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Abstract: This study aimed to develop a screening model for rotator cuff tear detection in all three
planes of routine shoulder MRI using a deep neural network. A total of 794 shoulder MRI scans
(374 men and 420 women; aged 59 ± 11 years) were utilized. Three musculoskeletal radiologists
labeled the rotator cuff tear. The YOLO v8 rotator cuff tear detection model was then trained; training
was performed with all imaging planes simultaneously and with axial, coronal, and sagittal images
separately. The performances of the models were evaluated and compared using receiver operating
curves and the area under the curve (AUC). The AUC was the highest when using all imaging planes
(0.94; p < 0.05). Among a single imaging plane, the axial plane showed the best performance (AUC:
0.71), followed by the sagittal (AUC: 0.70) and coronal (AUC: 0.68) imaging planes. The sensitivity
and accuracy were also the highest in the model with all-plane training (0.98 and 0.96, respectively).
Thus, deep-learning-based automatic rotator cuff tear detection can be useful for detecting torn areas
in various regions of the rotator cuff in all three imaging planes.

Keywords: rotator cuff tear; magnetic resonance imaging; deep learning

1. Introduction

The rotator cuff stabilizes the glenohumeral joint during movement by compressing
the humeral head against the glenoid [1]. The rotator cuff comprises the supraspinatus,
infraspinatus, teres minor, and subscapularis muscles. Rotator cuff tears are the most likely
source of shoulder pain in adults [2,3]. The incidence of rotator cuff tears is increasing
with the improving life expectancy and it may affect up to 20–40% of people according to
the report [4]. Although the exact pathogenesis remains controversial, a combination of
intrinsic and extrinsic factors is likely responsible for most rotator cuff tears. Arthroscopic
rotator cuff repair has become the standard care for rotator cuff tears [5,6]. At times, dis-
tinguishing a rotator cuff tear from other conditions, such as adhesive capsulitis, solely
through physical examinations can be challenging. Therefore, imaging modalities play
crucial roles in diagnosing rotator cuff tears. Both magnetic resonance imaging (MRI) and
ultrasonography (US) are the best noninvasive modalities for identifying and evaluating
rotator cuff lesions [7,8]. MRI allows for the evaluation of entire cuff lesions with a sufficient
field of view, while US provides a limited window for rotator cuff tendons and is largely
dependent on the operator’s skill and experience. As rotator cuff tendons are curved struc-
tures surrounding the humeral head, a single imaging plane has limitations in evaluating
the entire cuff lesions. Some lesions may be well visualized in the coronal plane and some
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may be visualized in the sagittal or axial plane. Due to the anatomical and pathological
complexities, even experienced musculoskeletal radiologists require attention and time to
interpret shoulder MRIs. In addition to increasing incidence, advancements in scanning
techniques have reduced scan times, leading to an increased number of examinations
within a limited timeframe, and resulting in a considerable increase in the number of MRIs
that need to be read. Despite the increase in the number of shoulder MRI scans, there
is an insufficient number of experienced musculoskeletal radiologists, both in terms of
spatial distribution and availability over time, from a realistic perspective. On a positive
note, the growing number of shoulder MRI examinations can provide a wealth of data for
developing automated deep learning models for MRI interpretation.

With the advent of deep learning techniques, numerous models have been applied to
screen and assist in labor-intensive radiological tasks in musculoskeletal imaging, such as
bone age assessment in the hand or elbow, fracture detection in axial or peripheral skeletons,
arthritis grading in knee or sacroiliac joints, muscle quality quantification, muscle and
bone segmentation in various sites, and the clinical prediction of outcomes [9–13]. Most of
these tasks are time-consuming processes and some of them may even be impossible for a
human radiologist to conduct. In shoulder MRI, the diagnosis of rotator cuff tear and the
quantification of rotator cuff muscle degeneration are common indications for applying
deep learning techniques as well as imaging time acceleration [14–20]. Shoulder MRI
typically consists of over a hundred images from various sequences and imaging planes,
which takes considerable time for interpretation. One of the primary roles of shoulder
MRI is to screen for rotator cuff tears, and several previous studies have utilized deep
learning techniques for rotator cuff tear detection in shoulder MRI [21–25]. Despite the
good performances of reported studies, they have limitations in terms of the input data
and labeling methods that can be applied in clinical practice. They used only coronal
images or nonfat-suppressed images or classified them based on operational records, and
did not consider subscapularis and infraspinatus tears. Because a rotator cuff tear can be
obscured in a single imaging plane according to its location and size, evaluations in all
planes are required.

