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Abstract: Background: Heart failure (HF) causes high morbidity and mortality worldwide. The
prevalence of HF with preserved ejection fraction (HFpEF) is increasing compared with HF with
reduced ejection fraction (HFrEF). Patients with HFpEF are a patient group with a high rate of
hospitalization despite medical treatment. Early diagnosis is very important in this group of patients,
and early treatment can improve their prognosis. Although electrocardiographic (ECG) findings have
been adequately studied in patients with HFrEF, there are not enough studies on these parameters
in patients with HFpEF. There are very few studies in the literature, especially on gender-specific
changes. The current research aims to compare gender-specific ECG parameters in patients with
HFpEF based on the implications of artificial intelligence (AI). Methods: A total of 118 patients
participated in the study, of which 66 (56%) were women with HFpEF and 52 (44%) were men with
HFpEF. Demographic, echocardiographic, and electrocardiographic characteristics of the patients
were analyzed to compare gender-specific ECG parameters in patients with HFpEF. The AI approach
combined with machine learning approaches (gradient boosting machine, k-nearest neighbors,
logistic regression, random forest, and support vector machines) was applied for distinguishing male
patients with HFpEF from female patients with HFpEF. Results: After determining the parameters
(demographic, echocardiographic, and electrocardiographic) to distinguish male patients with HFpEF
from female patients with HFpEF, machine learning methods were applied, and among these methods,
the random forest model achieved an average accuracy of 84.7%. The random forest algorithm results
showed that smoking, P-wave dispersion, P-wave amplitude, T-end P/(PQ*Age), Cornell product,
and P-wave duration were the most influential parameters for distinguishing male patients with
HFpEF from female patients with HFpEF. Conclusions: The proposed model serves as a valuable tool
for physicians, facilitating the diagnosis, treatment, and follow-up for distinguishing male patients
with HFpEF from female patients with HFpEF. Analyzing readily accessible electrocardiographic
parameters empowers medical professionals to make informed decisions and provide enhanced care
to a wide range of individuals.

Keywords: heart failure with preserved ejection fraction; artificial intelligence; gender-specific
electrocardiographic parameters

1. Introduction

Heart failure (HF) causes high morbidity and mortality worldwide. Especially in
developed and developing countries, the number of patients with HF is rapidly increasing
due to longer life expectancy, and the major causes of this situation are increasing chronic
ischemic heart disease and hypertension [1]. The prevalence of HF with preserved ejection
fraction (HFpEF) is increasing compared with HF with reduced ejection fraction (HFrEF)
and affects more women than men in a 2:1 ratio [2,3]. Patients with HFpEF are a patient
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group with a high rate of hospitalization despite medical treatment. Although their treat-
ment is similar to patients with HFrEF, their prognosis is poor. Early diagnosis is very
important in this group of patients, and early treatment can improve their prognosis [4].

HFpEF is a clinical syndrome; it is defined in individuals who have signs and symp-
toms of HF, evidence of structural and/or functional cardiac abnormalities and/or elevated
natriuretic peptides (NPs), and an LVEF > of 50% [5]. Left ventricular diastolic dysfunction
(LVDD) is considered a precursor to HFpEF. LVDD usually manifests as increased atrial
volume and high filling pressure accompanied by LV mass, abnormal relaxation, and
decreased LV compliance [6,7]. It is accompanied by some electrocardiographic (ECG)
changes for HFrEF. These include prolonged PR intervals, low voltages, QRS prolonga-
tions, and QT prolongations, distribution, and variability [8–11]. In addition, several ECG
features have been shown to be very helpful in identifying HFrEF in primary care [12,13].
Similarly, ECG features may help in the selection of patients requiring echocardiography for
HFpEF. However, the ECG features associated with HFpEF are less well known. A recent
meta-analysis found a higher incidence of right bundle branch block and atrial fibrillation
in HFpEF compared with HFrEF [14]. Although electrocardiographic (ECG) findings have
been adequately studied in patients with HFrEF, there are not enough studies on these
parameters for patients with HFpEF. Currently, there is a significant gap in the current
literature regarding these gender-specific ECG parameters. Moreover, there are no studies
that have gender-specifically investigated ECG parameters to distinguish male patients
with HFpEF from female patients with HFpEF using an AI-based clinical approach.

AI plays a crucial role in numerous clinical decision support systems, facilitating
the use of computational methods to make inferences that are comparable to human
reasoning processes [15]. The strategies presented in this context are founded upon medical
information that has been either explicitly encoded or automatically generated from medical
data using machine learning techniques. AI has the potential to facilitate the prioritization
of patients’ wellbeing and enable them to make independent and well-informed choices
regarding their healthcare in conjunction with medical professionals [16]. In the realm of
cardiology, AI has provided more accurate and rapid diagnostic methods in fields such
as the analysis of electrocardiography data, identification of arrhythmias, and assessment
of cardiovascular risk factors. By aiding cardiologists in processing large datasets and
identifying complex patterns, AI simplifies the early diagnosis of heart diseases and the
creation of personalized treatment plans. The incorporation of AI in cardiology allows
for improved outcomes in managing severe cardiovascular issues like coronary artery
disease, heart failure, and arrhythmias, offering the potential to safeguard patient health
and extend their lifespans. Building on the valuable information emphasized in various
medical studies, the aim of this study is to determine gender-specific ECG parameters
that distinguish male and female patients with HFpEF based on the implications of AI.
For achieving this aim, first, descriptive statistics are obtained on the dataset used in
the study. Then, evaluations are made with the traditional statistical analysis methods.
In the application part of this study, analyses are mainly performed with AI algorithms.
For the purpose of this study, classification algorithms (gradient boosting machine, k-
nearest neighbors, logistic regression, random forest, and support vector machines) are
used to distinguish patients with HFpEF by gender in the dataset. For the classification
algorithms, the most suitable parameters for each algorithm are determined by parameter
optimization. Then, attribute importance levels for the most successful classification
algorithm are investigated and comments are made about it.

