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Abstract: Carpal tunnel syndrome (CTS) is a prevalent medical condition resulting from compression
of the median nerve in the hand, often caused by overuse or age-related factors. In this study, a
total of 160 patients participated, including 80 individuals with CTS presenting varying levels of
severity across different age groups. Numerous studies have explored the use of machine learning
(ML) and deep learning (DL) techniques for CTS diagnosis. However, further research is required
to fully leverage the potential of artificial intelligence (AI) technology in CTS diagnosis, addressing
the challenges and limitations highlighted in the existing literature. In our work, we propose a
novel approach for CTS diagnosis, prediction, and monitoring disease progression. The proposed
framework consists of three main layers. Firstly, we employ three distinct DL models for CTS
diagnosis. Through our experiments, the proposed approach demonstrates superior performance
across multiple evaluation metrics, with an accuracy of 0.969%, precision of 0.982%, and recall of
0.963%. The second layer focuses on predicting the cross-sectional area (CSA) at 1, 3, and 6 months
using ML models, aiming to forecast disease progression during therapy. The best-performing model
achieves an accuracy of 0.9522, an R2 score of 0.667, a mean absolute error (MAE) of 0.0132, and
a median squared error (MdSE) of 0.0639. The highest predictive performance is observed after
6 months. The third layer concentrates on assessing significant changes in the patients’ health status
through statistical tests, including significance tests, the Kruskal-Wallis test, and a two-way ANOVA
test. These tests aim to determine the effect of injections on CTS treatment. The results reveal a highly
significant reduction in symptoms, as evidenced by scores from the Symptom Severity Scale and
Functional Status Scale, as well as a decrease in CSA after 1, 3, and 6 months following the injection.
SHAP is then utilized to provide an understandable explanation of the final prediction. Overall, our
study presents a comprehensive approach for CTS diagnosis, prediction, and monitoring, showcasing
promising results in terms of accuracy, precision, and recall for CTS diagnosis, as well as effective
prediction of disease progression and evaluation of treatment effectiveness through statistical analysis.

Diagnostics 2023, 13, 3211. https://doi.org/10.3390/diagnostics13203211 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13203211
https://doi.org/10.3390/diagnostics13203211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-6917-7873
https://orcid.org/0000-0001-6618-0479
https://orcid.org/0000-0001-8177-9439
https://doi.org/10.3390/diagnostics13203211
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13203211?type=check_update&version=1


Diagnostics 2023, 13, 3211 2 of 24

Keywords: carpal tunnel syndrome (CTS); deep learning (DL); machine learning (ML); Adam
optimizer; cross-sectional area (CSA); statistical analysis

1. Introduction
1.1. Overview

Carpal tunnel syndrome (CTS) is a prevalent type of compressive mononeuropathy
that is due to the entrapment of a nerve. Studies indicate that nearly 90% of all cases
of entrapment neuropathy led to CTS. Potential contributing factors to CTS include the
presence of digital flexor tendons, wrist bone and the transverse carpal ligament, as well
as oedema, strenuous manual activity, hormonal changes, and tendon inflammation. In
severe cases, weakness in the hand may result from injury to the motor fibers of the
median nerve (MN). The exact cause of CTS remains uncertain, but MN compression,
biochemical changes, oedema, and tissue adhesion surrounding the MN are commonly
considered plausible explanations. The therapy recommendations for CTS vary depending
on the severity of the condition, which ranges from a conservative approach for mild and
moderate cases to surgical surgery for severe cases. Conservative therapy may be beneficial
for most cases with mild to moderate CTS; however, a Cochrane Review concluded that
such treatments had only short-term or limited effectiveness in severe cases. Surgical
decompression is considered the main solution advocated for severe CTS or patients
who have an unsatisfactory response to conservative treatment. As a result, innovative
intervention during the presurgical stages of CTS is required [1,2].

The carpal tunnel, located at the base of the palm, is formed by the eight carpal bones
and the transverse carpal ligament (TCL). It accommodates several structures, including
eight digital flexor tendons, the flexor pollicis longus tendon, their flexor synovial sheaths,
and the median nerve (MN). Compression of the median nerve can occur if there is an
increase in the volume of these structures, leading to nerve ischemia and resulting in pain
and paresthesia. Symptoms of carpal tunnel syndrome (CTS) primarily affect the lateral
three fingers and the lateral half of the ring finger, while the palm remains unaffected due
to the sensory cutaneous branch of the median nerve being unaffected by the pressure
changes within the carpal tunnel [3,4].

1.2. Problem Statement

The relationship between CTS and artificial intelligence (AI) is progressing rapidly,
especially in the field of medical diagnosis and treatment. Deep learning (DL) algorithms
can be trained on large datasets of patient information, including medical history, symp-
toms and diagnostic test results, to identify patterns and features that may be difficult
for human clinicians to detect [5]. This way can lead to earlier and more accurate diag-
noses of CTS, as well as the ability to predict the progression of the disease and create
personalized treatment strategies for individual patients. AI can analyze various types of
data, including imaging data such as magnetic resonance imaging (MRI) or ultrasound
images and electromyography (EMG) data [5,6]. Sensory and motor nerve conduction
studies (NCS) are valuable tools in the diagnosis and staging of CTS. They provide objective
measurements of nerve functionality; help differentiate CTS from other conditions and
assist in determining the severity of the condition. By incorporating these studies into
the diagnostic process, healthcare professionals can make informed decisions regarding
the treatment and management of CTS patients [7]. DL models can identify changes in
the MN or other structures that may indicate CTS, which leads to earlier diagnosis and
treatment and improves the accuracy and efficiency of diagnosis. The relationship between
CTS and AI is in its early stages but has significant potential to improve patient outcomes
and advance the field of medical diagnosis and treatment. Recent studies have ignored
the effect of clinical, personal and historical data on disease diagnosis and treatment [8,9].
This study addresses these limitations by using a DL model to diagnose CTS based on a
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combination of patient history, personal data, clinical examination data, NCS and CSA
from ultrasound images.

