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Abstract: In the era of big data, text-based medical data, such as electronic health records (EHR) and
electronic medical records (EMR), are growing rapidly. EHR and EMR are collected from patients to
record their basic information, lab tests, vital signs, clinical notes, and reports. EHR and EMR contain
the helpful information to assist oncologists in computer-aided diagnosis and decision making.
However, it is time consuming for doctors to extract the valuable information they need and analyze
the information from the EHR and EMR data. Recently, more and more research works have applied
natural language processing (NLP) techniques, i.e., rule-based, machine learning-based, and deep
learning-based techniques, on the EHR and EMR data for computer-aided diagnosis in oncology. The
objective of this review is to narratively review the recent progress in the area of NLP applications
for computer-aided diagnosis in oncology. Moreover, we intend to reduce the research gap between
artificial intelligence (AI) experts and clinical specialists to design better NLP applications. We
originally identified 295 articles from the three electronic databases: PubMed, Google Scholar, and
ACL Anthology; then, we removed the duplicated papers and manually screened the irrelevant
papers based on the content of the abstract; finally, we included a total of 23 articles after the screening
process of the literature review. Furthermore, we provided an in-depth analysis and categorized these
studies into seven cancer types: breast cancer, lung cancer, liver cancer, prostate cancer, pancreatic
cancer, colorectal cancer, and brain tumors. Additionally, we identified the current limitations of NLP
applications on supporting the clinical practices and we suggest some promising future research
directions in this paper.

Keywords: natural language processing; computer-aided diagnosis; oncology; electronic health
records; electronic medical records

1. Introduction

Natural language processing (NLP) is the term used by algorithms to understand
the speech or text of humans. The early NLP algorithms were constructed using hard
or heuristic rules. With the developments of artificial intelligence (AI), the powerful AI-
related technologies have emerged in the NLP field. Some AI methods can even detect
patterns or features humans cannot find. In addition, the clinical and research data related
to oncology are growing rapidly [1] to meet the data needs of AI algorithms. Electronic
Health Records (EHR) or Electronic Medical Records (EMR) provide easy access to the
vast amount of patient data collected in clinical practice [2]. Most data in EHR or EMR
are recorded in the form of unstructured data (clinical notes and reports), with a small
amount recorded in the form of structured data (patient demographics, vital signs, lab
tests) [3]. Previously, computer-aided diagnosis (CAD) was mainly based on medical
images, which were responsible for highlighting the lesion area to assist the physician
in making a diagnosis or making triage on the image, such as using medical images to
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detect breast cancer [4]. However, the text also contains a lot of critical information for
the computer to diagnose. Additionally, the amount of text in a typical clinical report is
excessive and using the computer to make a preliminary diagnosis can significantly improve
the doctor’s efficiency. In the context of the recent rapid developments of NLP’s internal
technical power, external data resources, and practical needs, there is a trend to apply NLP
to CAD in oncology. An example is shown in Figure 1. During this research, no secondary
data articles were found in literature reviews on NLP applications for CAD in oncology,
so it is considered opportune to conduct this literature review. Through this research, it is
possible to analyze the articles of primary research data and applications of NLP for CAD
in oncology. This multidisciplinary review aims to summarize the current research trends
in NLP applications for CAD in oncology and provide guidance for researchers in AI and
medicine on designing better NLP applications. Moreover, this paper seeks to answer the
three research questions (RQs):

RQ1: What are the current trends of NLP applications for CAD in oncology?
RQ2: What are the limitations and challenges?
RQ3: What are the promising future directions?
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Figure 1. An example of CAD using NLP.

We first obtain the required medical data, most of which are EHR or EMR, and the
remaining small portion of the medical data is stored in a server in a similar electronic
format. For rule-based models, since the rules developed are text-based, we will directly
extract text as features and then input them into the model to make the classifications. For
traditional-based models, we process the input text as vectors. Next, we manually extract
some main feature vectors for the model to learn. Finally, we feed the feature vectors and
input vectors that need to be learned into the model for classification. For DL-based models,
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we convert the text into vectors and enter them directly into the model, allowing for the DL
model to learn the high-level features of the data for classification on its own.

We found a certain disconnect between the applications or research of NLP for CAD in
oncology and the current theoretical approach to NLP. We believe that this review will lead
to a deeper understanding of the whole NLP field and address part of the mismatch be-
tween theoretical and practical approaches. Moreover, we analyzed the current approach’s
limitations and provided some possible future areas for further research in NLP based on
these limitations. In summary, this review has the following main objectives:

• Conclude some AI- and NLP-related concepts and algorithms to help people quickly
understand the basics in the field;

• Summarize and analyze the recent decade of research and application of NLP for CAD
to various tumors or cancers;

• Provide a more detailed discussion of the current models in the field;
• Identify challenges with the development of NLP in oncology;
• Give some suggestions and directions for the future development of NLP;

The structures of the review are as follows: Section 2 provides the related theoretical
foundation, Section 3 introduces the literature’s search method, Section 4 presents and anal-
yses the results of the selected literature from several perspectives, Section 5 summarizes
and discusses the current challenges and future trends in the field, and we conclude the
review in Section 6.

2. Theoretical Foundation
2.1. Related NLP Concepts

In terms of the nature of algorithms, NLP approaches can be divided into three cate-
gories: rule-based NLP, traditional machine learning (ML)-based NLP, and deep learning
(DL)-based NLP [5]. Rule-based NLP was an early approach to NLP, referring to researchers
using their own set of hard or heuristic rules for processing text. The performance of rule-
based NLP depends on the complexity and generalization capability of the rules. Designing
a set of rules requires a significant human investment. Moreover, managing rules can be aw-
fully costly when the number of rules reaches a certain size [6]. Traditional ML-based NLP
allows for models to be established from data from a self-learning perspective. Compared
to rule-based NLP, traditional ML-based NLP performs better and is easier to model. DL
was introduced to NLP after the achievements of ImageNet [7] and Swithchboard [8]. The
DL-based NLP approach relies on less human intervention, with the extraction of features
depending entirely on the computer itself during the modeling process. Therefore, DL-
based NLP is data-driven and performs better than traditional ML-based NLP. However,
this feature also causes the poor interpretability of DL-based NLP, which means people
cannot understand the kernel of a model.