2. Materials and Methods
2.1. Study Design and Data

The present study was an observational study. A total of 118 patients, 52 men and
66 women, with HFpEF who presented to the Samsun University, Samsun Training and
Research Hospital cardiology department between November 2022 and August 2023 were
included (please see Supplementary Table S1 for the whole dataset). HFpEF was defined
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according to the European Society of Cardiology guidelines (ESC) for the diagnosis and
management of acute and chronic heart failure as patients presenting with signs and
symptoms of HF (e.g., dyspnea, paroxysmal nocturnal dyspnea (PND), orthopnea, ankle
edema, or distension of the jugular veins), evidence of structural and/or functional cardiac
abnormalities, and/or elevated natriuretic peptides (NPs) and a normal or near-normal left
ventricular ejection fraction (LVEF > 50%), evidence of cardiac dysfunction by echocardiog-
raphy (e.g., abnormal left ventricular filling and elevated filling pressures) [5]. The patients
who consented to participate in this study were over 18 years of age and were diagnosed
with HFpEF.

Those who refused to participate in this study and/or had severe coronary artery
disease, moderate to severe valvular heart disease, chronic obstructive pulmonary disease,
malignant disease, atrial fibrillation (AF), left bundle branch block (LBBB), second- and
third-degree atrioventricular block (A-V), advanced renal and liver failure, drug toxicity,
electrolyte imbalance, and hyperthyroidism were excluded. This study was conducted
in accordance with the Declaration of Helsinki and approved by the Clinical Research
Ethics Committee of Samsun University (protocol codes 2022/11/10 and 09.11.2022). The
information was obtained from the patients or their first-degree relatives. The aim of the
meeting was to obtain the following information:

(i) Age, gender, height, weight, smoking, drug use, arterial hypertension, diabetes
mellitus, coronary artery disease, and history of thyrotoxicosis were asked to determine
the demographic and clinical characteristics of the patients.

(ii) Twelve-lead surface ECG recordings were obtained from all patients using a 12-lead
electrocardiography machine with a speed of 25 mm/s and a calibration of 10 mm/mV
to study P-wave variability, its distribution and amplitude, QRS duration, QT and QTc
duration, PQ distance, PR distance, T-end Q, T-end P interval, ventricular repolarization,
and depolarization ECG parameters.

(iii) In accordance with the most recent American Society of Echocardiography and Eu-
ropean Association of Cardiovascular Imaging guidelines for quantification of the ventricles
using echocardiography in adults, two-dimensional M-mode and Doppler echocardiogra-
phy was performed on all patients using the General Electric Vivid 7 echocardiography
machine to determine left ventricular ejection fraction (EF), left atrial diameter, left ventric-
ular systolic and diastolic functions, diastolic diameter, and valve pathology [17].

Definitions of ECG parameters:
P-wave dispersion; difference between the longest and shortest P-wave duration

recorded from multiple ECG leads, P-wave amplitude; peak of P-wave to the isoelectric
line of TP interval in lead D2, P-wave duration; beginning of P-wave until end of P-wave,
Cornell product; (RaVL + SV3)*ORS duration, PQ and PR interval; beginning of P-wave
until onset of Q- or R-wave, QT interval; interval between Q-wave onset and end of T-wave,
QTc interval: QT interval is often corrected for heart rate (QTc) by Bazett’s formula, T-end
Q; end of T-wave to Q-wave onset, T-end P interval; end of T-wave to P-wave onset and
QRS duration; beginning of Q-wave until end of R-wave.

Depending on the above explanations, statistical analyses and AI algorithms were
performed with 26 variables (name used in the field of AI: features) of 118 patients. There
were no missing data in the dataset in this study. Classification was performed using the
AI algorithms described in Section 2.3, and the target variable for these classifications was
gender (female patients with HFpEF and male patients with HFpEF).

2.2. Statistical Analysis

The independent samples t-test is used to determine whether there is a statistically
significant difference between the means of two independent groups. This test assumes
that the group variances are equal, and the group distributions are normal. When at least
one of these assumptions is not met, the Mann–Whitney U test can be used as an alternative.
Correlation analysis was performed to see the relationships between variables. Pearson
correlation was utilized if the distribution of the variables met the normal distribution;
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otherwise, Spearman’s rho correlation was used. Additionally, the chi-squared test was
employed to examine whether there was a dependency between categorical variables.
Where the p-value is significant, the level of significance is indicated by * or **. * and **
indicate that the control is at the 95% and 99% confidence level, respectively.