1.3. Study Objectives

The objectives of this study are as follows:

i. Utilize AI techniques to develop a model that support help medical experts in
distinguish between CTS patients and nonpatients effectively and efficiently.

ii. Explore the role of patient data from the Boston Carpal Tunnel Questionnaire
(BCTQ), NCS and CSA from ultrasound images in the CTS diagnosis process and
treatment monitoring.

iii. Develop AI model for supporting medical experts in the treatment process by
predicting the cross-sectional area (CSA) of the MN after 1, 3 and 6 months of
hydro dissection injection to determine the effectiveness of the injection treatment
in improving patient outcomes.

1.4. Paper Organization

The rest of the paper is organized as follows. Section 2 provides a comprehensive
literature review. Section 3 outlines the methodology used in the study. Section 4 focuses on
the clinical diagnosis of CTS. Section 5 describes the dataset utilized in the study. Section 6
presents the proposed work in detail. Section 7 presents the results and discussion. Section 8
compares our study with other relevant works. Section 9 presents the model explanation.
Section 10 concludes the paper and highlights areas for future research.

2. Related Work

CTS is a common condition that affects the hand and wrist. It occurs when the MN,
which runs through the carpal tunnel, becomes compressed or squeezed. CTS presents
various clinical manifestations, including pain, numbness, tingling, weakness, swelling
and sensory changes in the hand and fingers. Diagnostic studies for CTS include NCS and
ultrasonography. NCS is a standard diagnostic test that measures the speed and strength
of electrical signals along the MN. It helps confirm the presence of nerve damage and
assess the severity of CTS. In the meantime, ultrasonography is a non-invasive imaging
technique that provides detailed images of the carpal tunnel and surrounding structures. It
is useful in identifying structural abnormalities, such as thickening of the transverse carpal
ligament or swelling or cysts. These diagnostic tools aid in accurately diagnosing CTS
and determining the appropriate course of treatment. Regarding treatments, nonsurgical
options include conservative management with wrist splinting, activity modification,
physical therapy, and oral medications to alleviate pain and inflammation. In cases where
traditional measures are ineffective, corticosteroid injections may be administered. Surgical
intervention, such as carpal tunnel release (CTR) surgery, may be considered a last resort
to relieve compression on the MN. AI algorithms have shown promise in diagnosing CTS
by analyzing various data sources, including electrodiagnostic tests, imaging studies and
patient-reported outcomes. These algorithms can aid in identifying CTS with precision
and accuracy. AI can assist in developing personalized treatment plans for individuals
with CTS by analyzing patient data, medical history, and treatment outcomes. It can
help optimize treatment approaches and improve patient outcomes. AI algorithms can be
utilized to evaluate the effectiveness of CTS treatments by analyzing changes in symptoms,
functional outcomes, and patient-reported data. This way can provide valuable insights
into treatment response and guide further interventions if needed. Furthermore, statistical
tests such as ANOVA and t tests have been used to evaluate whether patient health status
changes throughout the treatment process. These tests help identify the presence of CTS
with precision. Several relevant works suggest models for diagnosing CTS, as illustrated in
Table 1.
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Table 1. The state of the art of CTS diagnosing.

Authors Method No. Cases Evaluation Measures (%)

Hoogendam
et al. [10] gradient boosting machines 2119 patients AUC: 0.7820

Park et al. [11] XGB 1037 patients Accuracy: 76.6

Tsamis et al. [12] SVM 38 patients Accuracy: 0.9513

Harrison et al. [13] QuickDASH 1916 patients Accuracy: 0.72

Ciobanu et al. [14] Boston-CTS 53 patients Sensitivity: 89.7

Smerilli et al. [15] Mask R-CNN 103 patients
246 images Precision: 0.86

Cosmo et al. [16] Mask R-CNN 53 patients
151 images DSC = 0.93

Shinohara et al. [17] Efficient Net 100 patients,
10,000 images Accuracy: 0.96

Wang et al. [18] MNT-DeepSL 100 cases, 84 patients Accuracy: 0.9

Faeghi et al. [19] SVM 228 wrists from 65 patients
and 57 controls Accuracy: 90.1

Hafane et al. [20] Localisation + PGVF ultrasound images elicited
from 10 videos. DSC = 0.85

Some diagnoses are based on numerical data. For example, Hoogendam et al. [10] con-
ducted a study to develop a prediction model for assessing the probability of improvement
of symptoms reported by patients after 6 months. The proposed results showed that the
gradient-boosting machines surpassed the logistic regression (LR) and random forest (RF)
models in predicting clinically relevant improvements in symptoms. The highest model
had a sensitivity of 0.84 and a specificity of 0.55. However, the limitations of this study
include the existence of missing data, which affects model performance. Park et al. [11]
developed machine learning (ML) models such as RF and extreme gradient boosting (XGB)
to classify the severity of CTS using clinical and electrophysiological features. XGB showed
the highest accuracy in multiclass classification with a test prediction accuracy of 76.6%.
Tsamis et al. [12] used five ML classifiers, namely, LR, support vector machines (SVMs),
k-nearest neighbours, decision trees and Naïve-Bayes, based on conventional electrodi-
agnostic criteria in the clinical practice of CTS. The classification was verified through
neurophysiological and clinical diagnoses. The highest accuracy of 0.9513 was achieved
by the SVM classifier. The results demonstrate the potential for CTS identification, which
can eliminate human errors in decision making. Harrison et al. [13] developed an ML
model using QuickDASH to perform patient-reported outcome measures and clinical data.
The algorithm that made the most accurate prediction of functional and symptomatic
improvement had respective accuracies of 0.72 and 0.76. Ciobanu et al. [14] investigated
two questionnaires, namely, Boston-CTS and six-item CTS. The Boston CTS questionnaire
had higher sensitivity (89.7%) and positive predictive value (88.9%) than the six-item CTS
questionnaire (76.9% and 75.0%, respectively).

