared with
seven non-attention TL models. The study was conducted using constant K10 cross-
validation protocols.

3.6.4. Experiment 4: Comparison of aeTL Models vs. aeEBDL Models

In this experiment, our focus was on evaluating the effectiveness of the ensemble-
based paradigm in an attention-enabled framework by comparing aeTL and aeEBDL
models for skin lesion classification. To achieve this, we built and compared three aeEBDL
models along with seven aeTL models. The study was conducted using constant K10
cross-validation protocols.

3.6.5. Experiment 5: Effect of Training Size on the Performance of TL and aeTL Models

To validate the robustness of our TL models in substantially lesser amounts of training
data, we analyzed four cross-validation protocols: K2, K4, K5, and the default K10 protocol.
Using these protocols, we verified the performance drop of the models with varying
training data sizes for each of the seven TL models. By averaging the results across the
models, we intend to measure the difference in performance metrics from 90% Training
data size to 50% Training data size.
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3.7. Performance Metrics

For measuring the performance of the models on various fronts we have used various
performance metrics. True positive (TP), true negative (TN), false positive (FP), and false
negative (FN) came in handy to estimate the performance. We have used accuracy (1),
recall (R), precision (p), and Fl-score (F). After calculating the accuracy of the TL, EBDL,
aeTL, and aeEBDL models, we calculated their mean accuracies (A) in Equations (8-18),
respectively. In these equations “m” is the current model, “M” is the number of models,
“d” is the current dataset, and “D” is the number of datasets. The probability curve ROC
and degree of separability Area-under-the-curve (AUC) have been also calculated for every
model. In standard deviation (), each value from the population is denoted by x; and y,
the population mean.

4. Results

The protocols were employed to evaluate the effectiveness of the system in skin lesion
classification with the HAM10000 dataset in a multiclass framework. To analyze the system,
a total of 23 Al models were utilized: seven TL models, six EBDL models, and seven aeTL
models, and three aeEBDL models.

B TP + TN ®)
T= TP T FP + EN + IN
TP
R= TP + FN ©)
TP
= Tp P (10)
F=2x I;:j (11)
D d, K1
f(m, K10) = Zd=1 ”(n];' , X10) (12)
YM . n(m, d, K10)
A(d, K10) = =m=1 M’ ’ (13)
_ yP . ¥YM . n(m, d, K10
Nsys = d=1 lel X(D ) (14)
D
&(m, K10) — Zd=1 o‘(r]‘;’ d, K10) (15)
YM | «(m, d, K10)
®(d, K10) = =m=1 M’ ’ (16)
D yM - x(m, d, K10
s = Zi=1 Emol 20 &, K10 7)

J1
o=,|-
n

4.1. Performance of TL Models Using the HAM10000 Dataset

In this study, we demonstrate the performance of various TL models on the HAM10000
dataset. The experiment involved training and testing seven state-of-the-art baseline TL
models of comparable architecture on an augmented dataset. As shown in Table 1, our

f(xi - mz} (18)

i=1
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models achieved a mean accuracy of 95.30%. Notably, EfficientNet B3 outperformed all
other models, achieving an accuracy of 97.01% with an F1-score of 0.9698. This exceptional
performance can be attributed to the ability of TL models to process skin lesion images and
extract essential features for accurate classification.

Table 1. Performance metrics of seven TL models.