2.3. Artificial Intelligence

In this study, AI algorithms gradient boosting machine (GBM), k-nearest neighbors
(kNN), logistic regression (LR), random forest (RF), and support vector machines (SVMs)
were used. Brief descriptions of these algorithms and other methods are provided below:

Gradient boosting machines (GBMs): GBMs are a family of powerful machine learning
techniques that have shown considerable success in a wide range of practical applications.
The learning procedure consecutively fits to the new models to provide a more accurate
estimate of the response variable. The principal idea behind this algorithm is to construct
the new base learners to be maximally correlated with the negative gradient of the loss
function, associated with the whole ensemble [18]. It should be noted that the essence of a
GBM lies in its nature as an ensemble of weak learners, typically in the form of decision
trees. This ensemble approach allows for the GBM to build a strong predictive model by
combining the predictions of these individual weak learners iteratively. In essence, a GBM
aims to correct the errors made by the previous base learners in each iteration, thereby
continuously improving the overall model’s accuracy. This iterative, ensemble-based
learning is a key feature that sets GBMs apart from other machine learning techniques.

k-nearest neighbors (kNN): The kNN algorithm is a type of machine learning algorithm
used for classification and regression. It works by finding the k closest labeled examples
in the training dataset to an unlabeled example and assigning the label of the majority of
those k examples to the unlabeled example. The key concept of kNN is easy to understand
and can be used for a variety of applications [19].

Logistic regression (LR): LR is a widely used algorithm in classification problems.
It is particularly suitable for binary classification (e.g., sick / healthy). LR is useful for
understanding prediction results and which features of the model have more influence on
the prediction.

Random forest (RF): RF is applicable to both classification and regression tasks. It
belongs to the ensemble learning methods category and operates by amalgamating the
outcomes of multiple decision trees. In addition to combining the results of decision trees,
RF utilizes diverse subsets of data and their corresponding features. This leads to the
creation of a multitude of decision trees, each contributing to a distinct prediction of the
problem. Subsequently, the outcomes of these individual trees are aggregated by the RF. In
classification scenarios, the ultimate verdict is determined through a voting mechanism.
The class assignment of input samples is established by the majority vote from the decision
trees [20].

Support vector machine (SVM): An SVM is based on the principle of finding the
hyperplane between the classes to be predicted. It is an algorithm used in classification and
regression problems. It is particularly effective in high-dimensional datasets to identify
complex boundaries between data and to separate classes. It can be adapted to different
data types using different kernel functions.

k-fold cross-validation: k-fold cross-validation is a method used to evaluate the
performance of a model created by an AI algorithm. The dataset is divided into k parts,
then trained on k-1 parts and validated on 1 part. This process is repeated k times, and
each part is used for both training and validation. The results are averaged to evaluate the
overall performance of the model.

Feature importance: A value that measures how many different input features in
the dataset upon which a machine learning model is trained contribute to the model’s
predictions. These values help to understand which features have more influence on the
prediction results and are used to improve feature selection or data understanding.
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2.4. Performance Evaluation

In the fields of machine learning and statistics, accuracy, recall, precision, Cohen’s
Kappa score, and the F1 score are often-used performance metrics, particularly for assessing
the performance of classification models [21]. A classification model’s performance is
assessed using the confusion matrix metric. This matrix shows the relationship between
the true class and the predicted classes. “True Positive (TP)”, “False Positive (FP)”, “True
Negative (TN)”, and “False Negative (FN)” are the four key terms that make up the
confusion matrix. These terms indicate how accurately or inaccurately the model predicts
the class.

Accuracy: Accuracy is the classification model’s correct predictions ratio to the total
number of samples. In general, this metric is employed to evaluate the model’s general
performance. Accuracy is calculated with Equation (1):

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision: Precision, commonly referred to as positive predictive value, assesses how
accurately a model makes positive predictions. Precision is calculated with Equation (2):

Precision =
TP

TP + FP
(2)

The model’s ability to avoid false positives is evidence of a high precision.
Recall: Often referred to as sensitivity or true positive rate, recall refers to a model’s

ability to capture every positive instance in the dataset.
Recall is calculated with Equation (3):

Recall =
TP

TP + FN
(3)

A high recall demonstrates the model’s capacity to precisely identify every relevant
positive instance.

F1 Score: Precision and recall’s harmonic mean makes up the F1 score. A better balance
between recall and precision is indicated by a higher F1 score, which runs from zero to one.

F1 score is calculated as in Equation (4):

F1 Score =
2 × Precision × Recall

Precision + Recall
(4)

In summary, accuracy assesses overall correctness, precision assesses positive pre-
dictions’ accuracy, recall assesses the ability to identify every positive instance, and the
F1 score, the combination of recall and precision, provides a balanced evaluation of a
classification model’s performance. These metrics are frequently utilized to evaluate the
quality of the predictions made by a model.

Cohen’s kappa score: Cohen’s kappa (κ) score is a statistical measure that assesses
how much agreement there is between two different observers or a model’s classification
results [22]. The kappa score indicates how far the classification results are from random-
ness and measures the agreement between observers or models. Equation (5) is used to
determine the kappa score:

κ =
Po − Pe
1 − Pe

(5)

Here, Po represents the agreement of classifications performed by observers or the
model. In other words, it is the percentage of observations where observers or the model is
assigned the same class label. Pe represents the probability of two observers or the model
predicting the same class in a random classification scenario. This represents the situation
where each observer or the model assigns class labels randomly [23]. A Cohen’s kappa
score of +1 denotes perfect agreement between the two observers, while a score of −1
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denotes perfect disagreement. In other words, if a classification model’s Cohen’s kappa
score approaches +1, it means that the model’s classification predictions are very close to
the actual values and significantly distant from randomness. This situation indicates that
the model’s results are reliable and consistent.