Other diagnoses are based on ultrasound images. For example, Smerilli et al. [15]
developed a CNN model called Mask R-CNN to predict the measurement of the MN using
ultrasound images obtained at the level of the carpal tunnel. The CNN was tested on a
dataset of ultrasound images from patients with CTS and showed promising results in
terms of accuracy = 0.86, sensitivity = 0.88 and specificity = 0.86. Cosmo et al. [16] developed
a CNN model called Mask R-CNN, which achieved a DSC of 0.93. Shinohara et al. [17]
investigated the accuracy of three different DL models (Squeeze Net, MobileNet_v2 and
EfficientNet) to predict CTS from ultrasound images of the MN. The highest model had
an accuracy of 0.96, a recall of 0.94 and a precision of 0.99. Wang et al. [18] used deep
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similarity learning that included preprocessing, feature extraction, similarity learning
and nerve following. The approach achieved high accuracy in following the MN at 0.9.
Faeghi et al. [19] developed an approach for diagnosing CTS using radiomics features
extracted from ultrasound images. This approach was then compared with radiologists’
assessment of CTS diagnosis. The study concluded that the automated approach achieved
high accuracy in the diagnosis of CTS and outperformed radiologists in certain aspects.
Hafane et al. [20] developed a CNN model. CNN is used to identify the region of interest
around the nerve. The results of this study showed a median DSC of 0.85.

In this research, we used numerical datasets for several reasons. Numerical datasets
are often easier and faster to analyze than ultrasound images. Processing and analyzing
numerical data require less computational power and time, which allows for quicker and
more efficient diagnosis and monitoring of CTS. Obtaining numerical datasets for CTS
is also generally more accessible and cost effective than acquiring ultrasound images.
Ultrasound imaging requires specialized equipment and expertise, whereas numerical
data can be collected using simpler and more widely available tools, such as EMG or NCS.
Despite the promising performance from most literature, several limitations should be
addressed as follows:

(1) Several CTS diagnosis studies have been conducted based on small and limited
datasets (i.e., data aggregated from medical questionnaires), which may exclude
important features (e.g., clinical examination, clinical history, and demographics).

(2) Aggregating data according to specific conditions (i.e., women older than 40 years)
limits the generalization ability of the developed model.

(3) Most studies ignored the overlap between CTS and other diseases, which may affect
model accuracy.

3. Methods
3.1. Deep Learning

Artificial neural networks are used to model and resolve complicated issues in the
deep neural network (DNN). DNN processes input data and produces output predictions
using several layers of interconnected nodes or neurons. A DNN typically has three layers:
an input layer, hidden layer, and an output layer [21]. The input layer, which is the first
layer. Every node in this layer receives an input, processes it, and then sends its output as
the input to every node in the following layer. The final layer in a deep neural network
generates the output prediction based on the learned features and weights, and there are
typically no connections between nodes in the same layer. The layers between the input and
output layers are referred to as the hidden layers in the middle section. Every node in each
one carries out mathematical operations on the incoming data to produce output values,
which are then sent on to the following layer. DNNs can have numerous hidden layers with
various numbers of nodes in each layer. DL hidden layers can include multiple types, such
as: (i) Dense Layers: This layer is a type of fully connected layer in which each node in the
layer is connected to every node in the previous layer. The nodes in a dense layer perform
a linear transformation on the input data and apply an activation function to generate an
output value. This layer is used for feature extraction and classification tasks. (ii) Batch
normalization: This layer normalizes the previous layer’s output and applies a scaling and
shifting operation to improve the stability and speed of training. (iii) Dropout: This layer
randomly drops out a fraction of the neurons in the previous layer during training, which
helps to prevent overfitting [5,22]. For multi-class classification problems, neural networks
frequently use the SoftMax activation function. It creates a probability distribution over
classes from a vector of input values. The result is a probability distribution that sums to
one after each member of the input vector has been subjected to the exponential function
and is normalized. To determine the most likely class for a given input, this function is
frequently employed in the output layer of a neural network for multi-class classification
problems. The probabilistic interpretation of the output that SoftMax offers is one of its
benefits, but it can also be vulnerable to noise and outliers in the input data [23].
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The SoftMax function can be mathematically expressed as follows:

P(y = j|x) = exj

∑K
i=1 exi

(1)

where P(y = j|x ) is the probability that the input x belongs to class j, x is the vector of
logits (input values), xj is the j-th element of the input vector x and K is the total number
of classes.

This study found that the most effective DL optimization algorithm was Adam (Adap-
tive Moment Estimation). Adam is a commonly used optimization algorithm in DL that
minimizes the loss function during training. It is an extension of stochastic gradient de-
scent (SGD) that integrates concepts from momentum and adaptive learning rates. Adam
optimizes the parameters of the neural network by maintaining a running estimate of the
first and second moments of the gradients. The first moment is the mean of the gradi-
ents, while the second moment is the uncentered variance of the gradients. Exponential
moving averages are used to calculate these estimates, with recent gradients given more
weight [23,24].

The Adam optimizer updates the parameters of the neural network using the following
equations:

mt = β ∗mt−1 + (1− β)× gt (2)

vt = β2 ∗ vt−1 + (1− β2)× (gt)
2 (3)

θt+1 = θt −
(α×mt)√

vt+ ∈
(4)

where mt and vt are the first and second moment estimates of the gradients at time step
t, gt is the gradient at time step t, thetat is the parameter vector at time step t, alpha is
the learning rate, beta1 and beta2 are the exponential decay rates for the first and second
moments, and epsilon is a small constant added for numerical stability.

3.2. Statistical Tests

The data collected in the study were analyzed using the SPSS version 23 for Windows®

(IBM SPSS Inc., Chicago, IL, USA). SPSS provides a range of tools and techniques for data
manipulation, descriptive statistics, inferential statistics, data visualization, and reporting
such as:

3.2.1. ANOVA Test

ANOVA is a statistical process for comparing the means of various samples. It is like
extending the t-test for two independent samples to more than two groups. The goal is to
test for substantial variations across classes by analyzing the variances [25]. The hypothesis
in the ANOVA test is comparing two independent estimates of the population variance. It
is one of the most beneficial tests for disclosing significant information, especially when
interpreting experimental results and identifying the impact of some elements on other
processing parameters [26]. It assesses whether a statistical process produces useful results.
It essentially allows you to choose whether to reject or accept a null hypothesis. Two
factors are utilized to determine this in a two-way ANOVA test. A two-way ANOVA test
makes the following assumptions: Firstly, the two testing variables should be independent.
Secondly, the total variance should be homogeneous (volatility around the mean should
be consistent). Finally, the variables should have a normal distribution. Assume that
there are two populations: y11, y12, y13, . . . . . . .y1n and y21, y22, y23, . . . . . . y2n. We have
independent variables yij, i = 1, 2, 3 . . . . . . , k and j = 1, 2, 3 . . . . . . , n, with mean µi and
standard deviation of ∂. In this test, we are mainly concerned with the null hypothesis.
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The against the hypothesis is:

H0 : µ1 = µ2=µK (5)

y′ refers to the grand mean, the mean of all the data points.

y′ =
1
n

k

∑
i=1

ni

∑
j=1

yij (6)

s2
i represents the sample of the variance.

s2
i =

1
ni − 1 ∑ni

j=1

(
yij − y’

i

)2
(7)

s2
i = MSE estimates the σ2. ANOVA is mainly centered on the idea of comparing the

variations between two groups as well as the variations within samples.

