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Abstract: Contrast-enhanced ultrasound (CEUS) is widely used in the characterization of liver tumors;
however, the evaluation of perfusion patterns using CEUS has a subjective character. This study aims
to evaluate the accuracy of an automated method based on CEUS for classifying liver lesions and
to compare its performance with that of two experienced clinicians. The system used for automatic
classification is based on artificial intelligence (AI) algorithms. For an interpretation close to the
clinical setting, both clinicians knew which patients were at high risk for hepatocellular carcinoma
(HCC), but only one was aware of all the clinical data. In total, 49 patients with 59 liver tumors were
included. For the benign and malignant classification, the AI model outperformed both clinicians in
terms of specificity (100% vs. 93.33%); still, the sensitivity was lower (74% vs. 93.18% vs. 90.91%).
In the second stage of multiclass diagnosis, the automatic model achieved a diagnostic accuracy of
69.93% for HCC and 89.15% for liver metastases. Readers demonstrated greater diagnostic accuracy
for HCC (83.05% and 79.66%) and liver metastases (94.92% and 96.61%) compared to the AI system;
however, both were experienced sonographers. The AI model could potentially assist and guide
less-experienced clinicians to discriminate malignant from benign liver tumors with high accuracy
and specificity.

Keywords: artificial intelligence; contrast-enhanced ultrasound; liver tumors

1. Introduction

In a clinic with a hepatobiliary profile, focal liver lesions (FLLs) are a frequent reason
for evaluation [1]. Benign liver tumors are often incidental findings and have favorable
evolution. The most frequently detected benign liver tumors are hepatic hemangioma,
focal nodular hyperplasia and hepatocellular adenoma [2].

Primary liver cancer is the sixth most frequently diagnosed malignancy and the third
leading cause of cancer death globally. In 2020, liver cancer was responsible for 906,000
new cases and 830,000 deaths [3].

A percentage of 5.4% of patients with extrahepatic malignancies have liver metastases
at the time of diagnosis, which significantly decreases their survival [4]. Therefore, a rapid
and early diagnosis of the nature of a liver tumor is required [5].
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B-mode ultrasound is usually the first imaging investigation used to detect liver lesions
and completes the information gathered through anamnesis and physical examination.
However, the performance of greyscale ultrasound for discrimination between benign
and malignant lesions is limited [6–8]. Contrast-enhanced ultrasound (CEUS) has better
diagnostic accuracy compared to standard ultrasound (US) and performs similarly to
computed tomography (CT) and magnetic resonance imaging (MRI) to rule in or rule out
malignancy and also to establish the tumor type [9].

The Guidelines and Good Clinical Practice Recommendations for CEUS in the Liver,
updated in 2020, suggest the use of CEUS as a first-line method to evaluate focal liver lesions
discovered incidentally by standard ultrasound, in the absence of liver cirrhosis and in
oncology patients or patients with suspected malignancy [10]. If the CEUS aspect indicates
a benign tumor, further exploration is no longer necessary [10], which avoids radiation
exposure and decreases the psychological burden of patients undergoing unnecessary
additional investigations [10–12].

Nevertheless, it is worth noting that the interpretation of CEUS enhancement patterns
by the examiner is subjective [13,14]. Quantitative CEUS assessment using time–intensity
curves (TICs) may overcome this limitation [15].

In hepatology, ultrasound-based artificial intelligence has been applied to assess dif-
fuse liver diseases and focal liver lesions [16]. Several AI methods based on CEUS have been
proposed to differentiate between benign and malignant liver lesions [17–21]. Guo et al. [17]
developed a computer-aided diagnosis (CAD) system based on three representative images
from the arterial phase, portal venous phase and late phase of CEUS to classify liver lesions
as benign or malignant. Deep canonical correlation analysis (DCCA) was applied on three
pairs of features extracted from CEUS images, and the resulting features were provided to
a multiple kernel learning (MKL) classifier. The study group comprised 93 liver tumors, of
which 47 were malignant and 46 were benign. The CAD system reached an accuracy of
90.41%, a sensitivity of 93.56% and a specificity of 86.89% [17]. Turco et al. [18] developed a
machine-learning (ML) approach to determine the benign and malignant nature of liver
lesions in patients at risk for HCC. For this purpose, authors used short CEUS videos of
60 s that consisted of the arterial phase and partially included the portal venous phase.
Both spatiotemporal features and texture features were employed. The dataset comprised
87 focal liver lesions, of which 74 were malignant (mainly HCCs) and 13 were benign. The
lack of motion compensation was an undoubted advantage of the study. Another benefit of
this study was that only minimal human intervention in tumor localization was required.
The balanced accuracy of the ML approach to differentiate between benign and malignant
tumors was 84% [18]. Wu et al. [19] used sparse non-negative matrix factorizations to
automatically extract TICs from CEUS videos. Furthermore, a deep-learning classification
model based on TICs was developed. The method was evaluated in a sample of 26 liver
tumors. The performance parameters were as follows: 86.36% accuracy, 83.33% sensitivity
and 87.50% specificity [19]. Ta et al. [20] proposed two CAD systems, one based on an
artificial neural network (ANN) and one based on a support vector machine (SVM) in
a multicenter study performed on 105 focal liver lesions. The effectiveness of the CAD
systems for differentiating benign from malignant liver lesions was compared with that
of an inexperienced and experienced observer, both blinded to the final diagnosis. The
accuracy of the SVM and ANN was 81.1% and 80%, respectively. The CAD systems per-
formed better than the inexperienced reader and similar to the experienced reader. The
accuracy of both observers increased when their diagnosis was concordant with the AI
assessment. The homogeneity of the lesions in the B-mode images and the TIC washout
time features had the most impact in differentiating FLLs using CAD systems [20]. Also,
in [21], the authors compared radiologists’ diagnostic performance with an AI method
trained on a sample of 363 liver tumors and further tested on 211 cases. The AI performed
as well as two experienced radiologists and showed better results than the less-experienced
radiologists, represented by two residents. Assisted by AI, the diagnostic efficiency of
residents increased to a level similar to that of the senior radiologists [21].
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AI also showed promising results in identifying different classes of liver tumors [22–26].
Streba et al. [22] proposed an artificial neural network to classify five types of liver tumors: hep-
atic hemangiomas, fatty focal changes, HCCs, hypervascular liver metastases and hypovascular
liver metastases. The development of the artificial neural network was based on CEUS TIC anal-
ysis achieved in 112 patients. The ANN registered a training accuracy of 94.45% and a testing
accuracy of 87.12%, similar to results achieved by the physician [22]. Caleanu et al. [23] created
a CAD system based on deep neural networks (DNN) to discriminate between five classes of
liver tumors from CEUS images, with an accuracy of 88%. Liver lesions were represented by
focal nodular hyperplasia (FNH), hepatic hemangiomas, HCCs, hypervascular liver metastases
and hypovascular liver metastases [23].