Receiver operating characteristic: Receiver operating characteristic (ROC) analysis
is a method for evaluating the performance of binary classification models [24]. In ROC
analysis, the performance of a model can be evaluated by examining the ROC curve’s
shape and considering the area under the curve (AUC). A higher AUC indicates a better-
performing model. The ROC curve can be constructed using either the predictions of the
classification model or the resulting probability estimates for each class. The AUC created
using these methods may be different because these two methods represent different
approaches and therefore produce different results.

2.5. Artificial Intelligence Application Procedure

The steps of the application carried out with AI algorithms are provided below:

1. Preparation of the dataset: Outlier analysis was performed on a feature basis in the
dataset. Frequency distribution was examined for the target variable, a group (female
patients with HFpEF and male patients with HFpEF).

2. Splitting the dataset: For classification purposes, before running the AI algorithms,
the dataset was randomly divided into 80% training and 20% testing.

3. Running AI algorithms: The training set was used both to determine the optimum
parameters of AI algorithms and to establish the models. Optimum parameters were
obtained for each algorithm using the grid search method with k-fold cross-validation,
where k is equal to 5. Final models were established with these optimum parameters.
Then, the models were tested with the test set and performance evaluation metrics
were obtained.

In dividing the dataset, the second and third steps were repeated 50 times to reduce
the effects of randomness and to obtain more reliable results.

4. Obtaining the average classification results: In each process that was repeated 50 times,
performance metric values were obtained from every dataset for each algorithm, and
average performance metric values were obtained using these values.

5. Feature importance for the algorithm with the highest average accuracy value and
visualization of the results: Feature importance scores were determined for the al-
gorithm with the highest average classification performance. In other words, when
determining feature importance scores, the appropriate feature selection method was
used according to the algorithm with the highest average classification performance.
Feature importance scores present the relative importance levels of features effective
in distinguishing the target variable, that is, group (female or male), for patients
with HFpEF.

All analyses in this study were carried out with the Python programming language,
which is an open-source project. Various submodules of the “scikit-learn” module, the
“numpy”, “pandas”, “matplotlib”, and “statsmodels” submodules, were used to perform
specific tasks such as data analysis, visualization, model building, and evaluation operations.

3. Results

A total of 118 people participated in this study, of which 66 (56%) were female patients
with HFpEF and 52 (44%) were male patients with HFpEF. The descriptive statistics of
the variables (features) of the patients whose data were used within the scope of this
study are provided in Table 1 as minimum, maximum, median, mean, standard deviation,
and percentage.
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Table 1. Descriptive statistics.

Demographics, Echocardiographics, and
Electrocardiographics Min Max Median Mean ± SD N %

Group Female patients with HFpEF 66 55.9
Male patients with HFpEF 52 44.1

Cornell product
(mm.ms) 700 2668 1186 1266.305 ± 355.064 118 100

Age 50 79 66.47 66.940 ± 7.863 118 100
T-end Q interval (ms) 260 680 420 422.457 ± 73.806 118 100

PR duration (ms) 112 214 160 158.991 ± 19.303 118 100
QRS duration (ms) 70 116 90 92.161 ± 9.905 118 100

OT (ms) 308 428 378 378.152 ± 23.851 118 100
Otc (ms) 367 453 410 410.737 ± 15.000 118 100
Heartrate 63 105 78 80.161 ± 9.524 118 100

P-wave amplitude (mV) 0.8 3 1.5 0.1566 ± 0.0423 118 100
P-wave duration (ms) 60 140 90 93.093 ± 18.056 118 100

P-wave dispersion (ms) 10 60 35 34.745 ± 13.311 118 100
T-end Q/(PQ*Age) 0.020 0.083 0.051 0.052 ± 0.012 118 100
T-end P/(PQ*Age) 0.010 0.065 0.033 0.034 ± 0.011 118 100

BMI 21.066 43.209 31.141 31.504 ± 4.488 118 100

HT
No 19 16.1
Yes 99 83.9

Smoking No 76 64.4
Yes 42 35.6

DM
No 73 61.9
Yes 45 38.1

LVESD (cm) 2.4 4.1 3.3 3.316 ± 0.350 118 100
LVEDD (cm) 4.1 5.6 4.9 4.439 ± 0.325 118 100

LA diameter (cm) 2.9 4.7 3.95 3.963 ± 0.233 118 100
PW thickness (cm) 0.8 10 1.1 1.168 ± 0.828 118 100

LVEF% 50 70 60 60.966 ± 3.307 118 100
IVS thickness (cm) 0.9 1.5 1.1 1.100 ± 0.127 118 100

E-wave (cm/s) 40 90 65 64.991 ± 9.572 118 100
A-wave (cm/s) 70 132 100 101.491 ± 10.166 118 100

Min: minimum; Max: maximum; SD: standard deviation; Otc: Ot correct interval; Cornell product:
((RaVL + SV3)*ORS duration); BMI: body mass index; HT: hypertension; DM: diabetes mellitus; LVESD: left ven-
tricular end-systolic diameter; LVEDD: left ventricular end-diastolic diameter; LA diameter: left atrium diameter;
PW: posterior wall; LVEF%: left ventricular ejection fraction; IVS: interventricular septum; mm: millimeter; cm:
centimeter; ms: millisecond.