As for the performance evaluation of NLP models, the commonly used evaluation
metrics are shown in Table 1.

Table 1. The details of evaluation metrics used for NLP models.

Method Formula Description

Accuracy (TP+TN)
TP+FP+TN+FN

Percentage of total sample with
correct predictions

Precision TP
TP+FP

The probability of all samples predicted to be
positive being truly positive

Recall/Sensitivity/TPR TP
TP+FN

The probability of samples that are truly
positive being predicted as positive samples

Specificity/PPV TN
TN+FP

The probability of samples that are truly
negative being predicted as negative samples
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Table 1. Cont.

Method Formula Description

NPV TN
TN+FN

The probability that following a negative test
result, that samples will truly be negative

FPR FP
FP+TN

The probability between the number of
negative samples incorrectly classified as
positive and the total number of actual

negative samples

F-score/F1 2×Precision×Recall
Precision+Recall

The maximum balance between recall and
precision of the model

ROC N/A
A more comprehensive evaluation of the
model using the curves constructed from

sensitivity and specificity

AUC N/A Area under the ROC curve
Abbreviations: FN = False Negative, FP = False Positive, TN = True Negative, TP = True Positive, TPR = True
Positive Rate, FPR = False Positive Rate, PPV = Positive Predictive Value, NPV = Negative Predictive Value.

2.2. Related AI Methods

In traditional ML-based algorithmic models, some classic models are well-known: sup-
port vector machine (SVM), decision tree, and logistic regression. SVM can be described as a
system that uses a hypothesis space of linear functions in a high-dimensional feature space.
It is trained with learning algorithms derived from optimization theory [9]. In contrast to
deep neural networks, SVM are adept at situations where the number of feature dimensions
is greater than the number of samples. The decision tree is a formalism for learning how
to classify by analyzing known instances [10]. In the decision tree, a tree structure with
different branches is constructed for the sample features, consisting of directed edges and
nodes, with the middle node representing a feature and the final leaf node representing a
category or regression value. Logistic regression is a generalized linear classification. The
application scenario for logistic regression is where the data can only be classified by a
unit step function. Instead of a unit step function, we use the log odds function in logistic
regression to make the optimization process differentiable.

We used to use the convolutional neural network (CNN) [11] and recurrent neural
network (RNN) [12] as DL models for NLP tasks, but in recent years the Transformer [13]
has taken over almost all NLP tasks. CNN extracts semantic information of context using
the convolutional method, which is an abstraction of higher-order features. The contextual
relationship of NLP data has a strong sequential character, while CNN is justified to
handle NLP because its multilayer network structure enables a richer cascaded semantic
representation. Moreover, the windows with different sizes of CNN can extract different
degrees of semantic features. RNN has the feature that the output of the previous moment
is used as the input of the next moment, which is suitable for processing sequential data.
However, when the sequence data length is long, it can lead to gradient disappearance
or gradient explosion. This is due to the RNN model being affected by the chain rule of
derivation in the backpropagation process. Later variants of the RNN model address this
problem. Transformer introduces a feed-forward network architecture that completely
eliminates the need for convolution and recursion. In contrast to the time-series RNN,
Transformer can be processed in parallel. At the core of Transformer is a self-attention
mechanism, where each character is able to calculate an attention score against all other
characters. This calculation captures long-range dependencies.

2.3. NLP Pipelines

This review focuses on specific research and applications of NLP for CAD in oncology.
The details of the entire NLP pipeline will vary slightly depending on the type of core
model studied. These differences are mainly reflected in the specific implementation of
the extraction feature engineering step and the input of the model. For this purpose, we
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mapped three pipelines corresponding to three different approaches, as shown in Figure 2,
to illustrate the complete pipeline of NLP applications for companion diagnostics. Note
that our pipeline diagrams are a general overview of the process, so they cannot represent
the precise NLP pipeline in the specific study.
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Figure 2. The overview pipeline of NLP applications for CAD in oncology: rule-based models,
traditional ML-based models, and DL-based models.

3. Materials and Methods

This review produced the literature search for the application of NLP for CAD in oncol-
ogy using keywords. We searched three electronic databases, PubMed, Google Scholar, and
ACL Anthology, for relevant literature between 2012 and 2022. In addition, some search
criteria were used to maximize search coverage: ((ALL(“NLP”) OR ALL(“Natural Lan-
guage Processing”)) AND (ALL(“Cancer”) OR ALL(“Tumor”) OR ALL(“Oncology”))
AND (ALL(“Computer Aided Diagnosis”))). The search results were restricted to journals
and conferences; books were not included.

Based on the search, we first identified 295 relevant publications, including 46 papers
from PubMed, 245 papers from Google Scholar, and 4 articles from ACL Anthology. Then,
two screening phases were carried out to filter publications. In the first screening phase,
we filtered publications based on whether they are reviews, or their titles and abstracts are
relevant, and then 44 papers were retained. In the second screening phase, as the scope of
our review focuses on the research area of NLP applications in oncology, we filtered papers
based on whether their topics fit our scope or the NLP model is relevant to computer-aided
diagnosis, and then 23 papers were retained. The process of searching is illustrated in
Figure 3. For more visible, the inclusion criteria and exclusion criteria of the articles are
shown in Table 2.
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Table 2. The inclusion criteria and exclusion criteria of the articles.