Although the results of the previous literature studies discussed from the clinician’s
perspective showed that AI could potentially improve the evaluation of liver tumors, there
are still barriers to successfully implementing AI in clinical practice. More studies are
needed to improve AI methods for assessing liver lesions. In this regard, our first goal
in this study is to evaluate the importance of an AI system based on CEUS in classifying
liver lesions. The second objective is to compare the performance of the AI model with the
subjective analysis of two physicians in order to perform in depth tests of the AI system
proposed in our previous works [27,28]. The present study is a continuation of our previous
research, in which the development stages and the architecture of the proposed automatic
method have been largely described [27,28].

The major contributions of this study are as follows: (1) inspired by the clinical practice,
we integrated important clinical parameters (age, gender and the presence of an underlying
liver condition) along with parameters extracted from the time–intensity curves of CEUS
into an AI algorithm, providing a strategy closer to the real evaluation of liver lesions; (2) a
two-stage classification of focal liver tumors was performed, as the AI system was tested
for its capacity to distinguish between benign and malignant liver tumors and also for
the ability to predict the diagnosis of two significant liver malignancies: hepatocellular
carcinoma and liver metastases.

2. Materials and Methods

The present study included patients with focal liver lesions evaluated in a tertiary
gastroenterology and hepatology department between January 2018 and December 2020.
Based on the inclusion and exclusion criteria below, we prospectively selected 49 patients
with 59 focal liver lesions. One patient was excluded due to the unsatisfactory quality of
CEUS video clips. The research was approved by the Ethical Committee of the University
of Medicine and Pharmacy of Craiova (36/22 April 2016). The dataset was also used to
build the AI system described in [27,28] and a technical description of the investigation
was presented in these works.

The criteria for inclusion were as follows: the presence of at least one focal liver
lesion, CEUS examinations stored as high-quality video clips from all three vascular phases,
availability of clinical information of the patient in the hospital database and final diagnosis
of liver tumors established through contrast-enhanced imaging techniques or biopsy and
histopathologic assessment, depending on the case.

We excluded cases with poor-quality CEUS recordings, incomplete CEUS imaging
data, indeterminate final diagnosis and previously treated liver tumors.

Simple liver cysts were included only if detected on CEUS examinations performed
for other indications.

The flowchart of the subject enrolment is presented in Figure 1.
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Figure 1. Patient enrolment and study flowchart.

2.1. Standard Ultrasound and Contrast-Enhanced Ultrasound Examinations

The equipment used for standard ultrasound and CEUS investigations was a Hitachi
Arietta V70 (Hitachi Ltd., Tokyo, Japan), provided with the convex probe C251. A second-
generation contrast agent, SonoVue (Bracco Imaging S.p.A, Milan, Italy) was used to
perform CEUS. Depending on the case, the contrast agent was administrated at a dose of
1.6/2.4 mL in an antecubital vein, followed by a 5 mL sodium chloride 0.9% flush. CEUS
examinations were performed according to EFSUMB guidelines [10] by an experienced
sonographer (EFSUMB level III) and stored as video clips and images from the arterial
phase (10–20 s to 30–45 s), portal venous phase (30–45 s to 120 s) and late phase (120 s to
4–6 min).