In Figure 1, Spearman’s rho coefficients of variables can be seen. If the relationship
between them is positive, the related cell is colored in green. Otherwise, the cell is colored in
red. The highest positive relationship is between T-end P/(PQ*Age) and T-end Q/(PQ*Age).
The highest negative relationship is between heartrate and T-end Q interval (ms). According
to these results, while T-end P/(PQ*Age) increases, T-end Q/(PQ*Age) also increases, but
while heartrate increases, T-end Q interval (ms) decreases.
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Figure 1. Correlation matrix.

Upon examining Table 2, for males and females, it was concluded that there is no
statistical difference between the mean of Cornell product, age, T-end Q interval, PR
duration, OT, Otc, heartrate, T-end Q/(PQ*Age), T-end P/(PQ*Age), BMI, LVESD, LVEDD,
LA diameter, PW thickness, LVEF%, IVS thickness, and A-wave. However, there is a
statistically significant difference between men and women at the 95% confidence level,
in terms of means of QRS duration and E-wave, and at 99% confidence level, in terms
of means of P-wave amplitude, P-wave duration, and P-wave dispersion. Although the
means of QRS duration, P-wave amplitude, P-wave duration, and P-wave dispersion for
women are lower than for men, the mean of E-wave is higher than for men.
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Table 2. Comparison of parameters (demographic, echocardiographic, and electrocardiographic)
between female and male patients with HFpEF.

Women Men

Mean ± SD Mean ± SD p

Cornell product (mm.ms) 1265.818 ± 351.614 1266.923 ± 362.834 0.721
Age 66.757 ± 7.625 67.173 ± 8.224 0.777

T-end Q interval (ms) 426.969 ± 66.354 416.730 ± 82.615 0.457
PR duration (ms) 158.060 ± 17.861 160.173 ± 21.111 0.718

QRS duration (ms) 89.833 ± 8.477 95.115 ± 10.844 0.011 *
OT (ms) 378.424 ± 21.481 377.807 ± 26.772 0.893
Otc (ms) 410.697 ± 14.591 410.788 ± 15.647 0.974
Heartrate 79.363 ± 9.189 81.173 ± 9.930 0.301

P-wave amplitude (mV) 0.1465 ± 0.0414 0.1696 ± 0.0402 0.001 **
P-wave duration (ms) 87.045 ± 16.171 100.769 ± 17.528 <0.001 **

P-wave dispersion (ms) 29.697 ± 11.150 41.153 ± 13.158 <0.001 **
T-end Q/(PQ*Age) 0.053 ± 0.011 0.051 ± 0.014 0.513
T-end P/(PQ*Age) 0.035 ± 0.009 0.033 ± 0.012 0.375

BMI 32.149 ± 4.250 30.685 ± 4.686 0.106

N (%) N (%)

HT No 6 (9.1) 13 (25)
0.020 *Yes 60 (90.9) 39 (75)

Smoking No 57 (86.4) 19 (36.5)
<0.001 **Yes 9 (13.6) 33 (63.5)

DM No 36 (54.5) 37 (71.2)
0.065Yes 30 (45.5) 15 (28.8)

Mean ± SD Mean ± SD

LVESD (cm) 3.290 ± 0.344 3.348 ± 0.357 0.427
LVEDD (cm) 4.898 ± 0.342 4.990 ± 0.297 0.109

LA diameter (cm) 3.968 ± 0.255 3.955 ± 0.204 0.580
PW thickness (cm) 1.234 ± 1.101 1.084 ± 0.117 0.305

LVEF% 61.045 ± 3.135 60.865 ± 3.542 0.720
IVS thickness (cm) 1.101 ± 0.123 1.100 ± 0.134 0.690

E-wave (cm/s) 66.560 ± 9.741 63.000 ± 9.057 0.043 *
A-wave (cm/s) 103.257 ± 11.434 99.250 ± 7.831 0.148

SD: standard deviation; *: difference is significant at the 0.05 level (two-tailed); **: difference is significant at the
0.01 level (two-tailed).

Chi-square test results (Table 3) showed that while there is no significant relationship
between men and women in terms of DM, it can be said that there is a significant rela-
tionship at the 99% confidence level for smoking (p-value < 0.001) and 95% confidence
level for HT (p-value = 0.02). While 13.6% of women smoke, 63.5% of men smoke. The
number of women with hypertension among themselves is ten times that of those without
hypertension. In men, the number of those with hypertension among themselves is three
times that of those without hypertension.

The averages of the classification results obtained as a result of the AI algorithms are
provided in Table 3. This table shows the performance evaluation metrics with 95% confi-
dence intervals (CI) for the classification algorithms. In Table 3, the RF algorithm achieves
the most successful classification based on accuracy and other performance evaluation
metrics. The other performance evaluation metrics of the RF algorithm such as precision,
recall, F1 score, and AUC are also compatible with the accuracy value. A similar evaluation
can be made for other algorithms and metrics.
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Table 3. Average performance evaluation metrics with 95% confidence intervals (CIs) for the classifi-
cation algorithms.

