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Abstract: Our image recognition system employs a deep learning model to differentiate between
the left and right upper limbs in images, allowing doctors to determine the correct surgical position.
From the experimental results, it was found that the precision rate and the recall rate of the intelligent
image recognition system for preventing wrong-site upper limb surgery proposed in this paper could
reach 98% and 93%, respectively. The results proved that our Artificial Intelligence Image Recognition
System (AIIRS) could indeed assist orthopedic surgeons in preventing the occurrence of wrong-site
left and right upper limb surgery. At the same time, in future, we will apply for an IRB based on our
prototype experimental results and we will conduct the second phase of human trials. The results of
this research paper are of great benefit and research value to upper limb orthopedic surgery.

Keywords: intelligent image recognition; wrong-site left and right upper limb surgery; accuracy rate;
recall rate; IRB

1. Introduction

Even with advances in medical technology, medical errors due to human error are
still bound to occur. According to the research report To Err is Human: Building a Safer
Health System published by the U.S. National Institute of Medicine in 2000, the rate of
medical errors caused by human negligence is as high as 2.9%, and over 50% of medical
errors are preventable. Hence, how to avoid medical errors caused by human negligence
has always been an important research topic in the medical field. Among all medical
procedures, surgery has always been the riskiest. Among the types of surgical medical
negligence, incorrect identification of surgical site, defined as making an incision on the
incorrect anatomical region, is among the most common. In orthopedic surgery, the wrong
site of surgery includes the identification of the wrong operation position and the wrong
operation site. Taking the wrong incision position as an example, assume that the patient’s
original incision was intended for the right limb, but after anesthesia, due to human error,
the incision was performed on the left limb. Alternatively, the surgery was intended to
be performed on the right elbow, but after anesthesia, the surgery was performed on the
right wrist. Such operations are often simple operations, but performing surgery on the
wrong surgical site causes more serious injuries to the patient; moreover, the medical team
and the hospital could face significant compensation claims, pressure from public opinion,
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and even legal proceedings [1]. Therefore, how to avoid medical errors caused by human
negligence remains a primary research topic in the medical field.

Among all medical errors, surgical medical errors often cause significant injuries and
losses to patients and medical institutions, since surgery is the most prevalent medical
action. Medical negligence in surgery is divided into several categories. Among them, in the
2019 annual report of the Taiwan Patient Safety Reporting System [2], it was pointed out that
the incidence of surgical site errors reached second place among the most common types of
surgical error events. How to avoid surgical site errors is an important research issue in the
field of medical malpractice. As shown in Figure 1, among all surgical specialties, as many
as 56% of errors in orthopedic surgery are surgical site errors, and because orthopedic
surgery pertains to skeletal and muscular injuries of the extremities, only 5.4% can be
corrected before surgery [3].

Figure 1. Categories of surgical site errors [3].

In view of this, after discussions with the supervisor and the cooperating orthopedic
surgeon, this project will first take the example of upper limb orthopedic surgery as the main
surgical site to propose a smart image recognition system that can prevent identification
errors between the left and right upper limb in orthopedic surgery and assist orthopedic
surgeons in preventing upper limb surgery left–right misalignment errors.

Contemporary measures aimed at preventing erroneous upper limb surgeries often
rely on marking or barcode scanning methodologies, as shown in Figure 2. Nonetheless,
the susceptibility to human error and external influences remains a notable drawback. In
contrast, the Artificial Intelligence Image Recognition System, AIIRS, hinging on a YoloV4-
based deep learning model, effectively discerns left and right upper limbs within medical
imagery, eliminating the reliance on external markings or scanning devices. Notably, the
AIIRS showcases a commendable level of accuracy and recall rates in image recognition.
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Figure 2. Marking and barcode scanning.

In a systemic review on wrong surgical sites published by Susanne Hempel in JAMA
Surgery in 2015, it was pointed out that the incidence of surgical site errors is about 1 in
100,000. The major reason for the occurrence of these mistakes was poor communication
between medical personnel. Poor communication included miscommunications among
staff, missing information that should have been available to operating room staff, surgical
team members not speaking up when they noticed that a procedure targeted the wrong
side, and surgeons ignoring surgical team members when laterality was questioned [3].
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Medical teams must communicate fully and not be afraid to ask questions. Chief surgeons
must also respect everyone’s opinions to avoid medical negligence in terms of wrong
surgical site.

In a study published by Mark A Palumbo in 2013, it was pointed out that it is not
only the limbs that can be operated on in the wrong place—wrong-site spinal surgery often
occurs. If the wrong site is prescribed, it is devastating for both the patient and the doctor.
Hence, it was suggested that strict regulations should be put in place to prevent wrong-site
surgery. It is also necessary to develop a customized process (patient-specific protocol) to
avoid wrong-site surgery [4].

Omid Moshtaghi pointed out that, although California introduced a universal surgical
safety protocol in 2004 to ensure the safety of patients during surgery, wrong-site surgery
still continues to occur. In terms of disciplines, wrong-site surgery was the most common
in orthopedics, accounting for 35% of cases [5].

The authors pointed out that orthopedics is the department with the most frequent
surgical site errors. The most common causes included a breakdown in communication,
time pressure, emergency procedures, multiple procedures on the same patient by differ-
ent surgeons, and obesity. Careful pre-surgery checks were recommended to determine
effective solutions [6].