2.2. CEUS-Based Artificial Intelligence System for Classification of Liver Tumors

The system for the automatic classification of liver tumors is based on artificial intelli-
gence algorithms and has three main components. The first was a segmentation component
based on a U-Net segmentation deep learning model trained on our dataset as described
in [27]. A second component cropped each frame according to the output of the segmen-
tation module. This component was also responsible for extracting the TIC and the TIC
parameters. Finally, the third module was a feed-forward classifier which used as an input
the output of the second component together with the clinical data of the patients, repre-
sented by age, gender, presence of chronic hepatitis or liver cirrhosis. The entire system
was presented in [28].

2.3. Image Analysis

The anonymized CEUS videos were re-evaluated independently by two hepatologists
with high expertise in ultrasound and CEUS of the liver, blinded to the final diagnosis.
Only one reader (unblinded reader) was aware of the clinical data. However, for a correct
interpretation of CEUS findings, close to the clinical setting, both investigators knew
which patients were at risk for hepatocellular carcinoma. All lesions have been interpreted
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according to The Guidelines and Good Clinical Practice Recommendations for CEUS in the
Liver (update 2020 edition) [10].

Liver lesions were analyzed in terms of enhancement degree in comparison with the
adjacent liver parenchyma, enhancement pattern, degree and onset of washout when present.

The first task for readers and the AI system was to classify liver lesions as benign
or malignant.

In a further stage, a specific diagnosis was predicted when possible. As HCC and
liver metastases were the predominant lesions in our study, we focused mainly on their
diagnosis. CEUS investigation was considered conclusive if the tumor enhancement pattern
in arterial, portal venous and late phase was typical, according to the current guidelines [10].
Otherwise, if liver lesions demonstrated atypical features in CEUS or when any conclusion
couldn’t be reached, the FLLs were labelled as indeterminate.

2.4. Reference Standard Method

Ultrasound alone (B-mode and contrast-enhanced ultrasound) was used for liver cysts
and the diagnosis of three typical hepatic hemangiomas to minimize exposure to ionizing
radiation from additional examinations that were not mandatory in these circumstances.
For the other benign tumors, CT or MRI was used to determine the final diagnosis.

Liver abscess was suspected on clinical and imaging methods, but the final diagnosis
was confirmed intraoperatively.

In 72.72% of cases of malignant tumors (n = 32), CT/MRI was the gold standard
imaging modality, while for the other cases, pathological confirmation was achieved.

2.5. Statistical Analysis

Clinical factors; standard ultrasound characteristics of liver tumors; enhancement
patterns during the arterial, portal venous and late phases of CEUS; presence of washout;
onset and intensity of washout; the final diagnosis and the method used to confirm the
diagnosis were synthesized in a Microsoft Excel 2019 (Microsoft Office Professional Plus
2019, Microsoft Corporation, Washington, WA, USA) spreadsheet. Data were expressed as
mean ± SD (standard deviation), percentages and frequencies. The IBM program Statistical
Analysis Software Package (SPSS) for Windows version 29.0 (IBM Corporation, Armonk,
NY, USA) was used for data analysis. MedCalc’s diagnostic test evaluation calculator [29]
was used to determine sensitivity, specificity, accuracy, positive predictive value, negative
predictive value and 95% confidence intervals for the diagnostic performance of CEUS in
both readers. Interobserver agreement on the diagnosis of liver tumors between clinicians
and clinicians vs. the AI system was assessed using Cohen’s kappa coefficient (κ).

3. Results

Forty-nine patients with fifty-nine liver lesions were enrolled in our study. The majority
of FLLs were malignant (n = 44), with HCC being the most common (n = 24), followed by
liver metastases (n = 15), cholangiocarcinoma (n = 4) and malignant liver adenoma (n = 1).
Furthermore, a total of 15 benign lesions were included. The distribution of benign liver
lesions was as follows: seven hepatic hemangiomas, five liver cysts, one focal nodular
hyperplasia, one hepatic adenoma and one liver abscess.

Regarding gender, 31 patients were male, and 18 were women, with an age range of
38–85 years. The mean age was 67.7 ± 8.84 for men and 61 ± 10.90 for women. Risk factors
for HCC, including liver cirrhosis and chronic hepatitis B or C, were identified in 51.02% of
patients. In 14.3% of cases, liver lesions were developed in a background of liver steatosis
(Table 1).

One target lesion was evaluated in the vast majority of the patients (85.7%). The
highest percentage of lesions were above 20 mm (86.5%). Considering the distribution of
the lesions according to localization, 49.2% were situated in the right hepatic lobe, 47.5% in
the left hepatic lobe and 3.4% included both hepatic lobes.
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Table 1. Underlying liver disease in the study group.

