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Abstract: (1) Background: The categorization of recurrent and non-recurrent odontogenic kera-
tocyst is complex and challenging for both clinicians and pathologists. What sets this cyst apart
is its aggressive nature and high likelihood of recurrence. Despite identifying various predictive
clinical/radiological/histopathological parameters, clinicians still face difficulties in therapeutic
management due to its inherent aggressive nature. This research aims to build a pipeline system that
accurately detects recurring and non-recurring OKC. (2) Objective: To automate the risk stratification
of OKCs as recurring or non-recurring based on whole slide images (WSIs) using an attention-based
image sequence analyzer (ABISA). (3) Materials and methods: The presented architecture combines
transformer-based self-attention mechanisms with sequential modeling using LSTM (long short-term
memory) to predict the class label. This architecture leverages self-attention to capture spatial depen-
dencies in image patches and LSTM to capture sequential dependencies across patches or frames,
making it suitable for this image analysis. These two powerful combinations were integrated and
applied on a custom dataset of 48 labeled WSIs (508 tiled images) generated from the highest zoom
level WSI. (4) Results: The proposed ABISA algorithm attained 0.98, 1.0, and 0.98 testing accuracy,
recall, and area under the curve, respectively, whereas VGG16, VGG19, and Inception V3, standard
vision transformer attained testing accuracies of 0.80, 0.73, 0.82, 0.91, respectively. ABISA used 58%
fewer trainable parameters than the standard vision transformer. (5) Conclusions: The proposed
novel ABISA algorithm was integrated into a risk stratification pipeline to automate the detection of
recurring OKC significantly faster, thus allowing the pathologist to define risk stratification faster.

Keywords: deep learning; recurring OKC; non-recurring OKC; whole slide imaging; vision transformer;
image classification

1. Introduction

OKCs account for 3–11% of all jaw cysts. They are benign neoplasms of odontogenic
origin recognized for their invasive tendency. Of all odontogenic cysts, OKCs are of great
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interest in terms of high propensity to recur after surgical treatment, making up (2.5%,
2–100%). These significant differences are due to various postoperative follow-up periods,
the operational methods used, or the inclusion of Nevoid basal cell carcinoma syndrome
(NBCCS) cases [1,2].

It is essential to note that the distinction between recurring and non-recurring OKCs
can sometimes be challenging based on clinical and radiographic features alone. Other
factors, such as the specific location of the cyst, patient factors, and genetic factors, may
also influence the likelihood of recurrence. A close follow-up, evidenced by histopathology
confirmation, is essential in managing OKCs to monitor recurrence and ensure appropriate
treatment [3].

Per the literature evidence, various histological determinants predicting recurrence
are para keratinization, basal mitosis, subepithelial split, satellite cysts, dental lamina
rests, basal cell budding, reverse polarity, dense collagen, and diffuse inflammation and
recently added additional histopathological (h/p) features that strongly suggest recurrence
to the existing list including subepithelial hyalinization, incomplete cystic lining, and the
corrugated/wavy surface [4–6].

Patch-level classification results in a better classification of the entire slide image
after aggregating patch-level results with a fusion model. This is performed with the
output resulting from CNN on patches. An expectation maximization (EM) technique
automatically identifies discerning patches with resilience, utilizing the spatial connections
among these patches [7].

Automating whole slide classification on cancer images is quite common. A lower
zoom level is recommended to detect artifacts, tissue areas, and abnormalities. WSIs can be
stored for years to refer to different results. Automation can help minimize diagnosis errors
or help pathologists obtain first-hand opinions. Identifying the relevant areas of interest
inside WSIs becomes critical for the algorithm to succeed. VIT performs better than CNN
when considering a higher resolution of WSIs [8].

Manual analysis of the whole slide image is time-consuming. The availability and
accessibility of powerful computers make it easy to automate the detection of different
diseases with automated systems. The issue with the current computer-aided system is
the availability of standard datasets with the right annotations. CNN may fail to perform
feature extraction on specific areas of interest in the whole slide image. Hence, the attention
mechanism is appropriate for integration with CNN to achieve better performance in such
cases [9].

This study aims to develop an automation system that classifies whole slide images as
either recurring OKC or non-recurring OKC based on specific h/p features. The current
study is the first to analyze recurring and non-recurring OKC using whole slide images [10].