This study aimed to develop and validate a screening model for detecting a rotator
cuff tear in all three planes of routine shoulder MRI using a deep neural network (DNN).

2. Materials and Methods

This study was approved by the Institutional Review Board of Korea University Anam
Hospital. Shoulder MRI scans were conducted between January 2010 and September 2019.
All shoulder MRIs were performed using 3-Tesla machines, including Magnetom TrioTrim,
Skyra, and Prisma (Siemens, Erlangen, Germany), as well as Achieva (Philips, Best, The
Netherlands). The shoulder MRIs were conducted with a dedicated shoulder coil, with
patients in the supine position and their shoulder joints neutrally positioned, with palms
facing upward. These scans included at least one fat-suppressed axial, coronal, and sagittal
imaging plane, with the imaging planes set to be orthogonal to the glenohumeral joint.
The exclusion criteria comprised individuals under 20 years of age, contrast-enhanced
examinations, arthrograpic examinations, postoperative images, and poor image quality
due to factors such as motion artifacts and improper shoulder positioning. To ensure the
highest standards of image quality, two board-certified musculoskeletal radiologists, each
with more than 3 years of experience, assessed the appropriateness of each image. This as-
sessment was based on both the radiologic reports and, on occasion, the images themselves.
All images were stored in the Digital Imaging and Communications in Medicine (DICOM)
format, which is a standard format for medical images, and they underwent a thorough
anonymization process to protect patient privacy.

2.1. Image Labeling

Three board-certified musculoskeletal radiologists categorized the images as either
“tear” or “no tear”, with evident full or partial fiber disruption of the tendon categorized
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as a “tear” and a normal tendon fiber or simple signal change of the tendon without
fiber disruption regarded as “no tear”. All rotator cuff tears located in the supraspinatus,
infraspinatus, teres minor, and subscapularis were meticulously examined in all axial,
coronal, and sagittal planes of the shoulder MRI scans. Torn tendon spaces were segmented
by trained researchers under the supervision of radiologists using AIX 2.0.2 (JLK Inc., Seoul,
Republic of Korea). The flowchart of the methodology is demonstrated in Figure 1.
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Figure 1. Flowchart of the study (RCT: rotator cuff tear).

The segmentation process involved the creation of freeform lines outlining all rotator
cuff tears, encompassing the supraspinatus, infraspinatus, and subscapularis, within all
three imaging planes of fat-suppressed T2-weighted or proton density-weighted images
(Figure 2). The cross-link function provided by the software assisted in identifying the
corresponding point in the coronal image, which corresponds to the sagittal and axial
images. In cases of multiple lesions, each rotator cuff tear was segmented separately. Sub-
sequent to the segmentation procedure, rectangular patches were automatically generated,
encompassing irregularly shaped torn segments. These patches were then utilized for the
implementation of the model.
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performed by drawing freeform lines (red) outlining all rotator cuff tears, including the supraspinatus,
infraspinatus, and subscapularis, within all three imaging planes. Multiple areas of rotator cuff tears
were segmented separately.
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2.2. Model Implementation