Underlying Liver Disease n (%)

â Liver cirrhosis 17 (34.7%)
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 Single 42 (85.7%) 
 2 5 (10.2%) 
 >2 2 (4.1%) 
Size  
 Mean (mm) 51.92 ± 32.66 
 <20 mm 8 (13.6%) 
 20–50 mm 26 (44.1%) 
 >50 mm 25 (42.4%) 
Localization of the lesions  
 Left hepatic lobe 28 (47.5%) 
 Right hepatic lobe 29 (49.2%) 
 Both hepatic lobes 2 (3.4%) 
Echogenicity of FLLs  
 Hyperechoic 19 (32.2%) 
 Hypoechoic 14 (23.7%) 
 Isoechoic 15 (25.4%) 
 Transonic 3 (5.1%) 
 Mixed echogenicity 8 (13.6%) 
Echotexture  
 Inhomogeneous 43 (72.9%) 
 Homogenous 16 (27.1%) 
Delineation  
 Well-defined 43 (72.9%) 
 Ill-defined 16 (27.1%) 

Mixed etiology 4 (8.16%)
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HBV: hepatitis B virus; HCV: hepatitis C virus; HDV: hepatitis D virus.

Among the 59 liver lesions, 32.2% (n = 19) were hyperechoic, 23.7% (n = 14) were
hypoechoic, 25.4% (n = 15) isoechoic, 5.1% (n = 3) transonic and 13.6% (n = 8) of them
had mixed echogenicity. Most liver tumors were well-defined and had an inhomogeneous
appearance (72.9%). Ancillary features favoring HCC as mosaic architecture or nodule-in-
nodule appearance were present in a small percentage of cases (8.5%). The halo sign was
seen in 30.05% of cases. Ultrasound features are detailed in Table 2.

Table 2. Ultrasound features of focal liver lesions.

Ultrasound Features n (%)

Number of lesions studied in each patient
â Single 42 (85.7%)
â 2 5 (10.2%)
â >2 2 (4.1%)
Size
â Mean (mm) 51.92 ± 32.66
â <20 mm 8 (13.6%)
â 20–50 mm 26 (44.1%)
â >50 mm 25 (42.4%)
Localization of the lesions
â Left hepatic lobe 28 (47.5%)
â Right hepatic lobe 29 (49.2%)
â Both hepatic lobes 2 (3.4%)
Echogenicity of FLLs
â Hyperechoic 19 (32.2%)
â Hypoechoic 14 (23.7%)
â Isoechoic 15 (25.4%)
â Transonic 3 (5.1%)
â Mixed echogenicity 8 (13.6%)
Echotexture
â Inhomogeneous 43 (72.9%)
â Homogenous 16 (27.1%)
Delineation
â Well-defined 43 (72.9%)
â Ill-defined 16 (27.1%)
Halo sign 18 (30.5%)
Mosaic pattern 5 (8.5%)
“Nodule-in-nodule appearance” 5 (8.5%)



Diagnostics 2023, 13, 3387 7 of 17

3.1. CEUS Enhancement Patterns
3.1.1. Benign Tumors

Most liver hemangiomas (n = 6) showed a typical enhancement pattern on CEUS:
peripheral nodular enhancement in the arterial phase followed by centripetal fill-in, with
no washout. Incomplete fill-in was observed in three large tumors. One case of small-
sized hemangioma showed rapid and homogenous enhancement in the arterial phase with
sustained enhancement into the late phase. Focal nodular hyperplasia (FNH) showed a
“spoke-wheel” arterial enhancement pattern, followed by isoenhancement in the portal
venous and late phase.

Regarding liver cysts, there was no contrast agent enhancement in any CEUS phases.
Hepatocellular adenoma demonstrated homogenous hyperenhancement in the arte-

rial phase, followed by isoenhancement in the portal venous phase and became slightly
hypoenhanced in the late phase, at more than 4 min after contrast agent injection (Figure 2).
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CEUS, the lesion showed homogenous arterial hyperenhancement (arrows) (b), followed by isoen-
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nant tumor by both readers and the AI system. 

Figure 2. Misclassified liver adenoma by both readers and the AI system. B-mode ultrasound showed
an isoechoic lesion (arrows) with a size of 23 mm, located in the right hepatic lobe (a). On CEUS, the
lesion showed homogenous arterial hyperenhancement (arrows) (b), followed by isoenhancement in
the portal venous phase (arrows) (c), with mild washout in the late phase (arrows) (d). Due to the
presence of washout in the late phase, liver adenoma was misdiagnosed as a malignant tumor by
both readers and the AI system.

Liver abscess demonstrated a “honeycomb” appearance with enhancement of multiple
septa that delimited areas with non-enhancement. In the late phase, septa became slightly
hypoenhanced.
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3.1.2. Malignant Tumors

Typical CEUS findings of HCC represented by arterial hyperenhancement and late,
mild washout were observed in 58.33% of HCC nodules (n = 14). Atypical enhancement
patterns seen in 41.67% of all HCCs (n = 10) are summarized in Table 3.

Table 3. CEUS findings of atypical HCC.

Atypical HCC Enhancement Patterns n (%)

Arterial phase
Isoenhancement 1 (4.16%)

Hypoenhancement 1 (4.16%)
Rim enhancement 1 (4.16%)

Portal venous phase/Late phase No washout 3 (12. 5%)
Early or marked washout 6 (25%)

Intrahepatic cholangiocarcinomas (iCCAs) exhibited two contrast enhancement pat-
terns in the arterial phase: heterogenous hypoenhancement (n = 1) and peripheral enhance-
ment (n = 3). Septa enhancement was noticed in one lesion. Early and marked washout
was observed in three iCCAs; however, one lesion demonstrated late contrast washout.