Also called a digital or virtual slide, a WSI is a high-resolution digital rendering of
an entire histopathology glass slide encapsulated in gigabytes of data. This technology
captures the comprehensive image in a single sweep, affording the capability to zoom in
and out on regions of interest (ROIs), an otherwise arduous task when using microscopy.
The resultant digital depiction is an expansive, multi-gigapixel file, meticulously conserving
all the inherent data within the original glass slide. This WSI platform opens the door
to diverse image analysis methodologies, encompassing computer-aided algorithms for
quantifying and extracting features [11].

2. Related Work
2.1. Related Work on Whole Slide Image Challenges

The successful utilization of deep learning in analyzing whole slide images (WSIs)
holds the potential to develop advanced clinical tools that excel in accuracy, reproducibility,
and impartiality compared with current clinical methods. This approach also offers fresh
insights into various pathological conditions. However, WSIs are large, multi-gigabyte
images with resolutions of around 100,000 × 100,000 pixels. Existing hardware struggles
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to accommodate learning from such high-resolution images, necessitating some form of
dimensionality reduction [12].

2.2. Related Work on Preprocessing Images and Class Imbalances

In a previous study, whole slide images were taken from The Cancer Genome Atlas
(TCGA) dataset and stained using hematoxylin and eosin. All the images with the highest
resolution were taken and resized. A tile size of 1024 × 1024 was performed at 20×
resolution. A trained pathologist investigated all these tiles to label them. Tiles with less
information were discarded [13].

Generative adversarial networks (GANs) are very good at generating synthetic data
that keep the probability distribution of the original data intact. GANs can be used to create
artificial data that are statistically similar to actual data. A hybrid system with GAN often
solves the class imbalance problem. Class imbalance can lead to poor performance, as the
recommendation system may learn to favor the majority class. A hybrid GAN approach
addresses this problem by generating synthetic negative examples to balance the dataset. It
helps to improve the performance of the recommendation system. In one study, GANs were
trained using an adversarial setting, where the generator and discriminator constantly tried
to outsmart each other. This process forced the generator to learn to produce increasingly
realistic data while the discriminator learned to become better at differentiating between
real and fake data [14].

2.3. Related Work on Vision Transformer in Image Processing

The advancements achieved using transformer networks in natural language pro-
cessing have sparked significant interest among the computer vision community to apply
these models to vision-related tasks. These fundamental concepts played a role in the
development of traditional transformer models. The concept of self-attention enables cap-
turing “long-term” connections between elements within a sequence, a capability lacking
in conventional recurrent models that struggle to encode such associations [15].

The vision transformer (ViT) stands out as a trailblazer in demonstrating that a pure
transformer architecture can achieve exceptional performance comparable to models like
ResNets and EfficientNet in image classification tasks. This accomplishment becomes
evident when dealing with sufficiently large datasets like ImageNet-22k and JFT-300M.
ViT’s methodology involves partitioning each image into sequences of fixed-length tokens
(non-overlapping patches) and subsequently using standard transformer layers, which
encompass both the multi-head self-attention module (MHSA) and the position-wise feed-
forward module (FFN), to examine and depict these tokens [16].

2.4. Related Work on Deep Learning in OKC

In a previous study, the multi-model ensemble learning technique delivered satis-
factory outcomes when distinguishing between recurrent and non-recurrent categories
of OKCs. Additionally, the predictions generated individually with classifiers and using
the conventional ensemble method displayed effectiveness, achieving an accuracy span-
ning from 85% to 93% in categorizing the dataset. In this study, the ensemble model was
outperformed by other evaluated models, including the traditional ensemble [17].

3. Materials and Methods

This section elaborates on preprocessing and the proposed algorithm with a flow diagram.

3.1. Data Collection

A collaborative study encompassed the pooling of slide archives from multiple centers,
resulting in the consolidation of 48 histopathology slides from 113 reported between 2015
and 2020.

The Faculty of Dental Sciences, MSRUAS, Manipal College of Dental Sciences (MCODS)
in Manipal, Institute of Dental Science in Bareilly, S Nijalingappa Institute of Dental Sciences
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and Research in Rajapur, Gulbarga, Karnataka, Maratha Mandal’s Nathajirao G Halgekar,
Institute of Dental Science & Research Centre in Belgaum, Karnataka, and the SVS Institute
of Dental Sciences in Mahbubnagar, Andhra Pradesh, India, voluntarily participated in
the research initiative. Ethics approval was waived due to the retrospective nature of this
study, and the collected slides were anonymized and encoded to eliminate any patient
identifiers by other centers. Our institute permitted this study with ethics clearance (NO.EC-
2021/F/058) for the archived slides. Based on the features identified in the pilot study by
Augustine, D., Rao, R. S et al. (2021) [18], histo/pathology features were re-evaluated on
H and E-stained slides and recorded using WSI [18]. This study included slides with no
artifacts, good staining quality, and complete clinical records with post-treatment follow-up.