First Screening Second Screening

To screen out the reviews
(exclusion criterion)

To filter out whether the purposes in full text are
consistent with diagnosis (inclusion criterion)

To remove the duplicate papers
(exclusion criterion)

To choose the papers whose specific role of NLP
models in full text is the computer-aided diagnosis

(inclusion criterion)

To filter out the papers based on their titles
and abstracts (exclusion criterion)

4. Results

To summarize the application of NLP for CAD in cancer and tumors, we conducted
an analysis based on the content of selected publications. We presented the studies in this
review in terms of the year, text source, cancer type, purpose, algorithm, evaluation metrics,
and dataset. Diagnosis is a classification in computer tasks, so all words like “prediction”,
“identification”, “classification”, or the noun form of these words in the original text were
replaced with “classification” or “classification” in the purpose column. For ease of viewing,
we arranged the studies of the same tumor type in the same table in descending order
by year. Tables 3–6 show studies on seven types of tumors: breast cancer, lung cancer,
liver cancer, prostate cancer, pancreatic cancer, colorectal cancer, and brain tumors. In the
Evaluation Metrics column, we recorded the performance of the best-performing models in
the paper. In addition, we provided an explanation of models that have not been introduced
before in the overview of each paper. Figure 4 illustrates different human organs such as
breast, colon, lung, and liver. In this section, we categorize 23 included studies into four
subsections: breast cancer, colorectal cancer, lung cancer, and other cancers (liver cancer,
prostate cancer, pancreatic cancer, and brain tumors).
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4.1. Breast Cancer

Breast cancer is the most commonly diagnosed female cancer and has a leading
mortality rate of patients with cancer in women [14]. Hence, to investigate how NLP
can assist clinicians in diagnosing breast cancer, we identify 12 studies about the NLP
applications on breast cancer, and we analyze each study from multiple perspectives.
BERT [15] used a masked language model (MLM) to pretrain bidirectional Transformers to
generate deep bidirectional language representations. Kaka et al. [16] used BERT models
with a consistent network structure but based on different datasets: BERT-base (general text
dataset) and ClinicalBioBERT (biomedical text and clinical text dataset) [17] to predict the
recurrence of colorectal and breast cancers, respectively. By comparing the experimental
results in internal datasets of BERT-base and ClinicalBioBERT, the authors found that they
differ by one standard deviation, indicating that the BERT only needs a certain size of
dataset sufficient to learn the features of cancer recurrence without specialized knowledge.
Deshmukh et al. [18] used a rule-based algorithm to extract clinical factors and applied
them to an ML model to predict the anatomic stage and prognostic stage. In terms of model
selection, because of the performance and interpretability of decision trees (DT), the authors
chose decision trees over Gaussian Naive Bayes (GNB) and linear support vector machine
(SVM). GNB refers to the assumption that the conditional probabilities of each feature
dimension of a sample obey Gaussian distribution, then the model calculates the posterior
probability of a new sample belonging to each category under a certain feature distribution
according to the Bayesian formula, and finally determines the category of the sample
by maximizing the posterior probability. This study used datasets from two different
institutions to improve the generalizability of the prognostic system compared to those
from past studies.

Sanyal et al. [19] developed a weakly supervised framework for breast cancer recur-
rence prediction using LSTM to simulate labeling on the original unlabeled dataset. The
experimental results confirmed that training with the generated dataset gave better results
than training with only manually labeled data. The datasets used by Sanyal et al. are large
compared to other studies, so the experimental results are also relatively more reliable.
In [20], to build interpretable neural networks, the authors first embed semantic trees into
BERT and used a capsule network to improve the semantic representation of multiple
heads of attention. Then, backpropagation and dynamic routing algorithms enable the
local interpretability of the model. This study presents the first model combining capsule
networks with semantic embedding for breast tumor diagnosis. Alzu’bi et al. [21] extracted
key features of breast cancer from EMR with the features integrated to construct a dictionary
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of breast cancer. The authors tested multiple machine learning algorithms to predict breast
cancer recurrence based on this dictionary. The OneR algorithm had the best performance
balance. The core of OneR is to find the most important feature among all the features
of the dataset for classification. The experimental results were approved by professional
doctors, proving that the prediction can help them to make the right decision on specific
treatment options.

Wang et al. [22] transformed clinical notes into concept unified identifiers (CUI), which
are fed into a variant model of CNN, Knowledge-Guided Convolutional Neural Network
(K-CNN) [23], to predict the distant recurrent probability of breast cancer. The authors
experimented with the different features as inputs, and finally the experiments yielded
an AUC of 0.888 and an f1-score of 0.5. This research work was dedicated to models that
require less specialized knowledge and data collation than the previous studies to predict
the distant recurrence of breast cancer. In [24], a neural network-based NLP system was de-
veloped to determine the timeline for patient-specific recurrence of metastatic breast cancer.
The authors compared the model with a rule-based algorithm and found its sensitivity to
be superior to the rule-based algorithm. In conclusion, the authors proposed a new strategy
to exploit the predictive potential of EMR-based data on metastatic cancer recurrence.
Zeng et al. [25] used MetaMap, a rule-based software, to extract positive features in sen-
tences indicating local recurrence of breast cancer and developed an SVM model to identify
local recurrence of breast cancer. The authors obtained the best AUC by comparing the
model with three baseline models: using the full MetaMap concept, the filtered MetaMap
concept, or the word package. In [26], Breitenstein et al. constructed the rule-based NLP
algorithm from both the prescribing and clinical narrative perspectives, which can derive
breast cancer receptor status phenotypes in both structured and unstructured EHR data.
This study took an informatics approach to propose that NLP can provide annotations for
the specific clinical data elements.

Bozkurt et al. [27] developed an NLP system to predict the degree of malignancy
of a lesion. The input is the extraction of BI-RADS descriptors and clinical information
from X-ray reports, and the body of the algorithm is a Bayesian network (a probabilistic
graphical model). The output is the probability of malignancy and the category of Bi-RADS
assessment. The model’s accuracy in predicting the Bi-RADS final assessment category was
97.58%, sufficient to provide accurate decision results, as assessed experimentally. This was
the first study to assess the impact of imperfections in automated information extraction on
model accuracy. In [28], the authors developed rules to extract the parameters: tumor (T),
lymph node (N), and metastasis (M) to determine the T, N, and stage of breast cancer. The
accuracy of the model for cancer staging was obtained up to 72%. Carrell [29] designed
the rule-based NLP system using cTAKEs software to determine whether and when breast
cancer recurrence is diagnosed in EHR. The system is based on the pathology module, an
element describing breast cancer, and the clinical module, a positive reference to breast
cancer recurrence in the report. With an accuracy of 92% and a sensitivity of 96%, the
system can replace human annotation of EHR to a certain extent for reducing labor costs.
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Table 3. Breast cancer-related studies. * represents that we only show the size of the dataset because the dataset has too many types of data (more than three), the
distribution of the dataset is not fully described, or it is not easy to show the structure of the dataset for other reasons.