Malignant liver adenoma showed arterial hyperenhancement with progressive washout
in the late phase.

CEUS aspects of liver metastases in the three vascular phases are summarized in
Table 4.

Table 4. CEUS aspects of liver metastases.

CEUS Phases Category of Liver
Metastases

Enhancement
Pattern n

Arterial phase

Hypervascular metastases
Homogenous APHE 5

Heterogenous APHE 2

Hypovascular metastases
Rim APHE 5

Hypoenhancement 3

Portal venous phase/Late phase
Early and marked washout 12

Late washout 3
APHE: arterial phase hyperenhancement.

3.2. Diagnostic Performance of Clinicians and the AI System

For the differentiation between malignant and benign liver lesions, both clinicians
achieved a similar specificity of 93.33%; however, the unblinded clinician showed slightly
greater sensitivity (93.18% vs. 90.91%). The AI system achieved a higher specificity
compared with both readers (100% vs. 93.33%), but still had a lower sensitivity of 74%
(Table 5). In Figure 3, the receiver operating characteristic curve (ROC) for all three entities
is presented together with the area of the curve in numeric value. To plot the ROC, the
binary classifications of all three entities (malignant or benign) were considered.

When considering diffuse, chaotic, arterial hyperenhancement followed by late, mild
washout as representative for HCC, the diagnostic sensitivity was 58.33% for the unblinded
clinician and 50.00% for the blinded clinician. Both clinicians achieved 100% specificity. The
AI system demonstrated higher sensitivity than both clinicians for HCC diagnosis (86.91%);
however, the specificity was lower (56.22%) (Table 6).



Diagnostics 2023, 13, 3387 9 of 17

Table 5. Diagnostic performance of clinicians and AI system in discriminating malignant from
benign lesions.

Sensitivity
95% (CI)

Specificity
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Unblinded
clinician

93.18% 93.33% 93.32% 97.62% 82.35%
(81.34–98.57%) (68.05–99.83%) (83.54–98.12%) (86.04–99.63%) (60.82–93.35%)

Blinded
clinician

90.91% 93.33% 91.53% 97.56% 77.78%
(78.33–97.47%) (68.05–99.83%) (81.32–97.19%) (85.73–99.63%) (57.66–90%)

AI system
(binary)

74% 100% 83%
(80.57–85.43%)

100% 63%
(69–80%) (100%) (100%) (56–69%)

PPV: positive predictive value; NPV: negative predictive value; AI: artificial intelligence; CI: confidence interval.
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Figure 3. Receiver operating characteristic curve for unblinded clinician, blinded clinician and the AI
system in binary mode (malignant or benign).

Table 6. Diagnostic performance of clinicians and the AI system for HCC.

Sensitivity
95% (CI)

Specificity
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Unblinded
clinician

58.33% 100% 83.05% 100% 77.78%
(36.64–77.89%) (90–100%) (71.03–91.56%) (76.84–100%) (68.55–84.89%)

Blinded
clinician

50.00% 100% 79.66% 100% 74.47%
(29.12–70.88%) (90–100%) (67.17–89.02%) (73.54–100%) (66.16–81.31%)

AI system
(multiclass)

86.91% 56.22% 69.93% 61.52% 84.22%
(80.85–92.57%) (49.69–63.45%) (66.12- 74.59%) (56.59–66.59%) (76.81–89.84%)

PPV: positive predictive value; NPV: negative predictive value; AI: artificial intelligence; CI: confidence interval.

The unblinded and blinded clinicians graded six and, respectively, eight HCCs as
non-HCC malignancies, from which two were developed in a non-cirrhotic liver. Three
HCC nodules were categorized as indeterminate findings by the reader aware of the
clinical data and were considered false negative observations. Four lesions were labelled as
indeterminate by the blinded reader. The AI system correctly identified 17 HCCs (Figure 4)
and misdiagnosed 6 of them as hemangiomas and one as a non-HCC malignancy.
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Figure 4. A case of hepatocellular carcinoma with typical CEUS enhancement pattern correctly
classified by both clinicians and the AI system. B-mode ultrasound showed an isoechoic lesion
(arrow), with a peripheral halo, sized 55/44 mm, located in the right hepatic lobe, segment VI (a). In
the arterial phase of CEUS, the lesion showed diffuse hyperenhancement (arrow) (b), followed by
washout in the late phase (arrows) with onset later than 2 min (c). At four minutes into the late phase
of CEUS (arrow), the washout was still mild (d).

Regarding liver metastases, all lesions were correctly detected by the blinded reader.
The unblinded clinician accurately diagnosed 14 liver metastases out of 15. He categorized
as indeterminate a liver metastasis detected in a patient with chronic hepatitis B.

The AI system showed a 100% specificity; however, the sensitivity was only 22.53%,
which indicates that the classifier correctly identified approximately one-fifth of the cases.

The diagnostic performance of both readers and the AI system for liver metastases is
presented in Table 7.

Table 7. Diagnostic performance of clinicians and AI system for liver metastases.