The slides were digitalized using a whole slide imaging scanner (Morphle Labs Whole
Slide Scanner Model INDEX). A total of 48 OKC whole slide images were collected with
various zoom levels. Slide sizes vary from 50 megabytes to 3 gigabytes depending on the
scanner and zoom level used to obtain the whole slide image. Out of these, 17 recurring
and 31 non-recurring slides were identified by expert pathologists.

3.2. Data Preprocessing and Dataset Generation

A total of 48 of the 113 OKC WSIs (e.g., Figures 1 and 2) were identified for this
purpose and evaluated by a pathologist to segregate and annotate as recurring and non-
recurring slides. An experienced pathologist was engaged in annotating the slides. To
rule out subjectivity and inter-observer bias, a third pathologist, who was part of this
study, was consulted, and the pathologists arrived at a consensus. Post-annotation, these
slides were processed using an automated tile image generation system developed based
on an open-source library open slide and deep zoom generator. This automated system
generated a tiled image size of 2048 × 2048 and discarded white tiles. The same was
performed by calculating the entropy and variance in each pixel value in each tile. Tiles
with very low entropy or variance were likely to contain uniform or low information, so
these were considered empty tiles or white tiles. After this, each of them was inspected by
the pathologist again and was correctly labeled as recurring or non-recurring. The highest
zoom-level slides were considered to generate the tiles during this preprocessing, as shown
in Figure 3. The entire dataset generation process flow is shown in Figure 3.
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view of Hematoxylin and Eosin-stained whole slide image Non-recurrent Odontogenic Keratocyst, 
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Figure 1. The whole slide image shows recurring-odontogenic keratocyst with subepithelial hyaliniza-
tion (high risk). (a) Scanner view of recurrent Odontogenic Keratocyst Hematoxylin and Eosin-stained
whole slide image, Magnification 1.3×; (b) Recurrent Odontogenic Keratocyst with surface corruga-
tion, subepithelial hyalinization, and incomplete epithelial lining. Magnification 10×; (c) Band of
subepithelial hyalinization and surface corrugation. Magnification 20×.
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Figure 2. The whole slide image is non-recurring- odontogenic keratocyst (low risk). (a) Scanner
view of Hematoxylin and Eosin-stained whole slide image Non-recurrent Odontogenic Keratocyst,
magnification 1.3×; (b) Non-recurrent Odontogenic Keratocyst. Absence of subepithelial hyalinization.
Magnification 10×; (c) Absence of subepithelial hyalinization is further enhanced. Magnification 20×.
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3.3. Attention-Based Image Sequence Analyzer

The attention-based image sequence analyzer (ABISA) architecture is a hybrid model
combining multi-head self-attention-based transformer architecture elements with the
LSTM layer. The LSTM layer is used to capture temporal dependencies. This combination
leverages the spatial relationships captured by the self-attention mechanism and enhances
it with LSTM’s ability to model sequential patterns. The architecture flow diagram is
described in Figure 4.
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3.4. Image Data Augmentation

Using the Keras image data generator, preprocessed tiles with the appropriate label
were processed with the following parameters for the augmentation of images during the
training process. A 70-10-20 rule for training, validation, and testing was used, i.e., 20% of
the tiled images from different classes were used for testing the classification model. The
following values were used for augmentation: rotation range = 20, width_shift_range = 0.1,
height_shift_range = 0.1, shear range = 0.2, zoom_range = 0.2, and horizontal flip = True.

3.5. Patch Extraction

The patches extraction layer is a custom Keras layer that takes an input image and ex-
tracts non-overlapping patches. This process allows the model to process smaller image re-
gions independently, providing spatial invariance and reducing computational complexity.
For the patch size used in model was 6, each input image was divided into non-overlapping
patches of size 6 × 6 pixels. The calculation num_patches = (image_size // patch_size) ** 2
is used to determine the total number of patches extracted from the input images. In this
model, for an image with dimensions 64 × 64 (image_size = 64) and extracted patches of
size 6 × 6, (64 // 6) ** 2 is used to calculate the total number of patches: 100. It extracted
100 patches from the 64 × 64 input image, each of size 6 × 6 pixels. The patches layer and
the subsequent processing extracted and processed these patches for further transformation
and classification.