SN Reference Year Source of Text Language Cancer Type Aim Algorithm Evaluation Metrics Validation Dataset Size Dataset Source

1 [16] 2022
Medical Notes

(Unstruc-
tured)

English
Breast Cancer,

Colorectal
Cancer

Classify Cancer
Recurrence

Bidirectional
Encoder Repre-
sentations from
Transformers
(BERT) [15]

Breast Cancer:
AUC: 0.9892;

Colorectal Cancer:
AUC: 0.9810;

5-fold Cross-
validation

Breast Cancer:
190,754 Notes;
8067 Positive;

182,687 Negative
Colorectal Cancer:

238,408 Notes;
8452 Positive;

229,956 Negative

Private: From Cancer
Care Manitoba

2 [18] 2021
Medical

Records (Un-
structured)

English Breast Cancer

Classify Breast
Cancer

Anatomic and
Prognostic

Stage

Decision Tree

Anatomic: Rural
Accuracy: 0.93; Urban
Accuracy 0.86; Rural

F1-score 0.9638; Urban
F1-score 0.9123;

Prognostic: Rural
Accuracy: 0.92; Urban
Accuracy: 0.82; Rural

F1-score: 0.9521; Urban
F1-score: 0.8765;

5-fold Cross-
validation

465 Medical
Records *

Private: From India’s
cancer treatment

institutions (Nurgis
Dutta Memorial

Cancer Hospital in
the rural region and

Jehangir Hospital
urban and

laboratories in the
urban region)

3 [19] 2021

Free-text
Clinical Notes

(Unstruc-
tured)

English Breast Cancer
Classify Breast

Cancer
Recurrence

Long
Short-Term

Memory
(LSTM)

AUC 0.94; Sensitivity
0.89; Specificity 0.84;

5-fold Cross-
validation

Embedding:
92.6 million

Clinical Notes
Prediction:

892,550 Clinical
Notes *

Public: Clinical
language space: I2B2

NLP research
database [30],

MIMIC-III critical care
database [31],

Oncoshare breast
cancer database [32]

4 [20] 2021
Mammography

Reports (Un-
structured)

Chinese Breast Cancer Classify Breast
Cancer BERT

Micro: AUC: 0.94;
Precision: 0.9158;

Recall: 0.9158;
F1-score: 0.9158; Macro:
AUC: 0.85; Precision:
0.7595; Recall: 0.7973;

F1-score: 0.7714

N/A

2857
Mammography

Reports;
2078 Benign;

448 Suspected of
Malignant;

331 Malignant

Private: From
Shanghai Ruijin

Hospital

5 [21] 2021
Histopathology

Report (Un-
structured)

English Breast Cancer
Classify Breast

Cancer
Recurrence

One Rule
(OneR)

Accuracy: 0.901;
Sensitivity: 0.901;
Specificity: 0.722;

10-fold Cross-
validation

142
Histopathology

Report *

Private: From King
Abdullah University

Hospital (KAUH)
in Jordan
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Table 3. Cont.

SN Reference Year Source of Text Language Cancer Type Aim Algorithm Evaluation Metrics Validation Dataset Size Dataset Source

6 [22] 2020

Progress Notes
and Pathology
Notes of EHR
(Unstructured
+ Structured)

English Breast Cancer
Classify Breast

Cancer
Recurrence

Knowledge-
guided

Convolutional
Neural

Networks
(K-CNN)

AUC: 0.888; Precision:
0.537; Recall: 0.468;

F1-score: 0.500;
Specificity: 0.968;

5-fold Cross-
validation

6447 Subjects; 446
Positive; 6001

Negative

Private: From
Northwestern

Medicine Enterprise
Data Warehouse

(NMEDW)

7 [24] 2019
Clinical Notes

(Unstruc-
tured)

English Breast Cancer
Classify Breast

Cancer
Recurrence

Neural
Network

Quarter-Level:
AUC 0.9; Definite

Recurrence: Specificity
0.82; Sensitivity 0.73;

F1-score 0.77; No
Recurrence: Specificity

0.99; Sensitivity 0.99;
F1-score 0.99;
Patient-Level:

Specificity 0.95;
Sensitivity 0.93;
F1-score 0.94;

Validation 894 Subjects *
Public: Oncoshare

breast cancer
database [32]

8 [25] 2018

Pathology
Reports of

EHR (Unstruc-
tured)

English Breast Cancer
Classify Breast

Cancer
Recurrence

Support Vector
Machine (SVM)

Precision 0.5; Recall
0.81; F1-score: 0.62;

AUC: 0.87;

5-fold Cross-
validation

6899 Subjects;
581 Positive;

6318 Negative;

Private: From
Northwestern

Medicine Enterprise
Data Warehouse

(NMEDW).

9 [26] 2018
EHR

(Unstructured
+ Structured)

English Breast Cancer

Classify
Derived Breast

Cancer (BC)
Receptor Status

Phenotypes

Rule-based

Estrogen Receptor
(ER): Precision: 0.9758;

Recall: 0.9877;
F1-score: 0.9818;

Progesterone Receptor
(PR): Precision: 0.9857;

Recall: 0.9418;
F1-score: 0.9632;

Human Epidermal
Growth Factor

Receptor 2 (HER2):
Precision: 0.6977;

Recall: 0.6667; F1-score:
0.6818; Triple Negative
(TN): Precision: 0.7222;

Recall: 0.6848;
F1-score: 0.7027

N/A 871 Subjects *
Private: From Mayo

Clinic, Rochester,
Minnesota
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Table 3. Cont.