Algorithm GBM
(95% CI)

kNN
(95% CI)

LR
(95% CI)

RF
(95% CI)

SVM
(95% CI)

Accuracy 0.806
(0.761, 0.851)

0.486
(0.396, 0.576)

0.764
(0.712, 0.817)

0.847
(0.807, 0.887)

0.750
(0.692, 0.808)

Precision 0.874
(0.835, 0.913)

0.442
(0.343, 0.541)

0.750
(0.696, 0.804)

0.867
(0.827, 0.907)

0.731
(0.678, 0.784)

Recall 0.672
(0.606, 0.739)

0.502
(0.426, 0.578)

0.678
(0.612, 0.744)

0.792
(0.742, 0.842)

0.678
(0.611, 0.745)

F1 score 0.756
(0.702, 0.810)

0.439
(0.338, 0.541)

0.708
(0.648, 0.768)

0.826
(0.785, 0.868)

0.697
(0.634, 0.761)

Kappa score 0.596
(0.529, 0.663)

0.006
(−0.116, 0.128)

0.494
(0.414, 0.575)

0.681
(0.616, 0.746)

0.468
(0.373, 0.561)

AUC 0.827
(0.785, 0.869)

0.490
(0.405, 0.575)

0.875
(0.836, 0.914)

0.902
(0.869, 0.934)

0.808
(0.763, 0.851)

Another measure that shows the success (suitability) of the models is the kappa score.
When Table 3 is examined, it is seen that the lowest kappa value was calculated for the
kNN algorithm, and the highest kappa value was calculated for the RF algorithm. The
kNN algorithm’s kappa value is almost 0, indicating that the algorithm performs almost
the same as random guesses.

According to performance evaluation metrics, GBM was the most successful algorithm
after the RF algorithm. LR and SVM are the most successful algorithms after GBM, and their
performance evaluation metrics are very close to each other. Additionally, average AUC
values of the classification algorithms are shown in Figure 2 to provide a visual evaluation
with performance evaluation metrics. The (average) ROC curves here are plotted using the
probability estimates obtained for each class.
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RF stands out as the most effective algorithm for classifying both female and male
patients in our study. To gain deeper insight into the significance of input features in the
classification process, we employed a feature importance function specifically designed to
work seamlessly with ensemble algorithms like RF. This function plays a pivotal role in
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assessing the extent to which each input feature contributes to the model’s performance
and how it impacts prediction outcomes. The feature importance function quantifies the
relevance of each feature by assigning a value between 0 and 1. These values represent
the contribution of each feature to the model’s decision-making process. Typically, these
importance values are normalized to ensure that their sum equals 1. This normalization
facilitates a more intuitive understanding of the relative importance of each feature within
the model. In Figure 3, we present the scores obtained from our calculations, which shed
light on the features’ influence on gender classification. These scores not only highlight
which features are instrumental in the classification process but also provide valuable
insights into the hierarchical importance of these features. The RF algorithm offers two
ways to compute feature importance [25,26]: 1. Gini importance is calculated from the RF’s
structure, where each decision tree selects features based on criteria like Gini impurity or
information gain for classification tasks and variance reduction for regression. The feature
importance is measured by how much it decreases impurity during splits, with the average
importance across all trees in the forest serving as the final measure [27]. 2. Mean decrease
accuracy computes feature importance by analyzing permuted out-of-bag samples and
measuring the mean decrease in accuracy. In this study, the computing method described
first was used.
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Figure 3. Feature importance.

According to Figure 3, the most effective first six features in distinguishing the
two groups are, respectively: smoking, P-wave dispersion, P-wave amplitude, T-end
P/(PQ*Age), Cornell product, and P-wave duration. Importance scores of other factors can
be seen in Figure 1.

4. Discussion

AI enhances the quality of healthcare services by enabling more precise, rapid, and
personalized diagnosis, treatment, and patient care in the medical field. The utilization
of AI in analyzing vast medical data and predicting diseases improves early diagnosis
and subsequently facilitates more effective management of treatment processes, leading
to an enhancement in patients’ quality of life. Furthermore, AI plays a significant role in
accelerating scientific discoveries and advancing the medical field in areas such as medical
image analysis, genetic research, and drug development.

The current study investigated gender-specific ECG parameters of heart failure pa-
tients with preserved ejection fraction by using statistical analysis and AI methods. In
this study, according to statistical analysis, electrocardiographic parameters, QRS duration,
P-wave amplitude, P-wave duration, and P-wave dispersion were significantly higher in
male patients with HFpEF than in female patients with HFpEF (p < 0.05). In addition, the
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rate of smoking was higher in men, while the rate of hypertension was higher in women
(p < 0.05). However, according to AI, the most important parameters that distinguish
male patients from female patients were as follows: smoking, P-wave dispersion, P-wave
amplitude, T-end P/(PQ*Age), Cornell product, and P-wave duration. The RF model in this
study showed very successful performance for distinguishing male patients with HFpEF
from female patients with HFpEF. The average accuracy value for this algorithm was 0.847.
The performance of the RF algorithm was also found to be successful in studies similar to
this study [28]. After the RF algorithm, GBM was the method with the highest average
performance evaluation metrics. After GBM, LR and SVM were effective algorithms, and
their average performance evaluation criteria were fairly similar. On the other hand, kNN
had the worst average performance of all the algorithms.