3.6. Patch Encoder Layer

The patch encoder layer takes the extracted patches and encodes them into a meaning-
ful representation. It uses dense (fully connected) layers and an embedding layer to map
the patches into a higher-dimensional space. Additionally, it incorporates positional embed-
dings to retain spatial information about the original image patches. projection_dim = 64
is used in this model. This value specifies the dimensionality of the embeddings generated
for each patch, which are projected to a 64-dimensional space. These encoded patch repre-
sentations are then used in subsequent layers of the ABISA model to perform tasks like
self-attention and classification.

3.7. Multi-Head Self-Attention Mechanism

A multi-head self-attention mechanism is used to analyze the input patches (encoded
patches). It captures complex relationships and dependencies among them. The multi-
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head attention layer involves three key parameters. Those are key dimensions, values,
and queries.

The key dimension parameter determines the number of attention heads used in
parallel. Each attention head specializes in learning distinct aspects of the relationships
between input patches. Notably, within each attention head, the dimensionality defined by
the key dimension is consistently applied to queries, keys, and values; all are set to 64 in
this case.

A dropout rate is applied to the attention scores to facilitate regularization. This
means that the model computes attention scores to determine how each element in the
encoded patches attends to every other element within itself, known as self-attention. Based
on the relationships and interactions between the patches, the multi-head self-attention
mechanism operation creates the attention output.

Skip Connection and Layer Normalization: After the attention operation, the attention
output is combined with the original encoded patches using a skip connection (element-
wise addition). Layer normalization is applied to the combined output to ensure stable
training and to help with gradient flow during training.

3.8. LSTM Layer

The proposed LSTM layer had 32 units in its hidden and cell states. The encoded
patches with attention were passed through the LSTM layer, which was designed to process
sequential data. The LSTM layer takes the encoded patches with attention as input and
processes them sequentially, considering the temporal order of the patches. This LSTM
layer performs sequence modeling and captures temporal dependencies in the data. The
output is a sequence of feature vectors representing the input data’s processed information,
incorporating both spatial and sequential information. Figure 5 describes model summary
of proposed model.

3.9. Normalization and Flattening

The LSTM output was normalized and flattened to prepare it for further processing.

3.10. Dropout

The dropout layer helps prevent overfitting, in this case, 0.5 or 50%. This helps reduce
reliance on specific features and encourages the model to learn more robust representations.

3.11. Multi-Layer Perceptron (MLP)

The GELU (Gaussian Error Linear Unit) activation function was used in the classifica-
tion layer to predict the output.
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4. Results

The dataset was experimented on using the standard CNN, pre-trained models, and
vision transformer algorithms for image classification. The proposed model, which classifies
recurring and non-recurring OKC, is better for the given dataset. Since the proposed
model extends standard state-of-the-art vision transformer architecture, a comparison
was made between the proposed model and the standard vision transformer model in the
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following section. Table 1 describes the overall results of the performance metrics of various
experiment models. Table 2 gives all the hyperparameters used in the proposed model.

Table 1. Comparison of model performance metrics and parameters.

MODEL Recall Precision F1-Score AUC Accuracy Total
Parameters

Standard convolution neural network (CNN) 0.86 0.86 0.84 0.93 0.84 683,329
VGG19 0.73 0.81 0.73 0.77 0.73 131,585
VGG16 0.80 0.84 0.80 0.82 0.80 131,585

Inception V3 0.82 0.82 0.82 0.78 0.82 23,901,985
Standard ViT 0.95 0.86 0.90 0.91 0.91 15,488,969

Proposed attention-based image sequence analyzer 1.00 0.96 0.98 0.98 0.98 8,947,721

Table 2. Comparison of the model hyper-parameters with the standard VIT.

Component ViT Proposed Attention-Based Image
Sequence Analyzer

learning_rate 0.0001 0.0001
Batch size 20 20

Epochs 25 25
weight_decay 0.001 0.001

patch_size 6 6
projection_dim 64 64

num_heads 4 4
transformer_layers 4 4

mlp_head_units [2048, 1024] [2048, 1024]
dropout_rate 0.1 0.1

lstm_units NA 32
Optimizer Adam Adam

Loss function SparseCategoricalCrossentropy SparseCategoricalCrossentropy
Activation function Gaussian Error Linear Unit Gaussian Error Linear Unit

4.1. Confusion Matrix

A confusion matrix is a 2 × 2 table used in classification tasks to assess the performance
of a machine learning model, as shown in Figure 6 below.
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4.2. ROC (Receiver Operating Characteristic) Curve

The area under the ROC curve (AUC) is a standard metric; a higher AUC indicates
better model discrimination ability. The ROC is used to evaluate the performance of
classification models. It plots the true positive rate (sensitivity) against the false positive
rate (1-specificity) at various classification thresholds. The ROC curve illustrates how well
the model distinguishes between positive and negative classes. The AUC score is a useful
metric in situations where class imbalances exist in the dataset. It also provides a single
value to compare different classifiers’ performance, making evaluating and choosing the
best model for a given task easier. The score of 0.98 indicates the classifier’s performance is
better compared with the standard ViT’s score of 0.94.