3.2.2. Level of Significance

In this study, the p-value is used to measure significance levels. The p-value is also
known as the probability value; it indicates how likely our results would have occurred
assuming that the null hypothesis is correct [27]. This is accomplished by computing the
likelihood of the test statistic, which is the number determined by a statistical test based
on the data [28,29]. The degree of significance was assessed for all the above-mentioned
tests. Results can be described as follows: nonsignificant if the p-value is higher than 0.05
(p > 0.05), significant if the p-value is lower than 0.05 (p < 0.05), and highly significant if
the p-value is less than 0.001.

3.2.3. Kruskal-Wallis Test

The Kruskal-Wallis test is a non-parametric statistical test used to compare the effect
of three or more groups on a continuous variable when its distribution is not normal in one
or more groups. It is used to determine whether there are significant differences between
the groups based on the ranks of the data rather than the actual values [30].

4. CTS Clinical Diagnosis
4.1. CTS Symptoms

Identifying appropriate symptoms is essential for diagnosing the presence or absence
of CTS. These symptoms typically include numbness, tingling or a burning sensation in
the volar areas, especially at night or after strenuous activities. Nocturnal symptoms are
common amongst the majority of patients and may involve the entire hand or be limited to
the thumb or the first two or three fingers. Patients with CTS often report a unique sensation
of swelling in their hands, despite the absence of visible oedema. In some cases, NCS may
reveal thenar atrophy and denervation. Other CTS symptoms may include writer’s cramp,
forearm pain, shoulder discomfort, cold sensitivity in the fingers or numbness in the third
finger alone [31].

4.2. Clinical Examination

In the classic presentation of CTS, symptoms typically affect two or more of the first
three fingers. Pain that extends beyond the wrist and involves the fourth and fifth fingers,
along with wrist pain, may also be experienced. However, involvement of the palm or
dorsum of the hand is not typically associated with CTS symptoms [32].

4.3. Motor Examination

Thenar atrophy is a late-onset condition that results in severe functional loss. Finger
weakness combined with the inability to pinch or repeated dropping of gripped items
implies the involvement of motor components. The loss of feeling up to a pinprick in the
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MN distribution frequently occurs before thenar atrophy. Thenar atrophy is rarely noticed
by patients and may be unnoticed when evaluated by gazing down at the palm. However, it
is easily discernible by comparing both palms together. In a study conducted by Phalen [33],
atrophy of the abductor pollicis brevis, opponents pollicis and flexor pollicis brevis muscles
was observed in 41% of hands. Amongst these muscles, the abductor pollicis brevis is the
most commonly affected, and its function can be assessed using the ‘pen test’ [33], which
can be a useful tool in diagnosing CTS.

4.4. Scoring System

The BCTQ is a patient-reported questionnaire that assesses symptom severity and the
overall functional condition of CTS cases [34]. The questionnaire consists of two scales,
the Symptom Severity Scale (SSS) and the Functional Status Scale (FSS), which assess the
severity of symptoms and the degree of difficulty in performing daily tasks, respectively.
The SSS contains 11 questions scored on a Likert scale of 1 to 5, whilst the FSS consists of
eight questions scored on a scale of 1 to 5, where a score of 1 represents no difficulty and
5 indicates severe difficulty.

5. Dataset Description and Preparation
5.1. Data Description
5.1.1. Dataset Collection

The dataset was collected retrospectively from the Neurology Department at Kafrelsheikh
University Hospital, Egypt, between April 2019 and April 2020. It included 160 patients who
were divided into two groups: those diagnosed with CTS and those with similar symptoms.
The study was submitted for IRB approval (Faculty of Medicine, Kafrelsheikh University),
and patients’ confidentiality and privacy were ensured throughout the study [35].

5.1.2. Study Cohorts

The dataset for the study on CTS patients was collected based on specific inclusion
criteria: (i) participants aged 20 to 60 years; (ii) manifestations of CTS; (iii) NCS showed
delayed sensory or motor conduction of the MN; (vi) patients who did not respond to
medical treatment after at least 3 months of symptom onset were included, and pregnant
women were excluded from the study.

5.1.3. Data Aggregated for Each Patient

Personal and historical data: The patients’ historical and personal data will be obtained
and recorded, including information such as age, gender, body mass index (BMI), occupa-
tion, marital status, lifestyle habits and any relevant family history of similar conditions.
Any prior medical or surgical problems will be noted as well.

Medical questionnaire: A computerized CTS sheet, including all variables of the BCTQ,
was used to review all patients. The BCTQ is a reliable and valid tool used to evaluate the
severity of symptoms and overall patient function. It includes two models, namely, SSS
and FSS, which can be used together or separately.

Ultrasonographic examination: A single sonographer obtains the CSA using the
tracing feature on the US machine (in mm2 at the distal wrist crease) without weaving
between each fascicle [36]. This method is more accurate than the ellipsoid approach. CTS
is categorized by an MN area of >9 mm2. According to the classification of El Miedany
et al. [37], we classified the CTS severity scale based on CSA as follows: mild if CSA is up
to 13.0 mm2, moderate if CSA is between 13.0 and 15.0 mm2 and severe if CSA is more
than 15.0 mm2 [38]. Three measurements were taken, and the average value was used for
statistical analysis. All patients were administered injectate consisting of 1 mL lidocaine,
2 mL (8 mg) dexamethasone and 2 mL normal saline containing 300 IU hyaluronidase. We
compared the CSA of the CTS cases with another 80 non-CTS volunteers who exhibited
similar symptoms from the Neurology Department, Kafrelsheikh University Hospital
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inpatient and outpatient clinics after matching for age and sex. Finally, Nerve Conduction
Studies (NCS) were performed on all patients included in our study.