Although the performance of the kNN algorithm was reasonable, it had worse perfor-
mance than the other algorithms used in this study. In general, kNN can sometimes return
unsuccessful results due to the difficulty of neighborhood calculation in large datasets
and high-dimensional data [29]. However, the dataset used in this study did not have
these features. Therefore, it is thought that the low performance of kNN compared to
other algorithms is due to the attributes in the dataset used in this study. Although this
situation cannot be generalized, it can be said that RF and GBM algorithms were performed
successfully on datasets similar to the dataset in this study.

In this study, feature importance scores were determined using AI algorithms. On
the other hand, univariate statistical tests were applied to the variables considered in this
study, and variables that showed statistical differences based on gender were identified.
The variables that showed differences among them and the variables obtained using the
feature importance function were largely similar. While univariate statistical methods
measure significance by examining variables one by one, AI evaluates all variables together.
Therefore, a variable or variables that may seem insignificant in univariate statistical
analysis can turn out to be highly important when evaluated using AI. In conclusion, AI is
preferred over statistical methods in some cases due to its advantages such as modeling
complex relationships, working with large datasets, automatic feature engineering, and
better generalization capabilities. However, the choice of which method to use may vary
depending on the nature of the problem and the structure of the dataset.

The P-wave on the ECG represents the electrical depolarization of the atrium. In
a healthy person, the P-wave is an ECG representation of electrical activity originating
from the sinoatrial node (SA node), which is the depolarization of both the left and right
atrium. Anatomical changes such as enlargement and fibrosis in the atrium can cause
changes in the P-wave [30]. A previous study found a sensitivity and specificity of 98% and
64% for LVDD in patients with a P-wave dispersion >45 ms and who ruled out coronary
artery disease (CAD) with a negative exercise test or coronary angiography (CAG) [31].
Another study found that P-wave dispersion and baseline troponin-I levels together were
better than either parameter alone in predicting AF recurrence in patients with paroxysmal
atrial fibrillation [32]. In another study, P-wave dispersion and duration were measured
in 280 patients who underwent echocardiography for clinical indications (e.g., abnormal
physical examination, hypertension, or suspected CAD or HF). It was determined that
individuals with LVDD had higher P-wave dispersion and duration values than those
without LVDD [33]. In another study involving a similar group of patients, P-wave duration
>110 ms was found to be more sensitive (sensitivity 86%, specificity 86%) and P-wave
duration >120 ms more specific (sensitivity 34% and specificity 100%) [34]. In a study of P-
wave amplitude, in 204 LVDD patients without CAD or major cardiac pathology, there was
67% sensitivity and 60% specificity in detecting disease when the P-wave amplitude was
above 0.102 mV [35]. In our study, according to descriptive statistics, P-wave dispersion,
amplitude, and duration were significantly higher in male patients with HFpEF than in
female patients with HFpEF. Similarly, according to AI, P-wave dispersion, amplitude, and
duration were the most important electrocardiographic parameters that distinguish male
patients with HFpEF from female patients with HFpEF.



Diagnostics 2023, 13, 3221 13 of 15

On the ECG, the QRS complex represents electrical stimulation as it propagates
through the ventricles and expresses ventricular depolarization [36]. Previous studies
have found adverse cardiac outcomes in patients with reduced ejection fraction (HFrEF)
heart failure associated with QRS duration [37,38]. In a study involving patients with
HFpEF, QRS duration over 120 ms was found to be an important predictor of heart failure
and hospitalization, but not associated with mortality [39]. However, in another study,
prolonged QRS duration was found to be a predictor of poor prognosis in patients with
HFpEF, especially QRS duration over 100 ms [40]. However, it remains unclear whether
the duration of QRS has prognostic significance in patients with HFPEF. Although there
are many studies on the duration of QRS in patients with HFrEF, there are few studies
on patients with HFpEF. In addition, study groups often included patients with RBBB
and LBBB. Patients with LBBB and HFpEF were not included in our study. According
to the statistical analyses in our study, the duration of QRS was significantly higher in
male patients with HFpEF than in female patients HFpEF. Similarly, according to AI, QRS
duration was one of the important electrocardiographic parameters that distinguish male
patients from female patients.

Smoking is one of the most important risk factors for cardiovascular diseases and
lung cancer. Millions of people die every year due to smoking-related heart diseases and
lung cancer. Although the relationship between cigarette smoking and the development of
HFpEF is not clearly known, one study found that smoking is an independent risk factor
for the development of heart failure with preserved ejection fraction [41]. In addition,
other studies have found that smoking is an important predictor of death in patients
with HFpEF [42,43]. In our study, according to the statistical analyses; smoking was
significantly higher in male patients with HFpEF than in female patients with HFpEF.
Similarly, according to AI, smoking was the most important parameter that distinguished
male patients with HFpEF from female patients with HFpEF.

5. Limitations

This study has some limitations. First, the number of patients in this was study limited.
Second, our data source included patients from only one geographic region of Turkey,
which limits generalizability and requires validation in other populations. Third, we only
compared gender-specific ECG parameters of male and female patients with HFpEF. We
did not examine the healthy control group. Comparison between patients with HFpEF and
the healthy control group could have provided greater insight.