The ROC curve is given in Figure 7 for the proposed model.
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4.3. Training vs. Validation Loss Curve

The training vs. validation loss curve is a plot that shows the changes in the training and
validation loss during the training process of a machine learning or deep learning model.

The training vs. validation loss curve was plotted with the epochs (training iterations)
on the x-axis and the corresponding loss values on the y-axis. As the model was trained over
multiple epochs, the training loss generally decreased because the model was learning to
fit the training data better. However, the validation loss might behave differently. Initially,
it decreased along with the training loss as the model generalized better. However, at
some point, the validation loss started to increase. This indicates that the model was
overfitting the training data, and its performance on the validation data was deteriorating,
even though it improved on the training data. So, training should be stopped at this epoch,
which is the 24th epoch in this study. Figure 8 shows the curve.

4.4. Classification Report—ABISA

A classification report summarizes performance metrics for a classification model, typi-
cally presented in a tabular format. It includes key metrics such as precision, recall, F1-score,
and accuracy for each class in a classification problem. This report provides insights into
the model’s performance for individual classes, highlighting strengths and weaknesses. It
is a valuable tool for evaluating the effectiveness of a classification model across different
categories. Table 3 describes the classification report for the proposed model.
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Table 3. Attention-based image sequence analyzer classification report.

Precision Recall F1-Score Support

0 1.00 0.96 0.98 50
1 0.96 1.00 0.98 52

Accuracy 0.98 102
Macro average 0.98 0.98 0.98 102

Weighted average 0.98 0.98 0.98 102

4.5. Log Loss

Log loss (logarithmic loss) is a commonly used loss function for evaluating the accu-
racy of probabilistic classification models, such as logistic regression or neural networks,
that predict probabilities for each class. It measures the discrepancy between predicted
probabilities and target values, penalizing more significant deviations. Lower log loss
values indicate better alignment between predicted probabilities and actual outcomes.
Table 4 describes a comparison of log loss among the models.

Table 4. Log loss comparison.

Model Log Loss

Standard CNN 2.87
VGG19 9.72
VGG16 7.29

Inception V3 6.41
Standard ViT 1.04

Attention-based image sequence analyzer 0.13

The proposed model has a log loss value of 0.13, indicating that the model’s predicted
probabilities are pretty accurate and very close to the true labels. A log loss close to zero in
binary classification indicates excellent performance, as the model’s predicted probabilities
align well with the actual outcomes.

A standard ViT log loss value of 1.04 means that, on average, the model’s predicted
probabilities are slightly far from the true labels. The model’s prediction confidence might
be relatively low compared with the proposed model. Table 5 describes different metrics
for the proposed model.
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Table 5. Performance metrics.

Metrics Value

Accuracy 0.98
Precision 0.96

Recall 1.0
F1-score 0.98

Matthews correlation coefficient 0.96
Cohen’s kappa 0.96

Balanced accuracy 0.98
Jaccard score 0.96

Brier score loss 0.01
Specificity (true negative rate) 0.96
Sensitivity (true positive rate) 1.0

Youden’s index (J) 0.96
G-mean 0.97
Log loss 0.13

4.6. Pipeline Result

The devised pipeline system aimed at forecasting whether an entire whole slide image
(WSI) corresponds to recurring or non-recurring OKC instances. This pipeline system
takes WSI as input, tiles the WSI in the pre-processing step, and then applies the proposed
attention-based image sequence analyzer to classify the tiles as the recurring class or not.
Based on the counts of predicted tiles in both classes, a designated threshold was formulated.
This threshold was established considering factors like slide size and zoom level. While
a 15% threshold was typically effective, smaller-sized slides (up to 500 megabytes) might
necessitate a lower threshold. The threshold value was determined by collaborating with a
pathologist with comprehensive knowledge of the slide scanner. To elaborate, this approach
was tested across seven distinct slides, yielding the subsequent statistical outcomes. The
pipeline testing considered a total of seven (four non-recurring and three recurring) WSIs
(H and E-stained and scanned recurrent and non-recurrent WSIs); these seven WSIs were
not used during the training and validation of the model. The prognostic accuracy of the
framework in the presence of a pathologist was independently reported. Therefore, this
model can be clinically applied to classify recurrent and non-recurrent OKCs. Figure 9
describes the process flow. Table 6 describes the sample whole slide image taken for
pipeline experiments.
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Table 6. Sample stats of pipeline result.