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Unblinded
clinician

93.33% 95.45% 94.92% 87.50% 97.67%
(68.05–99.83%) (84.53–99.44%) (85.85–98.94%) (64.22–96.47%) (86.33–99.64%)

Blinded
clinician

100% 95.45% 96.61% 88.24% 100%
(78.20–100%) (84.53–99.44%) (88.29–99.59%) (65.94–96.67%) (91.59–100%)

AI system
(multiclass)

22.53% 100% 89.15% 100% 88.80%
(12.49–36.52%) (100%) (85.66–92.18%) (100%) (85.17–91.97%)

PPV: positive predictive value; NPV: negative predictive value; AI: artificial intelligence; CI: confidence interval.
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3.3. Interobserver Agreement between Clinicians and AI Model

There was almost perfect agreement between clinicians (κ = 0.96) and substantial
agreement between clinicians and the AI system (κ = 0.75) in differentiating malignant
from benign lesions. In the multiclass liver tumors classification, there was almost perfect
agreement between clinicians (κ = 0.87) and moderate agreement between the AI model
and clinicians (κ = 0.42 and 0.45, respectively) (Table 8).

Table 8. Interobserver agreement between clinicians and the AI model using Cohen’s Kappa.

Unblinded Clinician
versus AI Model

Blinded Clinician
versus AI Model

Interclinician
Agreement

Differentiation of malignant from
benign tumors 0.75 0.75 0.96

Multiclass liver tumors
classification 0.42 0.45 0.87

4. Discussion

Through this study, we evaluated the accuracy of an AI system based on contrast-
enhanced ultrasound for identifying and classifying focal liver lesions using contrast-
enhanced ultrasound examinations.

The AI system in binary classifier mode had a sensitivity of 74% and an accuracy of
83%, indicating it is performing well on both malignant and benign lesions. NPV for benign
lesions was found to be 63%. It is important to note that in the context of imbalanced
data, where the number of malignant cases significantly outweighs the number of benign
cases, achieving a high NPV can be particularly challenging. The AI model had a higher
specificity, but a lower sensitivity when compared to clinicians; however, both physicians
were experienced sonographers.

To date, published studies in the field vary significantly in terms of the number and
type of lesions and the AI algorithm used (Table 9), making it challenging to compare
the results.

Gatos et al. [30] proposed an automatic algorithm for the identification and clas-
sification of 52 liver tumors using CEUS videos. The support vector machine (SVM)
classification algorithm was generated based on features extracted from the time–intensity
curves, demonstrating an accuracy of 90.3% in differentiating malignant from benign le-
sions, with a sensitivity superior to our study (93.1% vs. 74%) but a lower specificity (86.9%
vs. 100%) [30].

A recently published meta-analysis [31] on the diagnostic performance of machine
learning for the characterization of liver lesions (benign vs. malignant) that included
20 studies with 32.245 focal liver lesions (8 studies on standard ultrasound, 11 studies
on contrast-enhanced ultrasound and 1 study on both) showed a pooled sensitivity and
specificity of 81.7% and 84.8% for ML applied to ultrasound and similar results for ML
based on CEUS (pooled sensitivity and specificity of 87.1% and 87%, respectively). These
results were unexpected findings, as CEUS has been shown to be superior to standard
ultrasound. The authors concluded that the similarities in results could be explained by the
predominance of deep learning algorithms in the studies based on standard US that can
provide a higher diagnostic performance [31].

In our study, in multiclass mode, the classifier showed a high sensitivity (86.91%) for
HCC and maintained a reasonable balance between precision (PPV) and sensitivity. In the
context of an imbalanced dataset, where the metastases category included a low number
of lesions, achieving a sensitivity of 22.53% indicates that the classifier correctly identified
approximately one-fifth of the actual cases. This result was expected given the challenge of
detecting rare cases in an imbalanced dataset.

For 11 cases of HCC, all three entities agreed on the final diagnosis. For one patient
with HCC, the AI system classified it correctly, while both clinicians indicated it as metas-
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tasis. Also, for two other patients with HCC, both clinicians suggested an indeterminate
malignant tumor, while the AI system classified the tumor as HCC. While both clinicians
tried to classify the lesion as accurately as possible, the AI system is biased towards HCC
classification due to the class imbalance of the dataset.

Shiraishi et al. [25] proposed a CAD algorithm based on microflow imaging of CEUS
in 103 liver lesions and employed six artificial neuronal networks. For the classification
of liver metastases, the accuracy was similar to our study (88.5% vs. 89.15%). Regarding
hepatocellular carcinoma, their study showed better results in terms of accuracy (86.9%
vs. 69.93%). Considering five classes of liver tumors (hemangioma, liver metastases,
well-differentiated hepatocellular carcinoma, moderately differentiated hepatocellular
carcinoma and poorly differentiated hepatocellular carcinoma), the accuracy decreased to
75.7% [25].

Clinical and laboratory data are essential in evaluating patients with an incidental
focal liver lesion, as subsequent management depends on the patient’s risk factors such as
a history of malignancy, liver cirrhosis or other risk factors for primary liver cancer [32].