6. Conclusions

The proposed model serves as a valuable tool for physicians, facilitating diagnosis, treat-
ment, and follow-up for distinguishing male patients with HFpEF from female patients with
HFpEF. Analyzing readily accessible electrocardiographic parameters empowers medical
professionals to make informed decisions and provide enhanced care to a wide range of
individuals. In this study, we found that RF, one of the AI algorithms, helped identify electro-
cardiographic parameters for distinguishing male patients with HFpEF from female patients
with HFpEF. P-wave duration, P-wave dispersion, QRS duration, and P-wave amplitude
were the most effective ECG parameters. The ECG test, a widely available and cost-effective
diagnostic tool, can be used to assess these parameters for distinguishing male patients with
HFpEF from female patients with HFpEF. Moreover, we suggest employing AI in cardiology
research to uncover more accurate risk factors for better risk assessment.
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35. Hayıroğlu, M.İ.; Tufan, Ç.; Vedat, Ç.; Süha, A.; Şahhan, K.; Nurgül, K.; Mehmet, U.; Lütfullah, O.A. A simple formula to predict
echocardiographic diastolic dysfunction—Electrocardiographic diastolic index. Herz 2021, 46, 159–165. [CrossRef] [PubMed]

36. Hampton, J.; Hampton, J. The ECG Made Easy, 9th ed.; Elsevier Health Sciences: Beijing, China, 2019; pp. 85–100.
37. Mentz, R.J.; Greiner, M.A.; DeVore, A.D.; Dunlay, S.M.; Choudhary, G.; Ahmad, T.; Khazanie, P.; Randolph, T.C.; Griswold, M.E.;

Eapen, Z.J.; et al. Ventricular conduction and long-term heart failure outcomes and mortality in African Americans: Insights from
the Jackson heart study. Circ. Heart Fail. 2015, 8, 243–251. [CrossRef] [PubMed]

38. Silvet, H.; Amin, J.; Padmanabhan, S.; Pai, R.G. Prognostic implications of increased QRS duration in patients with moderate and
severe left ventricular systolic dysfunction. Am. J. Cardiol. 2001, 88, 182–185. [CrossRef] [PubMed]

39. Reinier, K.; Narayanan, K.; Uy-Evanado, A.; Teodorescu, C.; Chugh, H.; Mack, W.J.; Gunson, K.; Jui, J.; Chugh, S.S. Electrocar-
diographic markers and left ventricular ejection fraction have cumulative effects on Risk of Sudden Cardiac Death. JACC Clin.
Electrophysiol. 2015, 1, 542–550. [CrossRef]

40. Lund, L.H.; Jurga, J.; Edner, M.; Benson, L.; Dahlström, U.; Linde, C.; Alehagen, U. Prevalence, correlates, and prognostic
significance of QRS prolongation in heart failure with reduced and preserved ejection fraction. Eur. Heart J. 2013, 34, 529–539.
[CrossRef] [PubMed]

41. Ho, J.E.; Lyass, A.; Lee, D.S.; Vasan, R.S.; Kannel, W.B.; Larson, M.G.; Levy, D. Predictors of new-onset heart failure: Differences in
preserved versus reduced ejection fraction. Circ. Heart Fail. 2013, 6, 279–286. [CrossRef]

42. Yap, J.; Sim, D.; Lim, C.P.; Chia, S.Y.; Go, Y.Y.; Jaufeerally, F.R.; Sim, L.L.; Liew, R.; Ching, C.K. Predictors of two-year mortality in
Asian patients with heart failure and preserved ejection fraction. Int. J. Cardiol. 2015, 183, 33–38. [CrossRef]

43. Pocock, S.J.; Ariti, C.A.; McMurray, J.J.; Maggioni, A.; Køber, L.; Squire, I.B.; Swedberg, K.; Dobson, J.; Poppe, K.K.; Whalley, G.A.;
et al. Predicting survival in heart failure: A risk score based on 39 372 patients from 30 studies. Eur. Heart J. 2013, 34, 1404–1413.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.21037/atm.2016.03.37
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1162/coli.07-034-R2
https://doi.org/10.1016/j.compeleceng.2018.04.014
https://doi.org/10.1161/CIRCULATIONAHA.115.001593
https://doi.org/10.1016/j.eswa.2021.115293
https://doi.org/10.1007/s00399-015-0385-3
https://doi.org/10.1016/j.ehj.2015.01.002
https://doi.org/10.1016/j.repc.2020.10.019
https://doi.org/10.1097/MAJ.0b013e318265d8f7
https://doi.org/10.1007/s12574-019-00458-5
https://doi.org/10.1007/s00059-020-04972-6
https://www.ncbi.nlm.nih.gov/pubmed/32776316
https://doi.org/10.1161/CIRCHEARTFAILURE.114.001729
https://www.ncbi.nlm.nih.gov/pubmed/25550439
https://doi.org/10.1016/S0002-9149(01)01619-8
https://www.ncbi.nlm.nih.gov/pubmed/11448421
https://doi.org/10.1016/j.jacep.2015.07.010
https://doi.org/10.1093/eurheartj/ehs305
https://www.ncbi.nlm.nih.gov/pubmed/23041499
https://doi.org/10.1161/CIRCHEARTFAILURE.112.972828
https://doi.org/10.1016/j.ijcard.2015.01.063
https://doi.org/10.1093/eurheartj/ehs337

	Introduction 
	Materials and Methods 
	Study Design and Data 
	Statistical Analysis 
	Artificial Intelligence 
	Performance Evaluation 
	Artificial Intelligence Application Procedure 

	Results 
	Discussion 
	Limitations 
	Conclusions 
	References