5.2. Dataset Preparation
5.2.1. Outlier Detection

Outlier detection involves identifying abnormal items among normal ones. It is a
crucial step in data preparation as it can affect the performance of clustering and classi-
fication models. Different statistical techniques are used to address the issue, including
proximity-based and distance-based methods. While these methods are effective, in this
study, we relied on the expertise of a medical professional to identify and handle any data
outliers.

5.2.2. Data Imputation

Missing values are pervasive in medical data due to corruption or collection errors.
They can adversely impact the performance of classifiers by introducing bias. Various
methods exist for filling in missing values, including basic techniques like mean, max, min,
and the most frequent item. In our study, we encountered a small number of missing values
in each column, ranging from 2 to 5 [39]. To achieve high accuracy in the imputed data,
we employed a variable strategy known as multivariate imputation by chained equations
(MICE) [40,41].

5.2.3. Data Scaling

Data scaling methods in machine learning are employed to address the importance
of scalability and ensure accurate outcomes while minimizing uncertainties, incorrect
predictions, and additional costs or processing time. One common approach to data scaling
involves transforming the minimum value of a feature to 0 and the maximum value to
1 [6,9,42–49]. In our study, we applied data scaling using the following equation:

x’ =
x− x

δ
(8)

6. Proposed Work

The proposed model for identifying and predicting CTS diagnosis at the carpal tunnel
is divided into four stages, as shown in Figure 1. The first stage involves aggregating the
necessary data, which includes patient history, personal data, clinical examination data,
CSA from ultrasound images, NCS and BCTQ. The second stage is the data preprocessing
stage, which involves cleaning, formatting, and standardizing the data to prepare them for
analysis. The third stage is utilizing AI models to predict CTS diagnosis and monitor pro-
gression during treatment. We built a classification model to predict CTS diagnosis. DNN
was utilized to build efficient models in terms of several evaluation metrics. Then, we built
an ML model to predict the CSA after 1, 2 and 6 months. Lastly, the fourth stage involves
utilizing statistical tests (level of significance, Kruskal-Wallis test and two-way ANOVA
test) to evaluate whether a significant change in patient health status occurs through the
treatment process. The results of the statistical tests showed highly significant changes in
patient scores, including SSS, FSS and CSA after 1, 3 and 6 months of postinjection. Overall,
the proposed model provides a comprehensive approach to diagnosing CTS based on AI
techniques and advancement on the medical and AI sides.
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7. Results and Discussion
7.1. Evlaution Metrics

Various metrics are employed to assess the performance of the model classification
model and regression model, encompassing the following measures for classification
(accuracy, precsion, recall, f_meausre and area under the roc_curve. While other evaluation
metrics utilized for regression include mean square error (MSE) Mean absolute error
(MAE), median absolute error (MedAE) and the R2 score Table 2 presents a comprehensive
overview of these metrics and the mathematical formulas used to calculate them.
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Table 2. Evalution metrics of the model.

Metric Abbreviation Equation

Accuracy ACC tp + tn
tp + f p + tn + f n

Precision P tn
tn + f p

Recall R tn
tn + f n

F1-score F1 2(P∗R)
P + R

Mean_absolute error MAE 1
n

n
∑

i=1
|yi − ŷi|

Mean_square_error MSE 1
n

n
∑

i=1
(yi − ŷi)

2

Mediam absolute error MedAE median(|y1 − ŷ1|, |y2 − ŷ2|, . . . , |yn − ŷn|)
R2_score R2 1− ∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−y)2

7.2. Predicting CTS Diagnosis

In this section, we evaluate the performance of DL in predicting CTS diagnosis. Three
different DL models are built with three different optimizers: gradient descent (GD), adap-
tive gradient algorithm (Adagrad) and Adam. Figure 2 clarifies the plot of the architecture
of the DL model. It includes six layers, including an input layer that has 37 inputs, four
hidden layers with the ReLU activation function and an output layer with the Adam op-
timizer and sigmoid activation function. Table 3 shows the hyperparameters of the DL
model. First, we tried the proposed model without historical data to check the effect of
the historical data on the overall performance of the model. Figure 3 shows the learning
and model without historical data. From Table 4, we can observe the best performance
was obtained (ACC = 0.829%, precision = 0.823%, R = 0.857%, F-measure = 0.846% and
AUC = 0.837%).

Table 3. Hyperparameters of DL model.

DL Model Hyperparameters Value

Input layer 37 unit

Number of layers 6

Regularization L2 = 0.1

Dropout 0.1

Batch size 32

Activation function in hidden layers ReLU

Number of epochs 10

Activation function in output layer Sigmoid

Optimizer used ADAM

Table 4. Result of Predicting CTS Diagnosis without historical data.

Model Optimizer Accuracy Precision Recall F1-Score AUC

Model 1 GD 0.805% 0.823% 0.821% 0.812% 0.812%

Model 2 Adgard 0.812% 0.832% 0.833% 0.832% 0.824%

Model 3 Adam 0.829% 0.823% 0.857% 0.846% 0.837%
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Second, we explored the effect of all data including (historical, clinical data and medi-
cal score). From Table 5, we can observe the following: the lowest was obtained from GD
(ACC = 0.935%, Precision = 0.953%, R = 0.944%, F-measure = 0.947% and AUC = 0.963%)
and utilizing Adagard enhanced the performance by approximately 1–2% (ACC = 0.955%,
Precision = 0.963, R = 0.946%, F-measure = 0.957% and AUC = 0.963%). The best perfor-
mance was obtained from Adam optimization, and the model achieved the best perfor-
mance in terms of several metrics (ACC = 0.969%, precision = 0.982, R = 0.963%, F-measure
= 0.974% and AUC =0.972%). Figure 4 shows the learning and model with historical data.
The results confirm the significant effect of the historical data.

Table 5. Result of Predicting CTS Diagnosis with historical data.