Performance Metrics of seven TL Models

TL

TL Model

Accuracy AUC [0-1] Precision [0-1]  Recall [0-1] = F1-Score [0-1] poee

(%) (%)
TL1 ResNet 101 94.10% 0.9697 0.9428 0.9407 0.9406 1.51
TL 2 MobileNet 94.73% 0.9748 0.9501 0.9484 0.9482 1.5
TL 3 NASNet Mobile 94.93% 0.9755 0.9508 0.9488 0.9485 1.48
TL 4 DenseNet 201 95.18% 0.9780 0.9535 0.9523 0.9518 151
TL 5 Inception V3 95.41% 0.9772 0.9550 0.9542 0.9539 1.49
TL 6 Efficient Net B7 95.76% 0.9813 0.9589 0.9565 0.9558 1.49
TL 7 Efficient Net B3 97.01% 0.9870 0.9701 0.9700 0.9698 1.51
Mean accuracy of all models = 95.30%
4.2. Comparison of EBDL Models vs. TL Models
In this experiment, we developed six EBDL models using baseline TL models and
utilized techniques like softmax voting, weighted average, and stack-based to create these
models. The performance of the EBDL models is presented in Table 2, which showcases
various performance metrics. The stack-based EBDL6: DenseNet201 + ResNet101 + NAS-
NetMobile model outperformed other models with an accuracy of 99.69% and an F1-score
of 0.9969. Furthermore, we compared the results of EBDL models with those of solo mod-
els, and the EBDL models demonstrated superior performance. Table 3 demonstrates the
effectiveness of EBDL techniques in significantly improving the overall classification model,
with EBDL techniques resulting in a 4.22% increase in mean accuracy.
Table 2. Performance metrics of six EBDL models.
Performance Metrics of six EBDL Models
Ensemble Accuracy AUC  Precision Recall F1-Score S.D.
EBDL  Technique Base Models (%) [0-1] [0-1] [0-1] [0-1] (%)
EppL1  veighted MobileNet + EfficientNet B3 + 99.11% 09984 0990 0990 0990 151
Average InceptionV3
EBDL2  Max Voting NASNet Mobile + ResNet101 + 99.34% 09972 09934 09934 09933 150
EfficientNet B7
EBDL3 Max Voting ResNet101 + MobileNet + InceptionV3 99.58% 0.9981 0.9958 0.9958 0.9958 1.51
Weighted MobileNet + EfficientNet B7 + o
EBDL 4 Average ResNet101 + DenseNet201 99.68% 0.9987 0.9968 0.9968 0.9967 1.51
EBDL 5 Stack ResNet101 + MobileNet + InceptionV3 99.69% 0.9986 0.9969 0.9969 0.9969 1.51
EBDL6  Stack  DenseNet201+ResNetl01+NASNet — gq fge. 09987 09969 09969 09960 151

Mobile

Mean accuracy of all models = 99.52%

This improvement can be attributed to the fact that EBDL models leverage the strengths
of different individual models and compensate for their weaknesses, leading to enhanced
accuracy and generalization ability. Moreover, EBDL models can effectively address the
limitations of TL models by combining predictions from multiple models, each with its
unique strengths and weaknesses, thereby reducing the risk of overfitting and enhancing
the robustness of the models.
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Table 3. Comparison of EBDL models vs. TL models.
Comparison of EBDL Models vs. TL Models
Mean Accuracy Mean AUC Mean Precision Mean Recall Mean F1-Score
Model Type (%) [0-1] [0-1] [0-1] [0-1]

TL Models 95.30% 0.9776 0.9544 0.9529 0.9526

EBDL Models 99.52% 0.9982 0.9959 0.9959 0.9959
Mean Increase (%) 4.22% 2.06% 4.15% 4.30% 4.33%

4.3. Comparison of TL Models vs. aeTL Models

In this experiment, we implemented attention mechanisms on seven TL models and
evaluated the benefits gained by incorporating attention into these models. According
to Tables 4 and 5, the mean accuracy of the aeTL models is 98.31%, showing an average
increase of 3.01% compared to the TL models. Among the aeTL models, aeEfficientNet
B3 achieved the highest individual accuracy of 98.96% and an Fl-score of 0.9896. This
attention block proved to be most beneficial for the ResNet101 model, which experienced a
significant increase of 4.10% in accuracy after incorporating attention. These results further
support the hypothesis that attention blocks are a powerful paradigm in classification tasks.

Table 4. Performance metrics of seven aeTL models.

Performance Metrics of Seven aeTL Models

TL Model

Accuracy AUC [0-1] Precision [0-1] Recall [0-1] F1-Score [0-1] S.D.

aeTL (%) (%)
aeTL 1 ResNet 101 98.17% 0.9908 0.9823 0.9817 0.9818 1.52
aeTL 2 MobileNet 98.21% 0.9919 0.9824 0.9821 0.9821 1.51
aeTL 3 NASNet Mobile 97.45% 0.9871 0.9750 0.9745 0.9745 1.49
aeTL 4 DenseNet 201 97.91% 0.9906 0.9792 0.9791 0.9790 1.51
aeTL 5 Inception V3 98.56% 0.9920 0.9858 0.9856 0.9856 1.5
eTL 6 Efficient Net B7 98.96% 0.9916 0.9816 0.9804 0.9805 1.52
aeTL 7 Efficient Net B3 98.96% 0.996 0.9897 0.9896 0.9896 1.52
Mean accuracy of all models = 98.31%
Table 5. Comparison of TL models vs. aeTL models.
Comparison of TL Models vs. aeTL Models
Mean Accuracy Mean AUC Mean Precision Mean Recall Mean F1-Score
Model Type (%) [0-1] [0-1] [0-1] [0-1]
TL Models 95.30% 0.9776 0.9544 0.9529 0.9526
aeTL Models 98.31% 0.9914 0.9822 0.9818 0.9818
Mean Increase (%) 3.01% 1.38% 2.78% 2.89% 2.92%

This successful application of attention mechanisms on TL models demonstrates
their ability to improve the models’ performance, resulting in higher accuracy and better
adaptation to the dataset. Due to their capability to focus on important features, they allow
the models to better distinguish and classify complex patterns within the data.