In light of this, we also used clinical data such as age, gender and the presence of
chronic hepatitis or liver cirrhosis in addition to the features extracted from the time–
intensity curve to train the AI system. Only a few studies reported using clinical data in
computer-assisted diagnosis algorithms [33,34]. Sato et al. [33] developed a deep learn-
ing model using a convolutional neural network to classify liver tumors on greyscale
ultrasound. Furthermore, he gradually incorporated the following clinical information
step-by-step and generated another four deep learning models: age and gender, aspartate
aminotransferase and alanine aminotransferase, platelet count and albumin. The highest
diagnostic performance with a sensitivity, specificity and accuracy of 100%, 92.45% and
96.3%, respectively, was achieved by the model that integrated B-mode images and all
the previously mentioned data [33]. Liu et al. [34] proposed four deep-learning radiomics
models for recognizing the nature of liver tumors. The models were trained with features
extracted from CEUS examinations, clinical data such as the presence of underlying liver
disease (HBV infection, chronic hepatitis C, liver steatosis and liver cirrhosis) and labo-
ratory data (alpha-fetoprotein level). They included 303 patients with histopathological
confirmation of liver masses diagnosis. The deep learning model trained with CEUS cines,
AFP and liver disease showed the highest performance. Compared to our results, their
model exhibited a higher sensitivity but lower specificity. For lesions larger than 20 mm, the
AI method outperformed radiologists. In the group of lesions smaller than 20 mm, the diag-
nostic capability was inferior to both radiologists in the internal validation cohort; however,
in the external validation cohort, it overcame only the less experienced radiologist [34].

Only a limited number of studies evaluated AI in CEUS of liver tumors using the
contrast agent Sonazoid (perflubutane microbubbles) [24,26,35]. Kondo et al. [26] employed
SVM classifiers to differentiate FLLs in CEUS with Sonazoid images in 98 patients. In
the first stage, tumors were classified as benign or malignant with a sensitivity of 94%,
specificity of 87.1% and accuracy of 91.8%. Furthermore, malignant tumors were classified
as HCCs or liver metastases. For the three classes, the accuracy decreased at 84.4% for
benign tumors, 87.7% for HCC and 85.7% for liver metastases [26].

In high-risk patients, the typical pattern of HCC is represented by diffuse arterial
hyperenhancement and late, mild washout [10]. In our study, typical features allowed the
diagnosis of HCC with 58.33% sensitivity and 100% specificity by the unblinded reader.
Similar sensitivities were reported in previous studies involving larger cohorts [36,37].

However, a significant number of hepatocellular carcinomas have atypical imaging
features, not meeting the criteria for the definitive diagnosis [38]. In these circumstances,
histological proof is required [39]. Computer-aided diagnosis could provide a significant
contribution in the differential diagnosis of hepatocellular carcinoma with unspecific fea-
tures from other liver tumors. Li et al. [40] also developed a machine learning-based model
using features extracted from B-mode US, arterial and portal venous phase of CEUS to
differentiate atypical HCC from focal nodular hyperplasia. The automatic model achieved
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a lower sensitivity (76.6% vs. 94.4%) but a higher specificity (80.5% vs. 69.8%) compared
with the interpretation of radiologists. The performance significantly improved when
adding the AI model to the radiologist’s evaluation [40]. Huang et al. [41] proposed a
computer-aided diagnosis system based on spatio-temporal features extracted from CEUS
for the differential diagnosis of atypical hepatocellular carcinoma, and FNH and achieved
an accuracy of 94.4%, specificity of 93.62% and sensitivity of 94.76%.

Table 9. Studies applying AI methods based on CEUS for liver lesions evaluation.

Author Contrast Agent Sample Size Classes of FLLs AI Method Performance Results

Sugimoto et al.,
2010
[24]

Sonazoid
(GE Healthcare, Oslo,

Norway)
137

Hepatic hemangiomas,
HCC (well-differentiated

HCC, moderately
differentiated HCC,

poorly differentiated
HCC), liver metastases

ANN

ACC of three
classifications: hepatic
hemangiomas—93.3%;

HCC—98.6%; liver
metastases—84.8%.

Streba et al., 2012
[22] - 112

Focal fatty changes,
hepatic hemangiomas,

HCC, hypervascular liver
metastases, hypovascular

liver metastases

ANN

Sen: 93.2%
Spe: 89.7%

Training ACC: 94.45%
Testing ACC: 87.12%

Wu et al., 2014
[19]

SonoVue
(Bracco, Milan, Italy) 26 Benign vs. malignant Deep learning

Sen: 83.33%
Spe: 87.50%

ACC: 86.36%

Gatos et al., 2015
[30]

SonoVue
(Bracco Imaging,

Milan, Italy)
52 Benign vs. malignant SVMs

Sen: 93.1%
Spe: 86.9%

ACC: 90.3%
AUC: 0.89

Kondo et al., 2017
[26]

Sonazoid®

(GE Healthcare, Oslo,
Norway)

98
Benign vs. malignant

Benign, HCC, liver
metastases

SVM

Benign vs. malignant
classification

Sen: 94%
Spe: 87.1%

ACC: 91.8%
Three classifications
(benign, HCC, liver

metastases)
ACC: benign—84.4%;