SN Reference Year Source of Text Language Cancer Type Aim Algorithm Evaluation Metrics Validation Dataset Size Dataset Source

10 [27] 2016
Mammography

Reports (Un-
structured)

English Breast Cancer Classify Breast
Cancer

Bayesian
Network (BN) Accuracy 0.9815; N/A

300
Mammography

Reports *

Private: From An
Academic Radiology

Practice

11 [28] 2015
Pathology

reports (Un-
structured)

English Breast Cancer
Classify the

Breast Cancer
Stages

Rule-based

Tumor (T)
Classification:
Precision: 0.79;

Recall: 0.75;
Accuracy: 0.76, Lymph

Nodes (N)
Classification:
Precision: 0.81;

Recall: 0.63;
Accuracy: 0.66; Cancer

Stage Classification:
Precision: 0.729;

Recall: 0.825;
Specificity: 0.587;

NPV: 0.711;
Accuracy: 0.722

N/A 150 Pathology
Reports *

Private: From
Christian Medical

College and Hospital

12 [29] 2014
Clinical Text of
EHR (Unstruc-

tured)
English Breast Cancer

Classify Breast
Cancer

Recurrence

Clinical Text
Analysis and
Knowledge
Extraction

System
(cTAKES)

Sensitivity: 0.92;
Specificity: 0.96;

PPV: 0.66;
F1-score: 0.76;

N/A
1472 Subjects;
141 Positive;

1331 Negative

Private: From the
Commonly Used
Medications and

Breast Cancer
Recurrence (COMBO)
Study Conducted at
Group Health, An
Integrated Health

Care Delivery System
in the Pacific
Northwest
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4.2. Colorectal Cancer

Regarding cancer mortality rates, colorectal cancer is the third leading cause of death
for both men and women. Approximately 1.85 million cases of colorectal cancer occur
worldwide every year, resulting in 850,000 deaths [33]. In this review, we identify four
studies on colorectal cancer-related NLP applications. Cheng [34] applied CNN to identify
primary colon cancer in cases and achieved an accuracy of 92%. This work demonstrates
the high accuracy of CNN in the problem of making dichotomous classifications of cases.
Parthasarathy et al. [35] developed an NLP method using the Prolog language that can
identify serrated polyposis syndrome (SPS) from EMR. The method follows the rules based
on the WHO criteria. Raju et al. [36] developed a rule-based NLP method to detect adeno-
mas and sessile serrated adenomas (SSAs) in first-screening colonoscopy. The experiments
show that the accuracy of this NLP method is higher than that of the manual method. The
authors developed such a complete and practical diagnostic system for colonoscopy in
2015, which is enlightening for subsequent studies. Similarly, in [37], the authors designed
a rule-based system using KMCI to identify colorectal cancer test and patients who need
screening. To ensure the performance of the model, the authors expanded the synonyms of
the relevant concepts as much as possible when developing the rules. The NLP system was
also used in the study to count whether the CRC test was accepted by patients, which is a
valuable indicator for doctors to assess CRC screening.

4.3. Lung Cancer

In the United States, lung cancer is one of the most common malignant tumors, and
the second most commonly diagnosed cancer ranked after prostate cancer in men and
breast cancer in women [38]. We analyzed three papers on applying NLP to lung cancer-
related computer-aided diagnosis. Nobel [39] used a rule-based algorithm to classify
the radiologically reported T-stage of pulmonary tumors. The algorithm was developed
based on Dutch with rules translated into English and applied to an English dataset. The
possibility of applying rule-based algorithms to multiple languages was demonstrated.
In addition, the authors designed a graphical user interface to visualize the algorithm.
Yuan et al. [40] modeled the classification of lung cancer and prognostic survival of non-
small cell lung cancer based on logistic regression and cox regression. Cox regression is
a semi-parametric regression model. By comparing the results of the trials, the authors
confirmed that lung cancer classification and prognostic survival prediction models could
be used to enhance the entire cohort of EHR. The entire EHR cohort can be continued
for other prognostic studies. Wadia et al. [41] used cTAKES to investigate a rule-based
algorithm to distinguish benign lesions from lung cancer. The experimental results show
that the model is even more sensitive than manual screening. The innovation of this study is
that it is the first to compare NLP and manual coding with reference standards established
by clinicians in unselected radiology reports.
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Table 4. Colorectal cancer-related studies. * represents that we only show the size of the dataset because the dataset has too many types of data (more than three), the
distribution of the dataset is not fully described, or it is not easy to show the structure of the dataset for other reasons.

SN Reference Year Source of Text Language Cancer Type Aim Algorithm Evaluation Metrics Validation Dataset Size Dataset Source

1 [34] 2022
Pathology

Reports (Un-
structured)

English Colorectal
Cancer

Classify Cases
with Primary

Colonic Adeno-
carcinoma

CNN Accuracy: 0.92;
AUC 0.957 Validation

1000 Anatomic
Pathology
Reports;

713 Positive;
287 Negative

N/A

2 [35] 2020

Colonoscopy
and Pathology

Reports of
EMR (Unstruc-

tured)

English Colorectal
Cancer

Classify
Serrated

Polyposis
Syndrome (SPS)

Rule-based Accuracy: 0.93 N/A
255,074 Patients;

71 Positive;
255,003 Negative

Private: From
Cleveland Clinic,
Cleveland, Ohio

3 [36] 2015

Pathology and
Colonoscopy
Reports (Un-
structured)

English Colorectal
Cancer

Classify
Adenomas and
Sessile Serrated

Adenomas
(SSAs)

Rule-based

Screening Accuracy:
0.913; Adenomas

Accuracy: 0.994; SSAs
Accuracy: 1;

N/A
12,748 Patients;
2288 Positive;

10,460 Negative

Private: From the
University of Texas

MD Anderson Cancer
Center

4 [37] 2012
EHR

(Unstructured
+ Structured)

English Colorectal
Cancer

Classify the
Colorectal

Cancer (CRC)
Test, Classify

Patients in
Need of

Screening

Knowledge
Map Concept

Identifier
(KMCI)

CRC Classification:
Recall: 0.93;

Precision: 0.94;
F1-score: 0.94; Patients

Classification:
Recall: 0.95;

Precision: 0.88;
F1-score: 0.91;

N/A 500 EHR
Records *

Private: From four
Vanderbilt University

Medical Center
(VUMC)-affiliated
ambulatory health

care clinics in
Nashville, Tennessee
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Table 5. Lung cancer-related studies. * represents that we only show the size of the dataset because the dataset has too many types of data (more than three), the
distribution of the dataset is not fully described, or it is not easy to show the structure of the dataset for other reasons.