4.4. Comparison of aeTL Models vs. aeEBDL Models

In this experiment, we developed three aeEBDL models that incorporated solo aeTL
models. The results are presented in Table 6, with the best aeEBDL model achieving an
accuracy of 99.73% and an F1-score of 0.9973. Upon comparing the performance with the
seven aeTL models, as shown in Table 7, we observed that aeEBDL models outperform
the aeTL models with a mean accuracy increase of 1.2%. This validates the performance
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gain in the ensemble-based paradigm, even in an attention-ensembled framework, where
aeEBDL leverages the strengths of different individual models and compensates for their
weaknesses, leading to enhanced accuracy and generalization ability.

Table 6. Performance metrics of three aEBDL models.

Performance Metrics of aeEBDL Models

Ensemble Accuracy AUC Precision Recall F1-Score S.D.
EBDL  Technique Base Models (%) [0-1] [0-1] [0-1] [0-1] (%)
aeEppL1 Affention- - ResNetlOL+ MobileNet + —gq 500, (9981 09958 09958 09958 151
enabled InceptionV3
Attention-  MobileNet + InceptionV3 + o
aeEBDL 2 enabled NASNet Mobile 99.49% 0.9977 0.9949 0.9949 0.9949 1.50
ResNet101 + MobileNet +
Attention-  InceptionV3 + EfficientNet o
aeEBDL 3 enabled B3 + EfficientNet BY + 99.73% 0.9989 0.9973 0.9973 0.9973 1.51
DenseNet201
Mean accuracy of all models = 99.60%
Table 7. Comparison of aeTL models vs. aeEBDL models.
Comparison of aeTL Models vs. aeEBDL Models
Mean Accuracy Mean AUC Mean Precision Mean Recall Mean F1-Score
Model Type (%) [0-1] [0-1] [0-1] [0-1]
aeTL Models 98.31% 0.9914 0.9822 0.9818 0.9818
aeEBDL Models 99.60% 0.9982 0.996 0.996 0.996
Mean Increase 1.29% 0.68% 1.38% 1.42% 1.42%
4.5. Effect of Training Size on the Performance of TL and aeTL Models
In this experimental research, we examined how different sizes of training data affect
the performance of TL and aeTL models. We assessed the performance metrics using
various cross-validation protocols: K10 (default), K5, K4, and K2. The outcomes, presented
in Tables 8 and 9, revealed a gradual decrease in performance metrics across these protocols.
Both the best TL model (EfficientNet B3) and the best aeTL model (aeEfficientNet B3) were
tested. The computed average mean accuracy demonstrated a decline in mean accuracy
from 97.01% in K10 to 91.39% in K2, signifying a 5.62% reduction for EfficientNet B3.
Likewise, for aeEfficientNet B3, the accuracy declined from 98.96% in K10 to 92.68% in K2,
a 6.28% decrease.
Table 8. Effect of training data on performance for EfficientNet B3 model.
Effect of Training Data on Performance for EfficientNet B3 Model
Model Type K2 K4 K5 K10 D1 (%) D2 (%) D3 (%)
Accuracy (%) 91.39% 94.85% 95.69% 97.01% 1.32% 2.16% 5.62%
AUC [0-1] 0.935 0.9592 0.9744 0.987 1.26% 2.78% 5.20%
Precision [0-1] 0.9002 0.9259 0.9611 0.9701 0.90% 4.42% 6.99%
Recall [0-1] 0.8978 0.9258 0.9614 0.97 0.86% 4.42% 7.22%
F1-Score [0-1] 0.899 0.9258 0.9612 0.9698 0.86% 4.40% 7.08%