Model Optimizer Accuracy Precision Recall F1-Score AUC

Model 1 GD 0.935% 0.953% 0.944% 0.947% 0.963%

Model 2 Adgard 0.955% 0.963% 0.946% 0.957% 0.963%

Model 3 Adam 0.969% 0.982% 0.963% 0.976% 0.972%
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7.3. Predicting CSA Progression for Patients (1 Month, 3 Months, and 6 Months)

In this section, we performed six experiments on three different datasets to predict the
CSA after 1, 3 and 6 months based on the ML models RF and multilayer perceptron (MLP).
The hyperparameters of the ML model are shown in Table 6, and the models evaluated in
terms of several evaluation metrics (training score, testing score, R2 score, mean absolute
error and median square error) are shown in Table 7. In the first experiments, we utilised all
data aggregated in the first month after injection, including the initial CSA, FSS initial stage,
SSS initial stage, handshaking, and sensory symptoms. Utilising RF achieved adequate
performance of 0.863, 0.884 and 0.981 in terms of training score, testing score and R2 score,
respectively. The results quietly improved using MLP. The second experiment uses all the
data from the first experiment in addition to the CSA in the first month, FSS and SSS that
was calculated in the third month. The additional data increase the model performance. The
same is true for experiment three, which utilises all the precious data in experiments 1 and
2 in addition to some extra data aggregated after 6 months. The performance of prediction
after 6 months improved more than the others. The best performance was obtained from
MLP (ACC = 0.9522, R2 score = 0.667, MAE = 0.0132, MDSE = 0.0639). Figure 5a,b show
the residuals and prediction for the MLP regressor model.
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Table 6. Hyperparameters of ML model.

Model Hyperparameters for Machine Learning Models

MLP Activation = ReLU, Batch size = 32, Regularization = None, Number of epochs = 70
RF n_estimators = 100, max_depth = 5

Table 7. Results of regression model for predicting CSA.

CSA Over
Time Algorithm Accuracy

(Train)
Accuracy

(Test)
R2 Score in

Train
R2 Score in

Testing MAE Value MdSE Value

After one
month

RF 0.863% 0.8841% 0.981 0.599 0.0742 0.0531

MLP 0.872% 0.8468% 0.932 0.906 0.00070 0.0043

After three
months

RF 0.891% 0.8640% 0.682 0.706 0.00179 0.0044

MLP 0.882% 0.8792% 0.282 0.684 0.01152 0.0639

After six
months

RF 0.931% 0.9140% 0.782 0.606 0.00179 0.0044

MLP 0.967% 0.9522% 0.882 0.667 0.0132 0.0639
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7.4. Progression Statistical Analyses

We performed many statistical tests on different parameters in the dataset to obtain
statistically significant changes. We analyzed the changes in illness phases for 6 months, and
they were distinguished by a statistically significant difference in CSA. When comparing
severe cases to mild and moderate cases, but not between mild and moderate cases, pairwise
comparisons showed that the CSA change was considerably smaller in severe cases. The
analysis results are shown in detail in Table 8.

We found a statistically significant difference in CSA change over the 6 months across
the three US stages (p value < 0.001). Further pairwise comparisons demonstrated that
CSA change was significantly lower in severe cases than in mild and moderate cases,
whilst no significant difference was observed between mild and moderate cases. The
median ranges were found to be 1.1, 0.7 and 0.4 in mild, moderate, and severe stages,
respectively. Therefore, we suggest that US staging can serve as a predictive tool for
identifying individuals with mild and moderate CTS US stages who may respond better to
hydro dissection.
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Table 8. Changing in CSA according to initial Ultrasound stage.

Statistic Mild Moderate Severe
* p Value

N 25% 30% 45%

Median 1.1 0.7 0.4

<0.00125th and 75th percentile 0.9–1.4 0.6–0.74 0.4–0.6

Pairwise comparison A A B
* p value: Kruskal-Wallis H-test.

We utilized the significance test to track changes in SSS, FSS and CTS during the study
period. As shown in Table 9 and Figure 6, statistically significant changes in CSA, SSS and
FSS were observed in CTS cases over time (Initial > 1 month > 3 months > 6 months). Our
study revealed a significant decrease in symptoms, which is evident in the SSS, FSS and
pain analog scale, and a diminished CSA of the MN at 1, 3 and 6 months of postinjection
compared with a baseline assessment. The CSA was lowered by approximately 1.5 msec
in the first month, 1.3 msec in the third month and 1 mmseq in the sixth month from the
initial value.

Table 9. A significant change in CSA, SSS, FSS.

Measurement Initial One-Month Three-
Months Six-Months F * p Partial

η2

CSA

Mean 16.6 15 15.4 15.7 12.913

<0.001 0.249SD 4.2 3.6 3.7 3.8

** Pairwise A B C D

SSS

Mean 36.8 21.7 25 27.7 199.018

<0.001 0.866SD 5.5 6.6 6.5 8.3

** Pairwise A B C D

FSS

Mean 23.9 13.4 14.8 16.3 197.840

<0.001 0.855SD 3.9 3.3 3.9 4.5

** Pairwise A B C D

* p value: One-Way repeated measures ANOVA. ** Pairwise comparisons: Similar letters = Insignificant difference,
Different letters = Significant difference.

Upon examining simple main effects for US staging, no significant difference was
observed in the initial stages of mild, moderate, and severe. However, after 1 month,
3 months and 6 months, the FSS and SSS were significantly higher in the severe stage
than in the mild and moderate stages. The mild and moderate groups showed equal
improvement in FSS and SSS after 1, 3 and 6 months, with a better chance than the severe
stage. The results are shown in Table 10 and Figure 7.

7.5. Discussion

CTS is considered the most prevalent mononeuropathy caused by nerve entrapment.
Treatment of CTS varies according to the initial state of the patient. Treatment can range
from medical treatment to surgical operations. In recent years, the injection process has
shown promising results in CTS treatment. The injectate material varies (e.g., steroid, 5%
dextrose water, platelet-rich plasma, and saline), as well as the injection volumes (from
1 mL to 5 mL). Some studies have suggested that a higher injectate volume of 4 mL may
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produce a better reaction [50]. In this study, we explored the effect of a 5 mL injection
consisting of 2 mL dexamethasone, 1 mL lidocaine and 2 mL saline. The classification
and regression models utilized in the study showed the following findings. Firstly, DL
outperformed ML in tracking and predicting the progression of CTS during the treatment
process. The DL model demonstrated superior performance compared to a previous ML
model used in our previous study [35]. DNN model predicts the prognosis of CTS and then
the ML model predicts CSA after 1, 3 and 6 months with improved accuracy. In addition, a
DNN model was developed to predict the prognosis of CTS. This model utilized advanced
deep learning techniques to analyze the input data and make predictions about the future
course of the condition. The DNN model showed promise in providing valuable insights
into the prognosis of CTS. Moreover, an ML model was built to predict CSA after specific
time intervals (1, 3, and 6 months). This ML model, which may have utilized traditional
machine learning algorithms, demonstrated the ability to forecast the change in CSA over
time. This prediction can aid in understanding the progression of CTS and monitoring the
effectiveness of treatment interventions. Moreover, the study investigated the patient’s
status after undergoing an injection process. Remarkably, there was a highly significant
reduction in symptoms as evidenced by improvements in Symptom Severity Scale (SSS)
and Functional Status Scale (FSS) scores. Additionally, CSA measurements exhibited a
consistent decrease over 1, 3, and 6 months post-injection, indicating an improvement in
nerve compression. The CSA reduction was approximately 1.5 msec in the first month,
1.3 msec in the third month, and 1 msec in the sixth month. These findings demonstrate the
efficacy of the injection process in alleviating symptoms and reducing nerve compression.