The dataset was randomly divided into 70% for training, 10% for tuning, and 20% for
the final evaluation. The algorithm was designed to detect and predict the rotator cuff tear.
We used the original architecture of you only look once (YOLO) v8 [26,27] with a higher
frequency of occlusion and small spatial sizes to improve the detection performance in
shoulder MRI. This network was deeply fine-tuned and trained with regions of interest
(ROIs) of the shoulder lesions and normal. After training, we examined the location and
classification of lesions in the test sets. The primary purpose of YOLO v8 [26,27] involved
partitioning each image using an S × S grid. The preceding iterations of YOLO v8, such as a
novel neural network structure, incorporated both the Feature Pyramid Network (FPN) and
Path Aggregation Network (PAN), along with an innovative annotation tool streamlining
the labeling procedure. This annotation tool has multiple beneficial functionalities, includ-
ing automated labeling, labeling shortcuts, and adaptable hotkeys. The amalgamation
of these attributes simplified the process of annotating images for model training. The
detection outcome should achieve a score of 0.5 or higher to emphasize the significance
of both classification and detection [27]. All the datasets were resized to 512 × 512 pixels
for training and inference. To enhance the performance of the model, the training datasets
were preprocessed via histogram matching to align the histogram distributions across
all images. In addition, all images underwent intensity normalization, which involved
subtracting the mean and dividing it by the standard deviation. Resizing was achieved
using third-order spline interpolation with linear interpolation. Furthermore, various
image augmentation techniques were employed, including adjustments to the brightness,
contrast, Gaussian noise, blur, inversion, and sharpness, and geometric modifications such
as shifting, zooming, and rotation. These augmentations were employed to mitigate biases
specific to scanners and bolster the resilience of neural networks against additional sources
of variability unrelated to radiological categories. The tuning loss plateaued after an epoch,
and the model with the lowest tuning loss was selected using the ADAM optimizer [28].
The structure of the model is illustrated in Figure 3.
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Figure 3. Network architecture of prediction model for rotator cuff tear.

These datasets were loaded onto a Graphics Processing Unit (GPU) devbox server
with Ubuntu 20.04, CUDA 11.2, and cuDNN 11.1 (NVIDIA Corporation, Santa Clara, CA,
USA), which is part of the NVIDIA deep learning software development kit (version 11.1).
The GPU server contained four 48 GB A6000. We used an initial learning rate of 0.001 that
decayed by a factor of 10 each time.

2.3. Statistical Analysis

We calculated the area under the curve (AUC) for the receiver operating characteristic
(ROC) curve and accuracy using the pROC (version 1.10) package in R (version 1.42; R
Foundation for Statistical Computing, Vienna, Austria). DeLong tests were performed
to compare the AUC values of the eight classifier models using the pROC package in R
version 1.42. Statistical significance was set at a two-sided p < 0.05.
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3. Results
3.1. Subject Demographics

A total of 794 shoulder MRI scans were included (374 men and 420 women; aged
59 ± 11 years). Out of these, 100 subjects had no evidence of rotator cuff tear, while the
remaining 694 had a rotator cuff tear. We extracted a total of 8756 image patches from
patients with a confirmed rotator cuff tear and 2052 patches from those with no rotator cuff
tears. The data distribution is presented in Table 1.

Table 1. The number of the study participants and image patches.

Subjects Training Tuning Testing

No RCT
(n = 100)

Number of Patches 1511 150 391

Plane
Axial 566 51 152

Coronal 362 37 86
Sagittal 583 62 153

RCT
(n = 694)

Number of Patches 6427 795 1534

Plane
Axial 753 237 435

Coronal 2415 289 547
Sagittal 2233 269 552

RCT: rotator cuff tear.

3.2. Performance of the Model

We first evaluated the performance of the model using the intersection of union (IOU)
and confidence score (classification value of lesions) to evaluate the accuracy between the
predicted bounding box and ground truth. If the IOU was over 0.5, the predicted lesions in
test dataset were defined as correct. In addition, we used non-maximum suppression (NMS)
to remove duplicate boxes for the inference of tears. To evaluate the detection performance
based on YOLO v8, the cutoff threshold (0.2) was determined using the sensitivity and
average false positives in the first algorithm.

The highest AUC was achieved when all imaging planes were used (0.94), and this
difference was statistically significant when compared to each individual imaging plane
(p = 0.0002, 0.00006, and 0.00002, respectively). Sensitivity, precision, and accuracy were
also the highest in the model with all-plane training. As a single imaging plane, the axial
plane showed the highest AUC (0.71), followed by the sagittal (0.70) and axial (0.68) planes.
The highest accuracy was achieved when using all imaging planes (96%). Regarding
accuracy with a single imaging plane, the sagittal plane showed the highest accuracy (70%),
outperforming the axial and coronal planes (58% and 55%, respectively). The performance
of the model is summarized in Table 2, and the ROC curves for the model using all imaging
planes and each individual imaging plane are demonstrated in Figure 4.

Table 2. The performance of the rotator cuff tear detection model for shoulder MRI.

AUC Sensitivity Specificity Precision Accuracy F1 Score

ALL 0.94 98% 91% 98% 96% 97%
Axial 0.71 51% 100% 100% 58% 68%

Sagittal 0.70 72% 63% 92% 70% 81%
Coronal 0.68 48% 95% 98% 55% 64%
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Figure 4. ROC curves for the model using all imaging planes (red) and using only axial (blue), sagittal
(green), and coronal (black) images.