D1: Absolute difference in performance metrics between K10 and K5 cross-validation protocols. D1 = K10 — K5.
D2: Absolute difference in performance metrics between K10 and K4 cross-validation protocols. D2 = K10 — K4.
D3: Absolute difference in performance metrics between K10 and K2 cross-validation protocols. D3 = K10 — K2.
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Table 9. Effect of training data on performance for aeEfficientNet B3 model.
Effect of Training Data on Performance for aeEfficientNet B3 Model
Model Type K2 K4 K5 K10 D1 (%) D2 (%) D3 (%)
Accuracy (%) 92.68% 94.83% 98.15% 98.96% 0.81% 4.13% 6.28%
AUC [0-1] 0.9416 0.9561 0.9824 0.996 1.36% 3.99% 5.44%
Precision [0-1] 0.9237 0.9629 0.9805 0.9897 0.92% 2.68% 6.60%
Recall [0-1] 0.9235 0.964 0.9801 0.9896 0.95% 2.56% 6.61%
F1-Score [0-1] 0.9236 0.9634 0.9803 0.9896 0.93% 2.62% 6.60%

D1: Absolute difference in performance metrics between K10 and K5 cross-validation protocols. D1 = K10 — K5.
D2: Absolute difference in performance metrics between K10 and K4 cross-validation protocols. D2 = K10 — K4.
D3: Absolute difference in performance metrics between K10 and K2 cross-validation protocols. D3 = K10 — K2.

Despite the reduced training data in the K2 (50:50) validation protocol, our Al models
exhibited reliable performance metrics. This finding highlights the effectiveness of our
approach and how our models demonstrated robust performance even when faced with
limited training data, proving their ability to maintain consistent performance under
such conditions.

5. Performance Evaluation

During the performance evaluation, we utilized ROC curves to visualize the per-
formance of the Al models. Furthermore, we measured the stability of the system by
conducting two statistical tests: Wilcoxon signed-rank test and Cohen’s Kappa coeffi-
cient on all the models. Also, we conducted a reliability test on all the AI models using
misclassification rates of the images.

5.1. Receiver Operating Characteristics

ROC curves are commonly used to evaluate the performance of models across their
entire operating range. In this study, we have plotted multiple ROC curves to assess the
performance of different models. Figure 15 displays the ROC curve for the best-performing
TL model, EfficientNet B3, which achieved an AUC of 0.9870. Figure 16 compares the
ROC curves of the mean AUC of TL models (0.9776) with EBDL models (0.9982). Figure 17
visualizes the ROC curves of the best-performing aeTL models, with aeEfficientNet.

B3 has an AUC of 0.9960. Figure 18 presents a comparison of the mean AUC of TL
models (0.9776) with aetTL models (0.9914). Figure 19 portrays the AUC of the overall
best-performing model, aeEBDL 3, which achieved an AUC of 0.9989. Lastly, Figure 20
compares the ROC curves of the best-performing aeTL model (aeEfficientNet B3) with the
best-performing aeEBDL model (aeEBDL 3).

Additionally, to establish the statistical significance of the results for all classes in each
dataset, p-values were calculated. The obtained p-values were less than 0.01, indicating
a high level of confidence in the observed text classification results. Overall, the use of
ROC curves and p-values strengthens the evaluation of the models and provides valuable
insights into their performance.

5.2. Stability Validation Using Statistical Tests

The stability of the system was validated by conducting two statistical tests on all
the models. The tests performed were the Wilcoxon signed-rank test and Cohen’s Kappa
coefficient, which provide insights into the system’s stability. The Wilcoxon signed-rank
test is a non-parametric test used to confirm statistical hypotheses. It compares the locations
of two separate populations in data using two matched samples to measure the paired
difference. Cohen’s Kappa coefficient is a statistical measure used to assess the reliability of
two raters for categorical features. The results of these tests are presented in Table 10. The
significance of the predicted labels is identified with p-values < 0.001. Furthermore, all the
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Kappa values ranged between 0.9 and 1.0, indicating an almost perfect agreement among
the classifiers.
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Figure 15. ROC chart of best-performing TL models. Blue line: It denotes random classifier at an
AUC of 0.5.
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Figure 16. ROC chart of the mean performance of TL vs. EBDL models.
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ROC Performance of Best Performing aeTL Models
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Figure 17. ROC chart of best-performing aeTL models.
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Figure 18. ROC chart of best-performing TL vs. aeTL models.
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Figure 19. ROC chart of best-performing aeEBDL model.
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Figure 20. ROC chart of the mean performance of aeTL vs. aeEBDL models.
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Table 10. Results of conducted statistical tests on 23 Al models. TL: transfer learning; EBDL:
ensemble deep learning; aeTL: attention-based transfer learning; and aeEBDL: attention-based
ensemble deep learning.