Furthermore, the study identified a statistically significant increase in CSA in CTS
cases compared to control subjects, with a cut-off point of 11 mm2. This measurement
of CSA proved to be a reliable test for differentiating CTS patients from control subjects.
Overall, the classification and regression models employed in this study provide valu-
able insights into the prognosis, prediction of CSA changes, and evaluation of treatment
outcomes in CTS patients. Overall, the study’s implementation of DL and ML models
showcased their potential in predicting the prognosis and progression of CTS. The DL
model surpassed previous ML approaches, highlighting the value of deep learning tech-
niques in analyzing CTS data and making accurate predictions. The ML model specifically
focused on predicting CSA changes, providing insights into the effectiveness of treatment
over time.
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Table 10. FSS and SSS: Simple main effect for group.

FSS

Time Point Mild Moderate Severe F p

Initial A A A 1.310 0.323

1-month A A B 21.736 <0.001

3-months A A B 21.873 0.002

6-months A A B 12.970 0.011

SSS

Time point Mild Moderate Severe F p

Initial A A A 5.093 0.052

1-month A A B 18.772 <0.001

3-months A A B 16.745 <0.001

6-months A A B 22.194 <0.001
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7.6. Strengths and Limitations

This study presents strengths to the field of CTS diagnosis and treatment, including
the following:

1-Aggregated CTS dataset: The dataset from Kaferelshikh University includes a sub-
stantial number of samples (160), which consist of CTS and non-CTS patients.
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2-Differentiation of CTS patients: The proposed DL model has the strength to differen-
tiate between CTS and non-CTS patients based on the BCTQ data and NCS. This model
can effectively identify and classify individuals with CTS, which aids in early detection
and appropriate treatment interventions.

3-Prediction of CSA: The proposed ML model can predict the CSA of the MN after 1, 3
and 6 months of postinjection. This predictive model can assist in monitoring the progress
and effectiveness of treatment over time, which allows for adjustments as needed.

4-Assessment of patient health status: Through statistical tests such as ANOVA and the
Kruskal-Wallis test, the study evaluated whether patient health status significantly changed
after the hydro dissection injection process. This analysis provides valuable insights into
the effectiveness of the treatment and its effect on patients’ well-being.

Overall, these strengths highlight the utilization of a comprehensive dataset, the
development of accurate prediction models and the evaluation of treatment outcomes
using rigorous statistical tests. These approaches contribute to a better understanding of
CTS and facilitate more informed decision making in its diagnosis and management.

One limitation of this study was the relatively small sample size of CTS patients.
Although the dataset from Kaferelshikh University included 80 CTS patients, increasing
the sample size would have provided a more comprehensive representation of the CTS
population. A larger sample size would have allowed for more robust statistical analyses
and potentially enhanced the generalizability of the findings. Future studies should aim to
include a larger number of CTS patients for strengthening the validity and reliability of the
results.

8. Comparison with Other Works

The use of DL has demonstrated potential in the classification and diagnosis of several
diseases, including CTS. DL algorithms, with the help of complex neural networks, can
identify patterns in medical images, signals, and data to predict the presence and severity
of diseases. DL was used to analyze ultrasound images and EMG data for classifying and
diagnosing CTS with high accuracy. For example, a DNN was used in [51] to diagnose
CTS based on 415 MRI images with an accuracy of 0.63, but MRI images are expensive
and may be unavailable. In [18], the authors used MNT-DeepSL based on a sample size
of 84 [50(+), 34(−)] and obtained an accuracy of 0.9, but the number of cases used for
analysis was small for the dataset, which may result in a less robust model. The size of
the data was also small in [12,19]. In [11], the authors used XGB with a sample size of
1073 [254(+), 761(−)] and obtained an accuracy of 76.6. DL algorithms were used in [13]
to predict functional and symptomatic improvement after carpal tunnel decompression
surgery based on QuickDASH response data with a sample size of 1916 and obtained
an accuracy of 0.72. Our proposed model utilized bagging with Adam optimizers in 160
[80(+), 80(−)], which achieved 0.969 and 0.972 in terms of ACC and AUC, respectively.
Table 11 details the comparison with other studies in CTS classification. To ensure a fair
comparison, we conducted a test of our model on another CTS dataset [52]. We aimed to
select a dataset that encompassed similar features to those we relied on in our research.
However, the performance of our model on this dataset was found to be lower than our
previously obtained results. This outcome provides further confirmation that the superior
performance of our proposed model can be attributed to the careful selection of features
that have a significant impact on the classification process. We applied Adam Optimizer,
and the model achieved several metrics (ACC = 0.809%, precision = 0.792%, R = 0.817%,
F-measure = 0.802% and AUC = 0.811%). Figure 8 show the model accuracy and model
loss of the model with other data. Our proposed model outperforms the state-of-the-art
models for several reasons: (1) Previous studies have focused mainly on the distinction
between patients with CTS and those without the condition that cannot be aligned with
medical considerations. By contrast, our study gathered data from patients with CTS
and other conditions that share overlapping symptoms, including cervical radiculopathy,
de Quervain tendinopathy and peripheral neuropathy. (2) Our model for CTS diagnosis
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incorporates historical data that significantly affects the accuracy of disease identification.
(3) A regression model is provided to predict CSA after 1, 3 and 6 months for determining
progression during treatment.