4. Discussion

In this study, we developed a screening algorithm based on YOLO v8 [26,27] to
predict rotator cuff tear in shoulder MRI using high-quality datasets confirmed by expert
radiologists. We used whole MRI images as the input data and used patch images drawn
by musculoskeletal radiologists to train and fine-tune our algorithms. The advantage of
this network is that it can simultaneously predict rotator cuff tear at various locations. It is
important to determine whether the detection ability of the algorithm is similar to that of
the expert radiologists in a computer-aided detection and diagnosis system. To the best
of our knowledge, this is the first study to screen rotator cuff tear at all locations in all
imaging planes.

The use of AI, especially deep learning techniques, has been introduced in various
fields of musculoskeletal imaging, including radiography, computed tomography (CT),
MRI, and US. The integration of deep learning techniques into radiography has yielded
promising outcomes. Studies have shown its capability for swift and precise bone age
assessment in hand or elbow radiographs, fracture detection across diverse anatomical
regions, and the grading of osteoarthritis in knee radiographs [9–11,29]. In shoulder
imaging, Kim et al. suggested using the deep learning model for ruling out rotator cuff
tear in a shoulder radiograph, which redefined the role of a conventional radiograph [30].
Lee et al. reported a deep-learning-based model for analyzing a rotator cuff tear using
ultrasound imaging [31]. Studies on quantifying rotator cuff muscle quality using deep
learning has primarily relied on CTs and MRIs and have shown promising results. [16,32].
These tasks are recognized as labor-intensive, time-consuming, and, in some cases, even
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impossible for radiologists to perform. In the context of shoulder MRI, it is understandable
that the evaluation of rotator cuff tears presents another promising application for deep
learning, especially considering its increasing number of examinations and the lack of
experts [21–25].

Shoulder MRI is difficult to interpret even by clinicians because of the anatomic com-
plexity of the shoulder joint with small curved tendons and ligament structures. All three
planes should be examined carefully because a partial volume averaging effect can obscure
the lesion when referring to only a single imaging plane [33,34]. Although several stud-
ies have applied deep learning techniques to interpret shoulder MRI to diagnose rotator
cuff tears, there have been limitations owing to the quality of the input data regarding
the imaging sequences, imaging planes, and reference standards [21–25]. Kim et al. [21]
and Sezer et al. [22] proposed a model for classifying rotator cuff tears from MRI, but
their models were trained using only coronal images. Shim et al. [23] reported a rotator
cuff tear classification model using a 3D convolutional neural network using three plane
images. However, the labeling was based on the arthroscopic finding and used the De-
Orio and Cofield classification system [35], which usually evaluates supraspinatus tears.
Yao et al. [24] proposed a deep learning model for detecting only supraspinatus tears
on T2-weighted coronal images. The far anterior portion of the supraspinatus or the far
posterior part of the infraspinatus is not orthogonally perpendicular to the coronal plane,
resulting in an unclear delineation of rotator cuff tears in these locations in the coronal
images. This phenomenon applies to other imaging planes and to other rotator cuff areas as
well. Many previous studies focused only on the supraspinatus tendon or did not mention
subscapularis tears, which might have been overlooked and sometimes described as “hid-
den lesions” [36]. Although the supraspinatus is the most common location of rotator cuff
tears, the subscapularis tendon, which is best seen in the sagittal and axial planes, should
be included in screening. Our model detects rotator cuff tears in all imaging planes and
assists in the diagnosis of rotator cuff tears within the numerous images found in shoulder
MRI. This capability is potentially valuable for both diagnosis and treatment planning.