Model Type Model Name Wilcoxon p-Test Cohen’s Kappa
ResNet 101 p <0.001 0.9251
MobileNet p < 0.001 0.9348
< NASNet Mobile p < 0.001 0.9352
i DenseNet 201 p <0.001 0.9398
= Inception V3 p <0.001 0.9422
Efficient Net B7 p < 0.001 0.9451
Efficient Net B3 p <0.001 0.9622
EBDL 1 p <0.004 0.995
@ EBDL 2 p < 0.001 0.9917
=) EBDL 3 p <0.001 0.9948
B3 EBDL 4 p <0.002 0.996
= EBDL 5 p <0.06 0.9962
EBDL 6 p <0.007 0.9962
aeResNet 101 p <0.001 0.9769
aeMobileNet p <0.001 0.9774
e aeNASNet Mobile p <0.001 0.9679
53 aeDenseNet 201 p <0.001 0.9736
b= aelnception V3 p <0.05 0.9819
aeEfficient Net B7 p <0.001 0.9753
aeEfficient Net B3 p <0.007 0.9869
R aeEBDL 1 p < 0.001 0.9948
mg aeEBDL 2 p < 0.001 0.9936
s aeEBDL 3 p <0.003 0.9967

5.3. Reliability Analysis through Misclassification Results

For the reliability assessment of the system, we conducted predictions on the entire
dataset using all available models. Subsequently, we computed the predictions made using
each model for every image. By comparing these predicted labels with the true labels, we
calculated the number of misclassified labels, visualized through Equations (19)-(21). This
analysis allowed us to infer the probability of each image being misclassified and identify
the types of lesion images that were most challenging to classify.

As shown in Figure 21, the misclassification rate for all the augmented images was
approximately 2% across twenty-three models. However, TL models exhibited a higher mis-
classification rate of 4% for images. Also, incorporating attention with TL models reduced
the misclassification of images to 2%. Notably, EBDL models and aeEBDL models demon-
strated superior performance by misclassifying only 0.5% and 0.4% of images, respectively.

R = (1 — M_ss) x 100 (19)
Vi i Pi
Melass = 1 (20)
# of misclassification for i image over M models
P, = L e1)

where, R is the reliability index, M, is the misclassification value, and I is the total
number of images.
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Figure 21. Classification performance of different models.

6. Discussion

The proposed system has been trained on the HAM1000 dataset and incorporates
superior quality control techniques and class balancing using augmentation. We imple-
mented seven TL models with and without attention, as well as six EBDL and three aeEBDL
models on the dataset. Based on our comprehensive analysis, we summarize the primary
and secondary findings. Through extensive experimentation and model analysis, we have
proven our hypothesis. Additionally, we have benchmarked our proposed techniques (aeTL
and aeEBDL) against existing studies in the field of skin cancer classification. Furthermore,
the incorporation of attention mechanisms in our models proved to be advantageous. The
attention paradigms enhanced the models’ ability to capture important features, resulting
in a more accurate and robust system.

6.1. Principal Findings

Extensive experimentation was conducted on various models, leading to valuable
insights into their performances and effectiveness. (i) Incorporating ensemble-based ar-
chitectures (max voting, weighted ensemble, and stack) increased the mean accuracy of
EBDLs by 4.22% compared to their component TL models. (ii) aeTL models exhibited
better performance compared to baseline TL models increasing the mean accuracy by
3.01%. (iii) aeEBDL models outperformed aeTL models in terms of accuracy, efficiency,
and robustness, leading to a mean accuracy increase of 1.29%. (iv) The proposed models
validated the hypotheses and demonstrated their behavior on data augmentation and class
balancing. (v) Fine-tuned TL models initially outperformed existing approaches, with the
fine-tuned EfficientNet B3 achieving the highest accuracy of 97.01% on the augmented
dataset, while ResNet-101 achieved the lowest accuracy of 94.07% on the stack. (vi) Incor-
porating attention in the architecture further improved classification performance, with
aeResNet-101 showing the highest accuracy increase of 4.10% when adapted to attention.
(vii) The proposed models were validated through statistical tests and analyses of the effect
of the training sample size on training accuracy. (viii) An elaborate and novel misclas-
sification paradigm was utilized to inspect reliability of the proposed models. (ix) The



Diagnostics 2023, 13, 3159

24 of 32

proposed system achieved superior performance over the benchmark in the domain, by a
significant margin.