Case No. File
Size (MB)

Base
Resolution

(H, W)
No. of Tiles

No. of
Recurring
OKC Tiles

No. of Non-
Recurring
OKC Tiles

Predicted
Output

Actual
Output

HP 68/22 658.6 126,976 ×
126,976 3844 751 3093 Recurring Recurring

HP 86/22 793.3 126,982 ×
126,982 4153 171 3982 Non-

recurring
Non-

recurring

5. Discussion

This study performed different experiments on both the proposed and all state-of-the-
art algorithms available for whole-slide image processing. Due to the massive size of the
whole slide image, it was essential to split the images into multiple smaller images called
tiled images. These images have a size of 2048, which helped to visualize these images
with a standard computer and label them correctly by an expert pathologist. This manual
label was a slightly longer process as each tiled image was labeled. During the experiment
on this custom-labeled dataset, training was performed using standard available models
like CNN, VGG16, VGG19, and Inception V3. Various model hyperparameters were
tuned repeatedly during the experiment, and multiple experiments were carried out. The
objective was to have high classification accuracy. The proposed ABISA model was built
on top of the vision transformer model. With the increasing application of the vision
transformer model into computer vision, here, the VIT architecture was customized to suit
the OKC histopathology image dataset. Introducing the LSTM layer with a size of 32 after
the self-attention block reduced the dimension from 64 to 32. This dimension reduction
contributed to a significant reduction in the number of parameters as OKC was recurring,
and non-recurring OKC was of smaller feature space. This model was more computationally
efficient. The model was more parameter-efficient by reducing the dimensionality of the
features before feeding them into the dense layers. This was particularly useful as fewer
images were considered for training. Multiple experiments were conducted to arrive at an
LSTM layer value of 32. The LSTM layer’s integration helped maintain a memory of past
states while processing new patches. This was crucial for recognizing patterns that span
across multiple patches in an image. It can learn to recognize object shapes, contours, and
other sequential patterns contributing to image classification. The LSTM was beneficial
when dealing with sequences of images where temporal relationships played a crucial
role. Overall, by including an LSTM layer, this architecture creates a hybrid model that
capitalizes on spatial and temporal dependencies. This integration is beneficial when
working with images containing sequential patterns or aiming for higher-level feature
abstraction. By training those OKC images with complete clinical variables and follow-up,
the possibility of bias is eliminated. The trained model classified the risk of recurrence
into recurrent and non-recurrent OKCs based on histopathological evaluation. Further
validation was performed by blinding the images pooled from other centers to rule out
false positives and negatives, meeting clinical standards.

6. Conclusions

The proposed pipeline for risk stratification of OKCs is a powerful tool to improve
patients’ dental health. The proposed model significantly reduced (58%) trainable param-
eters compared with its peer state-of-the-art algorithms including vision transformer. A
recall of 1.0 and precision of 0.96 suggested confidence in the proposed model for detecting
recurring OKC correctly. These results stratified risks into correct groups of recurring or
non-recurring OKC. This pipeline significantly boosts pathologists’ detection of recurring
and non-recurring OKC. This model could be utilized locally or remotely based on any
OKC WSI. The attention-based image sequence analyzer (ABISA) model reduces training
time significantly and can detect an entire WSI in less than 10 min. Most of the time, the
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execution time depends on WSI size. The entire process was automated to use WSIs as
input, concluding risk stratification for odontogenic keratocysts. Hence, managing such
patients for dentists became comparatively smoother.

7. Future Work

Although the proposed model has a very high accuracy of detecting recurring and
non-recurring OKC at the tile level, slide-level accuracy depends on the number of tiles
having features of recurring and non-recurring. The dataset ignores blurred images and
discards images that are not adequately stained. This study could help clinicians plan
surgical management well in advance based on the automated h/p report. This adds to
the advantage of adopting a conservative mode of treatment in our institute. Transformer-
based architecture is rapidly gaining popularity in computer vision applications. Hence,
this research can be suitably extended to different cancers where whole slide images are
the gold standard for detecting cancer.
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