In our model implementation, we utilized the YOLOv8 model. In the preliminary eval-
uation, we compared the DenseNet classification model with the YOLOv8 model. However,
the performance of the DenseNet model (AUC: 0.93; accuracy: 0.90) was not superior to the
YOLOv8 model in the validation set. Despite several limitations, such as a lower accuracy
in detecting small targets and substantial computational power requirements for feature
extraction, YOLO is a powerful object detection algorithm that can be applied in various
fields, notably in medical applications encompassing radiology, oncology, and surgery [37].
By rapidly identifying and localizing lesions or anatomical structures, YOLO has signif-
icantly improved patient outcomes while reducing diagnosis and treatment times and
enhancing the efficiency and accuracy of medical diagnoses and procedures [37]. Recently,
a completely new repository, which includes YOLOv8, has been introduced for the YOLO
model. This repository serves as an integrated framework for training object detection,
instance segmentation, and image classification models. YOLOv8 is a recent addition to the
YOLO series and stands out as an anchor-free model. Unlike previous versions that rely
on anchor box offsets, YOLOv8 directly predicts the centers of objects, resulting in faster
NMS speeds. The model provides outputs, including box coordinates, confidence scores,
and class labels (lesions). Despite the known drawbacks of the YOLO model, the YOLOv8
model has been used in various medical image applications in the field of radiology. In
studies involving radiography and MRI, these models have demonstrated high accuracy in
detecting conditions such as osteochondritis dissecans in elbow radiographs, identifying
foreign objects in chest radiographs, and detecting tumors in brain MRI scans [38–40].

In this study, the model that was trained with all imaging planes exhibited the best
performance (AUC: 0.94), while the model that was trained with a single imaging plane
demonstrated a relatively lower performance (AUC: 0.71–0.68). Sensitivity, precision, and
accuracy were also the highest in the model with all-plane training. Although the variation
in the number of training images could be a contributing factor, the distinct shapes of tears
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in different imaging planes might contribute to enhancing the model’s rotator cuff tear
detection performance. Furthermore, despite the small difference, the axial plane displayed
the highest performance among the single imaging planes. This finding is intriguing, as
the coronal or sagittal plane is generally preferred for rotator cuff tear detection, given that
supraspinatus tears are the most common and well visualized in the coronal or sagittal
planes [41]. To interpret the results differently, it might be possible that axial images contain
more information about rotator cuff tears than conventionally believed. Human readers
tend to focus on specific imaging planes when the rotator cuff tear is evident; however, the
deep learning model independently screens all images and assesses the presence of tears.
This functionality will assist radiologists in the labor-intensive and time-consuming process
of MRI interpretation. In addition, if it is possible to find AI-driven imaging biomarkers for
rotator cuff tears in axial planes, it might be an additional value for deep learning research.

Our preliminary study had several limitations. Firstly, we only conducted an internal
validation test. Since our dataset comprised routine MRI protocols from various machines
and vendors, it exhibited a significant degree of heterogeneity. Nonetheless, external vali-
dation using shoulder MRIs from other machines or institutions with concrete reference
standards by multiple readers is necessary to validate our results. Additionally, a reader
study comparing the model with human experts might also be required. Secondly, while
our methods demonstrated good performance in terms of the AUC (0.94), achieving an
enhanced specificity score is crucial for clinical applications. These challenges can poten-
tially be addressed through the utilization of larger datasets, diverse augmentations, and
algorithm enhancements. Thirdly, we did not specify the anatomical location of the rotator
cuff tear, such as whether it affected the supraspinatus, infraspinatus, or subscapularis.
Our model was primarily designed to screen for rotator cuff tears in numerous shoulder
MRI images, and as such, it did not include the nomination of anatomical locations in its
labeling. However, for practical clinical use by general physicians and orthopedic surgeons,
specifying the location in addition to detecting the lesion is essential. With the additional
detailed labeling or application of an automated anatomic labeling algorithm [42], the next
version of the model can provide information about the location and size of the rotator cuff
tear. Finally, our model combined both full-thickness and partial-thickness tears under the
rotator cuff tear category. Subclassifying tears into full-thickness and partial-thickness cate-
gories may be necessary, as clinical decision making can vary based on the tear thickness.
To address these issues, further development involving a larger dataset and more detailed
labeling that includes the class of tear thickness is warranted. Since different grading
systems are applied to supraspinatus and subscapularis tears, it might be necessary to take
a step-wise approach: initially screening for rotator cuff tears using our preliminary model
and subsequently classifying the tear details including the location and thickness using
secondary models.

5. Conclusions

Our deep-learning-based automatic rotator cuff tear screening model effectively aided
in the detection of rotator cuff tears across all three image planes. With the increasing
number of shoulder MRI scans and a growing demand for lesion detection support, a deep
learning model can effectively assist in detecting rotator cuff tears.
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