The methodologies presented in this research paper are advanced and effective tech-
niques for the classification of skin lesions.

6.2. Benchmarking

We studied several papers and sorted some of the latest papers for benchmarking. The
crux of our research was positioned using an attention-enabled paradigm in skin lesion
classification. Seven state-of-the-art models, including ResNet-101, MobileNet, InceptionV3,
EfficientNet B3, EfficientNetB7, DenseNet-201, and NASNet Mobile have been used on
the HAM10000 dataset followed by the formation of EBDLs, aeTLs, and aeEBDLs. We
evaluated the models based on their accuracy, precision, recall, F1-score, p-value, and AUC
and compared the results to the previous benchmark studies. In our experimental results,
our proposed aeEfficientNet B3 (in solo TL models) outperformed all other models with an
accuracy of 98.96%, with a precision, recall, and F1-score of 99%. Our proposed aeEBDL-3,
which used ResNet-101, MobileNet, InceptionV3, EfficientNet B3, EfficientNetB7, and
DenseNet-201 outperformed all other models with an accuracy of 99.73%, with a precision,
recall, and Fl1-score of 100%. The second-best model was an EBDL model by Kauser
et al. [49] based on ResNet, InceptionV3, DenseNet, InceptionResNetV2, and VGG 19 and
achieved an accuracy of 98%, with precision, recall, and F1-score of 99%. We have also
compared our proposed models with other existing models by Hoang et al. [50], Chaturvedi
etal. [51], Ali et al. [39], Rahi et al. [52], Lim et al. [53], Moldovan et al. [54], Igbal et al. [55],
and Charan et al. [56], who achieved accuracies of 84.80%, 93.2%, 90.60%, 90%, 83.23%,
80%, 88.75%, and 88.6%, respectively.

Table 11 focused on eight studies that focused on building classifiers for skin lesion
classification. Moldovan et al. [54] presented a dual-step classification approach based on
TL. They used a DenseNet121 pre-trained model to predict the half number of classes in
the first step and the other remaining classes in the second step for the overall classification.
Lim et al. [53] used a fine-tuned MobileNet TL model and compared their models with
their performance on augmented and non-augmented data. Rahi et al. [52] based the
idea on the usage of CNN and TL models for classification and conducted a comparison
of the performance of models. They used ResNet50, DenseNet121, and VGG11 as pre-
trained models and made their CNN from scratch, then evaluated their results. Chaturvedi
et al. [51] proposed a fine-tuned ResNetXt101 for the classification of skin lesions and
conducted a comparative study of five state-of-the-art TL models and constructed four
EBDL models out of them. Igbal et al. [55] demonstrate their deep CNN models that
outperforms the state-of-the-art models for the classification on ISIC-19 data. Ali et al. [39]
used normalization and data augmentation paradigms to train their proposed DCNN model
that outperforms TL models such as AlexNet, VGG16, and ResNets. Kauser et al. [49]
proposed EBDL models using TL models like InceptionResNetV2 as base models and
used majority voting and weighted majority voting techniques for their classifiers. Charan
et al. [56] proposed a two-path neural network, with one path taking input as original
images and the second with multiple original images and their segmentation mask for
the classification. Hoang et al. [47] proposed a entropy-based weighting and first-order
cumulative combined segmentation technique to segment the HAM10000 dataset and
further used these images for the channel shuffling function to train their proposed wide
ShuffleNet for classification.
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Table 11. Benchmarking of studies that were implemented for skin lesion classification.
Accuracy  Precision  Recall F1 AUC Scientific Clinical
Year Author AI Models Approach Methodology Dataset (%) (%) (%) %) [0,1] Val. Val.
2019  Moldovanetal. [54]  DenseNet-121 TL Dual-step CNN Based on 1y 11909 80 x x x x x x
DenseNet121
2019 Lim et al. [53] MobileNet TL Augmented Data on HAM 10000 8323 x x 82 x x x
T Fine-tuned MobileNet ’
. Fine-tuned TL Models and a
2019 Rahi et al. [52] ResNet-50 TL CNN from Scratch HAM 10000 90 91 89 89 x x x
2020  Chaturvedi et al. [51] IRv2 TL Fine-tuned ResNetXt101 HAM 10000 93.2 87 88 x x x x
2021 Igbal et al. [55] DCNN CNN Deep CNN Models ISIC-19 88.75 90.66 x 89.75 0.95 x x
. Normalization and Data
2021 Ali et al. [39] DCNN CNN Augmentation with DCNN HAM 10000 90.16 94.63 93.91 94.27 x x x
Ensemble- Fine-tuned
2021 Kauser et al. [49] based EBDL InceptionResNetV2 with ISIC-19 98 99 99 99 x x x
Model Ensemble
2022 Charan et al. [56] Two-path CNN CNN Dual-input CNN HAM 10000 88.6 x x x x x x
2022 Hoang et al. [50] ShuffleNet TL Segmentation-based HAM 10000 84.8 75.15 x 72.61 x x x
ShuffleNet
EfficientNet B3 Fine-tuned EfficientNetB3
2023 Proposed Study o AT TL - HAM 10000 98.96 99 99 99 0.996 p < 0.007 x
Ensemble-
2023 Proposed Study based pppr,  Crsemble Model of TLmodels — pyanr10090 9973 100 100 100 09989  p<0.003 x
Model with Attention