SN Reference Year Source of Text Language Cancer Type Aim Algorithm Evaluation Metrics Validation Dataset Size Dataset Source

1 [39] 2021

Free-text
Radiological
Reports (Un-
structured)

English Lung Cancer Classify T-stage
and T-substage Rule-based

T-stage: Accuracy: 0.89;
T-substage:

Accuracy: 0.84;
Average

Precision: 0.8375;
Average Recall: 0.825;

Average
F1-score: 0.81375;

N/A 425 Radiological
Reports *

Private: From the
Departments of

Radiation Oncology
and Radiology,
Brigham and

Women’s
Hospital/Dana-
Farber Cancer

Institute (Boston,
United States of

America)

2 [40] 2021
EHR

(Unstructured
+ Structured)

English Lung Cancer
Classify Lung

Cancer and
Prognostic

Lung Cancer
Classification:

Logistic
Regression,
Prognostic

Classification:
Cox Regression

Lung Cancer: AUC:
0.927; Specificity: 0.9;

Sensitivity: 0.752;
Precision: 0.994;
F1-score: 0.837;

Prognostic:
AUC (1-year): 0.828;
AUC (2-year): 0.825;
AUC (3-year): 0.814;
AUC (4-year): 0.814;
AUC (5-year): 0.812;

Cross-
validation 76,643 Patients *

Private: From
Massachusetts

General Hospital
(MGH) and Brigham

and Women’s
Hospital

3 [41] 2018
CT Reports
(Unstruc-

tured)
English Lung Cancer Classify Lung

Cancer cTAKES
Sensitivity: 0.773;

Specificity: 0.725; PPV:
0.884; NPV: 0.54;

N/A

446 Chest CT
Reports;

326 Positive;
120 Negative

Private: From
Veterans Affairs

Connecticut
Healthcare System
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4.4. Other Cancers

Besides the common cancers, such as breast, colorectal, and lung cancer, we also collect
and analyze four studies on other cancer types, including brain tumor, liver, prostate, and
pancreatic cancer. In [42], Liu et al. applied BiLSTM, which is a variant of LSTM that collects
sequence information in both directions to the NER task for identifying features in EMR,
which is effective because the NER task is essentially a sequence labeling task. Furthermore,
the authors applied different machine learning methods to construct a classification model
for liver cancer prediction, and random forest [43], which is a classification model containing
many decision trees, had the highest performance in this task. This study focused on the
limited previous studies of Chinese radiology reports that have significant implications
for the research on NLP. In [44], Lee et al. developed an NLP model for the automatic
classification of brain tumors. For structured and unstructured MR reports, the authors
applied different feature engineering: Tf-idf and word2vec. An ensemble of ElasticNet [45],
which is a regression model, random forest, and XGBoost [46], which is a frame to ensemble
models, was used in the backbone of the machine learning algorithm. Bozkurt et al. [47]
separately designed a rule-based NLP algorithm and a CNN algorithm to classify UI. They
found that the results of the rule-based NLP algorithm were better than those of the CNN
algorithm and slightly better than the combination of the rule-based NLP algorithm and
CNN. Roch et al. [48] implemented an NLP system to identify pancreatic cysts automatically.
The algorithm defined regular expressions for nine different pancreatic cysts using rules
and incorporated negation detection in specific sentence screening.
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Table 6. Liver cancer, brain tumor, pancreatic cancer, and prostate cancer-related studies. * represents that we only show the size of the dataset because the dataset has
too many types of data (more than three), the distribution of the dataset is not fully described, or it is not easy to show the structure of the dataset for other reasons.

SN Reference Year Source of Text Language Cancer Type Aim Algorithm Evaluation Metrics Validation Dataset Size Dataset Source

1 [42] 2020

Radiology
Reports of

EMR (Unstruc-
tured)

Chinese Liver Cancer

Named Entity
Recognition

(NER), Classify
Liver Cancer

NER:
Bidirectional

Long
Short-term

Memory
(BiLSTM), Liver

Cancer
Classification:

Random Forest

NER: Precision: 0.9235;
Recall: 0.9366;

F1-score: 0.9300; Liver
Cancer Classification:

Precision: 0.8771;
Recall: 0.8625;

F1-score: 0.8697

5-fold Cross-
validation

609 Radiology
Reports *

Private: From Beijing
Friendship Hospital,

Capital Medical
University, Beijing,

China

2 [44] 2020

Magnetic
Resonance

Imaging (MR)
Reports

(Unstructured
+ Structured)

English Brain Tumor Classify Brain
Tumor

Ensemble
Model

(ElasticNet +
RandomForest

+ Gradient
boosting

(XGBoost))

Structured Text (Tf-idf
+ Ensemble):
F1-score: 0.98;

Unstructured Text
(word2vec +

Ensemble): 0.72;

N/A

26,000 Brain MR
Reports; 1410

BT-RADS
Reports *

Private: From a Single
Academic Institution

3 [47] 2020
Clinical Notes
of EHR (Un-
structured)

English Prostate
Cancer

Classify
Urinary

Incontinence
(UI)

Rule-based

Accuracy 0.86; Average
Precision: 0.957;

Average Recall: 0.833;
Average F1-score:

0.887;

5-fold Cross-
validation for

CNN

259 Clinical
Notes; 87 Mild;
79 Moderate;

93 Severe

Private: From the
Stanford University

EHR with the
Stanford Cancer

Institute Research
Database (SCIRDB)
and the California

Cancer Registry
(CCR)