Table 11. Compared to previous research in terms of CTS classification.

Reference Models Dataset Results Type Data
Availability

[45] Deep CTS 415 patients Accuracy: 0.63 MRI Private

[18] MNT-DeepSL 84 patients Accuracy: 0.9 US Private

[19] SVM 65 patients Accuracy: 0.901 US Private

[11] XGB 1037 patients Accuracy: 76.6 EDx Public

[12] SVM 38 patients Accuracy: 0.9513 EDx Private

[13] QuickDASH 1916 patients Accuracy: 0.72 BCTQ Public

Proposed 160 patients Accuracy: 0.969 US, EDx
BCTQ Private
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Table 12 shows comparisons with other studies in predicting CTS. Very few works
focus on the prediction of CSA after 1, 3 and 6 months based on ML models. All these
studies have developed their models based on data collected after the patient has undergone
surgery. For example, gradient boosting was utilized in [13] to forecast the likelihood of
post surgery improvement by aggregating data from 2119 patients. The study reported an
AUC of 0.7820 for the ability of their model to predict patient progress. In [15], the authors
used Mask R-CNN with a sample size of 103. This model predicts the CSA automatically
calculated from the MN section. The proposed model achieved promising results in terms
of different prediction metrics (DSC: 0.86, precision: 0.86). In [17], the authors used Efficient
Net with a sample size of 100 and achieved an accuracy of 0.93. The proposed model
(MLP) achieved promising results in terms of different metrics to predict after 1 month
(ACC = 0.8468, MdSE = 0.0043), after 3 months (ACC = 0.8792, MdSE = 0.0639) and after
6 months (ACC = 0.9522, MdSE = 0.0639). Accordingly, our studies demonstrate the
potential of ML models to accurately predict CSA changes in CTS patients after various
treatment durations. This information can be valuable for clinicians in monitoring treatment
response and adjusting treatment plans as needed.
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Table 12. Compared to previous research in terms of predicting diagnosis.

Reference Models Dataset Evaluation Measures

[13] Gradient boosting 2119 patients AUC: 0.7820

[15] Mask R-CNN 103 patients Precision: 0.86
DSC 0.86

[17] Efficient Net 100 patients Accuracy: 0.93

Proposed 160 patients Accuracy: 0.9522

9. Model Explanation

In light of the promising results of our developed model, there remain concerns
regarding its reliability when viewed through the lens of a medical expert. For this purpose,
we have selected the ensemble classifier that demonstrated the highest accuracy. To interpret
this model, we employ the SHAP explainer, which offers both global and local explanations.

Figure 9 showcases the SHAP values, which indicate the feature importance according
to the model. The y-axis represents the features, while the x-axis represents the impact of
each feature. The most significant features are located at the top, with blue and red bars
denoting their contribution to the positive and negative classes, respectively. Notably, FSSI,
SQSI and TINNEL as the most influential features, exerting an equal impact on both classes.
To gain deeper insights into individual instances, Figure 10 portrays the average impact
of each feature on each instance, and the force plot provides local explanations. Feature
names are displayed on the x-axis, while the length of each bar represents the feature’s
importance in terms of the instance values. The force plot allows us to trace the cumulative
contribution of features, with positive contributions elevating the prediction and negative
contributions lowering it. Notably, in Figure 10 CSA, TINNEL and SAS3 exert a negative
influence on the prediction, push the prediction towards the negative class according to
the values of the instance. These findings offer valuable insights into the decision-making
process of the model, validating the influence of specific features on the predictions and
aligning with existing medical research.
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10. Conclusions and Future Work

In this study, we conducted an investigation into the diagnosis, prediction, and treat-
ment monitoring of Carpal Tunnel Syndrome (CTS) using Deep Learning (DL) and Machine
Learning (ML) models. Our study encompassed a cohort of 160 patients, comprising indi-
viduals with varying degrees of CTS severity as well as non-CTS patients who exhibited
similar disease symptoms. Our findings demonstrated that DL models exhibited a remark-
able level of accuracy in diagnosing CTS, with the best-performing model achieving an
accuracy of 96.9%, a precision of 98.2%, and a recall of 96.3%. This indicates the efficacy of
DL models in accurately identifying CTS cases. Furthermore, the ML models demonstrated
excellent predictive capabilities for measuring Cross-Sectional Area (CSA) changes after 1,
3, and 6 months. The top-performing ML model achieved an accuracy (ACC) of 95.22%,
an R2 score of 0.667, a Mean Absolute Error (MAE) of 0.0132, and a Median Squared Error
(MdSE) of 0.0639. These results highlight the ML models’ ability to accurately forecast CSA
alterations over time. Statistical tests conducted in our study revealed a highly significant
reduction in symptoms and CSA after 1, 3, and 6 months of post-injection treatment. This
provides strong evidence for the effectiveness of the employed treatment approach. Based
on our research outcomes, we recommend that future studies should focus on increasing
the sample size of CTS patients to enhance the generalizability of the findings. Additionally,
we suggest implementing our developed DL and ML models within the Department of
Neuroscience at Kafrelsheikh University, as they have demonstrated promising results in
CTS diagnosis, prediction, and treatment monitoring.
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Abbreviations
The following abbreviations are used in this manuscript:
CTS Carpal Tunnel Syndrome
US Ultrasound
NCS Nerve Conduction Studies
CSA Cross-Sectional Area
EDx electrodiagnostic
SVM Support Vector Machines
DT Decision Trees
XGB Extreme gradient boosting
RF Random Forest
LR Logistic Regression
XGB eXtreme Gradient Boosting
KNN k-Nearest Neighbors
NB Naive–Bayes
NN Neural Network
SGB Stochastic Gradient Boosting
MRI Magnetic resonance image
MLP Multilayer Perception
ROI region of interest
MNT median nerve localization
BMI Body mass index
BCTQ Boston Carpal Tunnel Syndrome Questionnaire
FSS functional status scale
SSS symptoms severity scale
MAE Mean Absolute Error
MdSE Median Squared Error
ACC Accuracy
R2 score (coefficient of determination)
DSC Dice Similarity Coefficient
IoU intersection over union
PROMs patient-reported outcome measure
GD Gradient descent
Adagrad Adaptive Gradient Algorithm
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