x: It means that the particular column was not done/ conducted by the studies.
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Our results showcase the effectiveness of our best-in-class models, which outperform
these existing models and demonstrate the effectiveness of aeTLs and aeEBDL. Our study
also highlights the effectiveness of data augmentation methodology in medical imaging for
increasing the training sample size, effectiveness, and robustness of a model.

6.3. Special Note on the Use of Attention in Skin Lesion Classification

Attention mechanisms play a vital role in enhancing skin lesion detection by enabling
models to selectively focus on important features of the input image for classification, rather
than treating every image part equally. This utilization of attention proves particularly
advantageous in skin lesion classification as it allows the models to concentrate selectively
on lesion areas, rather than the surrounding normal skin, facilitating the identification of
the required features for accurate classification.

Moreover, attention mechanisms assist the models in improving feature extraction
by prioritizing relevant features over irrelevant ones. This emphasis on relevant features
enhances the model’s performance and leads to a more accurate classification of skin lesions.
By employing attention mechanisms, the models can effectively discern the distinguishing
characteristics of skin lesions, resulting in a more robust and precise classification system.

6.4. Special Note on the Use of Segmentation of Lesion

While using a segmentation-based approach can be reliable and effective in identifying
lesions in medical images [57-61], we chose not to implement it for several reasons. Our
main objective was multiclass classification, and we discovered that we were able to
achieve accurate results without the need for segmentation. The lesion sizes in our images
were already relatively large, and the region of interest (ROI) around the lesion was
closely positioned and centered, resulting in smaller background regions. This allowed
our classification models to focus on relevant features without the requirement of external
lesion segmentation.

Additionally, when we experimented with incorporating segmentation, we observed
only a minor 1-2% overall improvement in classification performance, which was not
significant enough to justify the added complexity and computational resources it entailed.
By solely focusing on the classification task, we streamlined and pipelined our approach to
achieve accurate results more efficiently.

Our classification models effectively learned to distinguish between different lesion
classes, and just omitting the segmentation phase did not hinder their performance. This
decision enabled us to allocate more resources to optimizing the classification models
and exploring the attention-enabled and ensemble-based learning paradigm, ultimately
leading to successful lesion detection without relying on segmentation. While segmentation
was not the primary objective, segmentation methods based on level sets can be possible
solutions for lesion segmentation [62—-65]. Classifications that combine deep learning-based
features with machine learning for classifiers [66] have also proved effective.

6.5. Special Strengths, Weakness, and Extension

The research focused on the application of TL, EBDL, aeTL, and aeEBDL methods
in skin lesion classification. The study showed significant improvement in the classifi-
cation process, making the proposed methods a benchmark in the fields for skin lesion
classification. The proposed models outperform existing studies. The use of attention
in models gave an upper hand in classification, compared to existing models, and the
EBDL technique leveraged the trained models’ capabilities for increasing the prediction
accuracy. Additionally, cross-validation and statistical tests prove the system’s robustness
and domain adaptability.

Due to the limited availability of high-quality dermatoscopic images, the existing
study focused mainly on training classifiers on specific datasets. The HAM10000, although
extensive, still has limited variation in representing the full spectrum of skin cancer or
pigmented skin lesions. Also, the imbalanced class distribution potentially will overlook
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other types of skin cancer. The system requires an extra step of augmentation, which may
introduce synthetic samples into the training data, inheriting uncertainties and limitations.