4 [48] 2015
Free Text of

EMR (Unstruc-
tured)

English Pancreatic
Cancer

Classify
Pancreatic cyst Rule-based

Mean Sensitivity:
0.9985; Mean

Specificity: 0.988;
N/A 566,233 Reports *

Private: From
Wishard Memorial

Hospital
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5. Discussion

The recent advances in AI and DL have revolutionized the field of medicine, including
computer-aided diagnosis and radiology [49], while most of these studies have only applied
DL-enabled computer vision (CV) algorithms. However, how DL-enabled NLP as well as
the conventional NLP techniques can be utilized in computer-aided diagnosis has not been
well-investigated. In the era of COVID-19, medical resources are significantly important
and doctors are always busy. We find that AI-enabled NLP techniques still have not been
applied in hospitals. Many activities, such as medical reports writing, clinical notes analysis,
and EMR analysis, still take up a large amount of time for doctors. By using advanced NLP
methods to build applications, we believe that these applications can improve the efficiency
of doctors. In this section, we provide the answers to the three RQs that we provided in the
Introduction Section. Based on the results and the analysis of this review, we answer RQ1
in Section 5.1. In addition, we answer RQ2 and RQ3 in Sections 5.2 and 5.3, respectively.

5.1. Current Trends

In this section, we summarize the current trends of the NLP applications for CAD in
oncology from two perspectives: (1) NLP algorithms and (2) datasets and disease types.

5.1.1. NLP Algorithms

Figure 5 shows the number of different NLP algorithms for CAD in oncology from 2012
to 2022. Until 2020, the mainstream algorithm model was the rule-based NLP algorithm.
Between 2016 and 2019, ML-based NLP models and DL-based NLP models were only
sequentially applied in this field. Since 2020, the share of rule-based NLP algorithms has
been gradually decreasing, while ML-based NLP algorithms and DL-based NLP algorithms
have been gradually increasing in use and becoming the mainstream methods. In general,
the development of NLP applications in this field can basically match the iteration of AI
technology power. However, to a certain extent, it also exposes the gap between the models
used in the field and the frontier models of NLP. For example, in the last three years,
researchers have still been using rule-based NLP algorithms.
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In the last three years, NLP models applied in oncology for CAD still have rule-based
algorithms. Retro models are still in use today, while no one uses more advanced NLP
models than BERT, proving that the models applied in oncology are somewhat cut off
from the advanced NLP models. In today’s widespread use of pre-trained models, we
can develop state-of-the-art NLP models using the Hugging Face library [50] at a low
cost. Moreover, we can apply some advanced training methods to the models for practical
application implications. For example, we can replace the normal dropout layer [51] with
a multiple-sample dropout layer [52] to improve the generalization ability of the model.
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Alternatively, we can insert a simple LSTM model at the end of the complex model as a
pooling layer. Moreover, in some cases, we apply the pre-trained model directly to specific
downstream problems. Its performance is much higher than the rule-based algorithm. Of
course, such a technical divide arises not only because of the information gap between the
NLP domain and the oncology domain. Physicians may also not fully trust the diagnoses
predicted by AI models and are reluctant to do the relevant research. Rule-based models, in
which every rule is developed by human experts, have a proven track record of diagnostic
results. AI models are black-box models; thus, it is difficult to interpret the right and wrong
diagnoses for samples. Such uninterpretability is extremely detrimental to the development
of AI models in CAD.

5.1.2. Datasets and Disease Types

We identified three public datasets in the field of NLP applications in oncology: the
I2B2 NLP research database [30], the MIMIC-III critical care database [31], and the On-
coshare breast cancer database [32]. The rest of the datasets are private datasets obtained by
the authors in collaboration with local medical institutions. Figure 6 shows the ratio of the
number of papers using private datasets to the number of the papers using public datasets.
The percentage of public datasets in the studies we count is low. This is due to patient
privacy and data security issues, which make data collection challenging to carry out. In
addition, the annotations of electronic medical records are costly. For different annotations,
it is often necessary to be develop special annotation tools and refer to experienced doctors.
The Chinese-based dataset studies account for 2 out of 23 statistical articles, indicating that
NLP in oncology based on the English datasets is the mainstream study. From the tables in
Section 4, we observe that the sources of text for all the studies include unstructured data
because unstructured data contain more clinical information than structured data for the
models to make predictions. Moreover, it is the role of NLP to convert unstructured data
into structured results on demand. In terms of dataset size, the tables in Section 4 show
that some datasets are much smaller than those for other non-medical NLP tasks, such as
sentiment analysis. Furthermore, the classes in some datasets are severely uneven. More
discussion of the datasets is in Section 5.2.1.
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In terms of the disease types, among the studies, breast cancer has been most ex-
tensively studied (12/23), followed by colorectal cancer (4/23) and lung cancer (3/23).
However, only a few studies worked on brain tumors (1/23), pancreatic cancer (1/23),
prostate cancer (1/23), and liver cancer (1/23). Figure 7 shows the evolution of different
types of cancers over the years. In [53], the authors estimated that the most common cancer
in 2040 in the United States would be breast cancer, with 364,000 cases. Moreover, lung
cancer was estimated to be the leading cause for cancers, with 63,000 deaths. In this survey,
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52.17% of included papers are breast cancer-related, which corresponds to the fact that
breast cancer is the most common type. With the increasing estimated diagnosed cancer
patients and cancer-related death, the NLP applications may provide help and serve as an
important part in the future.
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5.2. Challenges

The challenges in this area can be summarized into two main limitations: the limita-
tions of the dataset and the limitations of the validation methods.