HCC—87.7%; liver
metastases—85.7%

Guo et al., 2018
[17]

SonoVue
(Bracco Imaging,

Milan, Italy)
93 Benign vs. malignant

Deep canonical
correlation analysis

and multiple
kernel learning

Sen: 93.56%
Spe: 86.89%

ACC: 90.41%
AUC: 0.953

Ta et al., 2018 [20]
SonoVue

(Bracco Imaging,
Milan, Italy)

105 Benign, malignant SVM
ANN

SVM
Sen: 90%

Spe: 71.1%
ACC: 81.1%
AUC: 0.883

ANN
Sen: 88%

Spec: 71.1%
ACC: 80.0%
AUC: 0.82

Shiraishi et al.,
2008, [25]

SonoVue
(Bracco Imaging,

Milan, Italy)
103

hepatic hemangiomas,
liver metastases, HCC

(well-differentiated HCC,
moderately differentiated

HCC, poorly
differentiated HCC)

ANN

ACC:
hemangiomas—93.8%;

liver metastases—88.5%;
HCC—86.9%;

well-differentiated
HCC—79.2%; moderately
differentiated HCC—50%;

poorly differentiated
HCC—77.8%
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Table 9. Cont.

Author Contrast Agent Sample Size Classes of FLLs AI Method Performance Results

Huang et al., 2020
[41]

SonoVue
(Bracco Imag-ing,

Milan, Italy)

342
Data set 1: 155
FNH, 49 HCCs;
Data set 2: 102
FNH, 36 HCCs

Atypical HCC vs. FNH SVM
Sen: 94.76

Spe: 93.62%
ACC: 94.4%

Caleanu et al.,
2021 [23] - 91

Hemangiomas, FNH,
HCC, hypervascular liver
metastases, hypovascular

liver metastases,

Deep neural
networks ACC: 88%

Hu et al., 2021 [21]
SonoVue

(Bracco Imag-ing,
Milan, Italy)

Training set: 363;
Testing set: 211 Benign vs. malignant Deep learning

models

Testing set
Sen: 92.7%
Spe: 85.1%
ACC: 91%

AUC: 0.934

Liu et al., 2022 [34]
SonoVue

(Bracco Imag-ing,
Milan, Italy)

303
Training cohort:

203;
IV cohort: 50;
EV cohort: 50

Benign vs. malignant Radiomics

IV cohort
Sen: 97.3%
Spe: 92.3%
ACC: 96%

AUC: 0.969

EV cohort:
Sen: 96.6%
Spe: 90.55
ACC: 94%

AUC: 0.957

Turco et al., 2022
[18]

Lumason
(Bracco Imag-ing,

Milan, Italy)
87 Benign vs. malignant LR, SVM, RF, kNN

b-ACC: 0.84
Sen: 76%
Spe: 92%

AUC: 0.84

Our proposed
method

SonoVue
(Bracco Imag-ing,

Milan, Italy)
59 Benign vs. malignant

HCC, Liver metastases

CNN ±
feed-forward

classifier

Benign vs. malignant
Sen: 74%

Spe: 100%
ACC: 83%

HCC
Sen: 86.91%
Spe: 56.22%

ACC: 69.93%

Liver metastases
Sen: 22.53%
Spe: 100%

ACC: 89.15%

AI: artificial intelligence; ANN: artificial neural network; ACC: accuracy; AUC: area under the curve; CNN:
convolutional neural network; EV: external validation; FNH: focal nodular hyperplasia; HCC: hepatocellular
carcinoma; IV: internal validation; kNN: k-nearest neighbor; LR: logistic regression; RF: random forest; SVM:
support vector machine; Sen: sensitivity; Spe: specificity.

The present study has some limitations. It is important to acknowledge that our study
used a relatively small dataset for training the AI system and for testing the system. This
limitation is a significant constraint in AI research, since larger and more diverse datasets
often produce more robust and generalizable models. This study aimed to provide a
preliminary assessment of our AI system’s performance in this limited setting, and showed
promising results. However, we understand that the generalizability of these findings
to a broader clinical population or different medical scenarios may be limited due to the
constraints of the dataset. Our group was heterogeneous in terms of tumor types, with
hepatocellular carcinoma and liver metastases being the most frequent. As there was an
insufficient number for some categories, such as focal nodular hyperplasia, liver abscess,
liver adenoma, and cholangiocarcinoma, it was not possible to evaluate the accuracy of the
AI system for their diagnosis. Secondly, we used only one type of ultrasound equipment
and a single contrast agent for ultrasound. Thirdly, although we also used clinical data
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as input for the AI system, we consider that other valuable information collected in daily
clinical practice, such as tumoral markers, should be integrated to increase performance.

The system used here needs further validation through multicentric studies.

5. Conclusions

In conclusion, the proposed artificial intelligence system may serve as a second opinion
to clinicians in CEUS-based evaluation of liver tumors, especially for the less experienced
ones or gastroenterologists in training. Integrating clinical information and CEUS data into
the AI system is a major step towards clinical applicability. Further studies involving larger
cohorts are necessary to validate the effectiveness of artificial intelligence in classifying
different types of liver tumors.
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