The exploration of generalizing the models to adapt more to the domain and regular-
ization techniques such as weight decay can help in reducing the overfitting of Al models
to datasets and their ability to generalize more to unseen and clinical data. [67-69] There
have been studies in different domains, such as immunology [70,71], cardiovascular risk
assessment [72], psoriasis diagnosis [73], and thyroid Doppler [74], where cloud-based
end-to-end systems are used for detection and classification. We therefore intend to deploy
our models on a similar paradigm to create an automated, scalable, and accessible skin
cancer classification that will allow easy integration with other applications, remote access,
and effective use of computational resources [71,75]. The proposed cloud-based system
follows a layered architecture, where the presentation layer operates locally on the users’
devices, while the business and persistence layers are hosted on the cloud. This ensures a
user-friendly system providing a real-time classification system on the device itself [72].
Moreover, the design systems can be pruned to reduce the size of the trained models,
leading to less consumption of computational resources and memory requirements [76,77].
Artificial Intelligent systems are prone to bias, which can emerge due to imbalanced data
distributions, demographic disparities, or variations in data collection protocol. Techniques
involving bias mitigation and ranking them according to their bias can be introduced
into the system [78-80]. Lastly, adopting transformer-based architectures [81] for their
excellence in capturing long-range dependencies and feature information can be beneficial
for the detection of pigmented skin lesions. Vision transformers [82] will be a healthy
approach in handling large-image resolutions, making more interpretable attention maps
or enhancing the scalability and parallel processing powers.

Another area that can improve the classification is the adoption of automated skin
lesion segmentation using advanced segmentation methods such as level sets [65,83] or
stochastic medical image analysis methods [64].

7. Conclusions

Our study demonstrates a novel paradigm for skin lesion classification based on
image input. The system employs seven TL models, six EBDL models derived from the
solo TL models, and seven aeTL models, along with three aeEBDL models. We designed
a comprehensive experimental structure to assess model performance and validate our
hypothesis. The system’s generalization and reliability were evaluated through perfor-
mance assessments using ROC curves, statistical tests, and reliability analyses through
misclassification. Furthermore, we developed a benchmarking strategy concerning related
strategies for skin lesion classification. The proposed system demonstrated high reliability
and stability.
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Acronym Table
SN Abb* Definition SN Abb * Definition
1 ACT Active contour technique 12 GLCM Gray Level Co-occurrence Matrix
2 aeEBDL Attention-enabled EBDL 13 ISU Idaho State University
3 aeTL Attention-enabled transfer learning 14 KNN k-Nearest Neighbors
4 AUC Area-under-the-curve 15 ML Machine Learning
5 CNN Convolutional Neural Network 16 NASNet Neural Architecture Search Network
6 DCNN Deep CNN 17 ROI Region of interest
7 DL Deep Learning 18 ROC Receiver operating characteristics
8 DT Decision Trees 19 SVM Support Vector Machine
9 EBDL Ensemble-based Deep Learning 20 TL Transfer Learning
10 FpP False Positive 21 P True Positive
11 FN False Negative 22 TN True Negative
Abb * = abbreviation.
Symbol Table
SN Symbols Explanation
1 akiec Actinic keratoses and intraepithelial carcinoma
2 bcc Basal cell carcinoma
3 bkl Benign keratosis-like lesions
4 df Dermatofibroma
5 mel Melanoma
6 nv Melanocytic nevi
7 vasc Vascular lesions
8 n Accuracy
9 R Recall
10 P Precision
11 F F1-Score
12 M Total models that were used in the system
13 D Total datasets that were used in the system
14 m Current model that is being studied
15 d Current dataset that is being studied
16 P Denotes the m™ model’s prediction score containing the prediction of each class
17 Oom Denotes the m™ model’s attention output score containing the prediction of each class
18 Wi Denotes the m™ model’s attention weight
19 C Denotes the number of classes in the multiclass framework
20 PacEBDL Is the final attention-enabled and ensemble-based model’s output
21 fi(m, K10) Accuracy of model “m” over all D datasets over the K10 protocol
22 n(d, K10) Accuracy achieved over the dataset “d” over all M Models over the K10 protocol
23 Tsys Overall system accuracy over M models and D datasets
24 w(m, K10) AUC of model m summarized over all D datasets
25 w(d, K10) AUC achieved over dataset d over all M Models
26 Ksys Overall system AUC over M models and D datasets
27 o Standard Deviation of the system
28 R Mean Reliability Index of the system
29 M5 Mean Misclassification value
30 p; Mean of Misclassification of i image over all AT models
31 I Total number of images for misclassification probability
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