5.2.1. Dataset Limitations

A limiting factor noted by Deshmukh and Phalnikar [18] in doing the prognostic stages
of breast cancer is the insufficient number of datasets resulting in unbalanced datasets.
The unbalanced distribution of datasets leads to a classification with a small sample size
containing too few features, and it is not easy to extract patterns from them. Classification
models are prone to the problem of over-fitting due to over-dependence on a limited data
sample. When the model is applied to new data, the accuracy and robustness of the model
will be poor. In [16,34], KaKa et al. and Cheng proposed that the dataset is all from the
same institution and that the data homogeneity will impact the generalization ability of
the model. In addition, Cheng [34] also mentioned that the predictions of DL-based NLP
are based on matrix calculations where all features are converted into numbers, reducing
the interpretability of the algorithm. Alzu’bi [21] et al. mentioned that the quality of the
collected data itself might have some influence on the whole experimental process, such as
the variable format of data and missing data.

In summary, the limitations of datasets can be divided into insufficient original datasets
and inadequate quality original datasets. The data drive the NLP model kernel. The dataset
affects the model’s performance, and such an impact may even be in the tens of percentage
points. The performance expectations of models in the medical field are demanding. So,
if we want the models in our study to be truly useful, we should filter the valid datasets.
Additionally, the small size dataset in this field may be highly challenging to develop
DL-based models. Attributed to the data-driven approach, a small size dataset may cause
over-fitting, and the model may not be robust to the new unseen data. More research
should be focused on addressing this challenge.

5.2.2. Validation Limitations

The validation of model performance is what we generally want to test to the most
extent is the model’s generalization ability. The generalization ability means the true
metrics of the model in dealing with real-world data. However, we found some problems
in the validation steps of NLP models within the CAD for oncology. The most common
problem involves not using cross-validation. The partial dataset used for NLP modeling
in oncology CAD has only a few hundred cases. This can lead to differences between
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individual samples when we randomly divide the training and validation sets, resulting in
unstable model training results due to randomness. Nevertheless, if we combine multiple
models generated by cross-validation, the performance of the models will be more stable,
and the final validation results will be more reliable. Furthermore, we found that, in some
studies, only one expert manually annotated the dataset, or only one round of annotation
was performed. This corresponds to many subjective opinions in the final validation
results, resulting in a lack of objectivity. We propose to eliminate subjective differences
by combining the annotation results of multiple professional researchers and performing
multiple rounds of cross-annotation.

5.3. Future Trends
5.3.1. Federated Learning

Text data in the field of CAD for oncology are special because of the need to consider
patient privacy. It was mentioned earlier that we need to consider acquiring more datasets if
we want NLP to continue in the field of CAD for oncology; however, it is difficult to consider
the data security perspective if we are to collaborate with multiple medical centers to share
data for this purpose. Federated learning (FL) was proposed by McMahan et al. [54], which
is represented a distributed approach to training ML models without requiring private data.
FL exists in the form of a client and a corresponding server. The parameters are shared
among the various untrusted clients and finally aggregated into a federated model. There
are already current applications of FL in the context of the medical field. For example, FL is
used for whole-brain segmentation [55] and brain tumor segmentation in MRI [56]. Basu
et al. [57] investigated some effects of applying Differential Privacy (DP) in FL on BERT-like
models. This study can be used to protect medical history against privacy in the future.

5.3.2. Explainable Artificial Intelligence

DL-based black box models have no way to make sense of the decisions involved.
Therefore, people cannot trust their predictive abilities and do not know when they will fail
to predict. Such shortcomings prevent people from completely deploying them to some
critical areas that require performance, such as oncology. In addition to this, the need for
interpretability or explainable artificial intelligence (XAI) is higher in medicine than in
other fields. The reasons are that we need to identify the risks and liabilities in the medical
process [58] and unexplained clinical diagnoses can undermine trust between patients and
doctors [59]. Nurdin and Adi [60] parse two different models of deep learning using three
models of interpretation. The behavior of these two models on a sentiment analysis task
was investigated. Trigueros et al. [61] used a CNN with an attention mechanism to detect
which part of the EHR led to the output, generating interpretable predictions. There are
not yet many medical studies dealing with interpretability. However, from some existing
examples, interpretability can facilitate other studies to obtain more conclusive model
information. This feature is needed for NLP models in the field of CAD for oncology.

5.3.3. Semi-Supervised Learning

The data within the field of oncology belong to the medical field, so they inherit the
special characteristics of medical data. In terms of dataset size, medical data will be much
smaller than the data in other fields. Medical data often require tagging by multiple doctors,
and such tagging is too expensive. Semi-supervised learning can be well integrated into
this domain in such a data context. Semi-supervised learning allows us to acquire a small
amount of labeled data and a large amount of unlabeled data to train models and improve
model performance. Yang et al. [62] combined semi-supervised learning with generative
adversarial networks (GAN) to support clinical decision making. Liu et al. [63] proposed
semi-supervised learning for extracting clinical features of Traditional Chinese Medicine
and applied semi-supervised learning based on BiLSTM (Bidirectional LSTM)-CRF to
balance the cost of manual annotation and model performance.
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6. Conclusions

Electronic health records and electronic medical records are collected in hospitals,
but doctors have not utilized these data efficiently. Recently, natural language processing
techniques have been applied in the EHR and EMR data and play an essential role in the
clinical environment to assist doctors in cancer diagnosis. However, to the best of our
knowledge, no review paper has summarized the NLP applications for computer-aided
diagnosis in oncology. To fill the gap, we conducted a literature review from PubMed, ACL
Anthology, and Google Scholar between 2012 and 2022, and we finally included 23 papers.
Moreover, we analyzed and categorized the articles into seven cancer types: breast cancer,
lung cancer, liver cancer, prostate cancer, pancreatic cancer, colorectal cancer, and brain
tumors. We have found that DL-based and ML-based approaches have been more widely
used recently, while rule-based approaches were the dominant solution in earlier years.
Additionally, by analyzing the literature, we identified the current limitations of NLP
applications on supporting clinical practices and suggested some promising future research
directions. The current challenges are the limitation of the dataset size, lack of usage of cross-
validation, and lack of standard validation mechanisms. Some promising future trends,
such as federated learning, explainable artificial intelligence, and semi-supervised learning,
should be investigated to address these challenges. We believe this multidisciplinary
survey may reduce the gap between AI experts and medical professionals and provide the
necessary support for future researchers to design NLP applications for CAD in oncology.
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