Currently, during orthopedic surgery, a mark is drawn on the surgical site to remind
the surgeon where to draw the knife before the skin is disinfected and draped. Currently,
the site of orthopedic surgery is mostly marked by using a colored pen to draw a mark on
the relevant body part, as shown in Figure 2. Some hospitals adopt the barcode scanning
method and use a barcode machine to confirm whether the position is correct, as shown in
Figure 2. However, regardless of marking or barcode, wrong-site surgery may still occur
due to the following factors: initiating or completing surgery under unusual time pressure,
incorrect instrument setting or handling in the operating room, referral of patient to another
physician, physicians from multiple disciplines participating in the operation, and unusual
physical features requiring special positioning.

Based on the above literature review, traditional methods should still currently be used
to prevent wrong-site surgery. These include strengthening communication, identifying
patients correctly, marking the surgical site, time-out before surgery, and using check lists.
Stricter inspections and checks are needed to prevent the occurrence of surgical site errors.

Among intelligent image recognition technologies, deep learning image recognition
is generally used. This type of image recognition method mainly uses a large number of
training data sets to find the characteristics of the image to be recognized. However, the
current deep learning image recognition technology cannot be applied to the intelligent
image recognition system for left and right upper limb orthopedic surgery discussed in
this study, since the left–right symmetry of the human body is the golden ratio. If there are
no special marks, birthmarks, or scars on the left or right upper limbs, the image features
of the left and right upper limbs will be the same.

Hence, this paper aimed to develop an upper and lower limb surgical site identification
system based on deep learning. In the first stage, a dummy was used as the test object.
After the deep learning model training is mature, IRB approval will be sought. In the
second stage, human trials will be conducted.

After discussing these issues with an orthopedic surgeon (corresponding author),
it was concluded that it is absolutely necessary to develop an orthopedic upper limb
intelligent image recognition system to replace the marking and barcode machine scanning
methods before surgical disinfection and draping. Orthopedic surgery accounts for 41%
of wrong-site surgery overall, putting it in first rank. Among wrong-site errors, left and
right position errors are the most commonver, most research related to upper limb surgery
focuses on rehabilitation, lymph, and the nerves [7–29]. No research focused on using
image recognition to distinguish between the left and right upper limbs to prevent wrong-
site surgery was found. Developing a new type of intelligent image recognition system
to help surgeons distinguish the left and right upper limbs to prevent wrong-site surgery
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during orthopedic upper limb surgery would bring considerable benefits and research
value.

This paper adopted YoloV4 as the main deep learning model. The analysis of CNN-
based architecture included CSPDarknet53, SPP (Spatial Pyramid Pooling), and PANet
(Path Aggregation Network). In addition, Yolo head and mish activation were also included.
CSPDarknet53 is an improved version of Darknet. It is designed to improve information
fluidity and accelerate training convergence and detection performance. SPP allows the
network to process different sizes of input images to improve the model’s detection of
targets on different scales. PANet was used to fuse features on different scales to improve
the accuracy of target detection, especially for small targets. Yolo head is responsible for
predicting the location, category, and confidence of the object. In addition, anchor boxes
were used to predict the location of objects. Mish activation is a non-linear activation
function to improve the learning ability of the model. The main contribution of this paper is
the combination of existing deep learning models to achieve intelligent image recognition
of the left and right upper limbs for orthopedic surgery through different new data training
sets and test training sets and the coordination of model parameters with the goal of
preventing wrong-site upper limb surgery.

This paper endeavors to address the critical issue of mitigating erroneous upper
limb surgeries through the implementation of an Artificial Intelligence Image Recognition
System (AIIRS). The pivotal research query revolves around the system’s precision and
consistency in discerning between the left and right upper limbs in medical imagery,
thereby aiding orthopedic surgeons in averting potential procedural errors. The seminal
contribution of this paper resides in the development and evaluation of the AIIRS. It is a
groundbreaking Artificial Intelligence Image Recognition System designed specifically to
counter the issue of erroneous upper limb surgeries. To the best of our knowledge, this
study represents a pioneering application of deep learning image recognition in the context
of mitigating erroneous upper limb surgeries, showcasing its feasibility and efficacy within
the confines of a comprehensive pilot study.

To comply with academic theory and human research ethics, laboratory students were
used as dummy orthopedic surgery patients. Their images were used to establish a training
data set and an initial test data set. After the prototype of the deep learning model is
completed and trained, IRB approval will be applied for and the second phase of human
trials will take place.

The subsequent segments of this paper comprise an in-depth exposition of the materi-
als and methods adopted (Section 2), a comprehensive report on the experimental findings
and analyses (Section 3), a critical discussion on the study’s implications and limitations
(Section 4), and a concluding segment that not only synthesizes the findings but also offers
recommendations for future research directions.

2. Materials and Methods

Current position marking for orthopedic surgery is mainly based on marking or
barcode scanning. However, these methods may still generate surgical site errors due to
time pressure, unfamiliar instrument setup or handling, participation of multiple surgeons,
patients being referred to another physician, and other factors. Hence, preventing wrong-
site surgery is absolutely the top priority of orthopedic surgery.

In this paper, the corresponding author, Dr. Hsuan-Kai Kao, was also an orthopedic
surgeon in the department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou,
Taiwan. According to discussions with Dr. Kao, the marking and barcode scanning
methods are still used in the hospital without using any artificial intelligence method
for orthopedic surgery. In addition, wrong-site upper limb surgery often occurs in the
department. Hence, this paper proposed an Artificial Intelligence Image Recognition
System, AIIRS, combined with a deep learning neural network to assist orthopedic surgeons
and prevent wrong-site upper limb surgery. In an internal survey of the members of the
Orthopedic Medical Association of the Republic of China, it was shown that as many as
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56% of errors in orthopedic surgery are left–right errors, and only 5.4% could be corrected
before the operation.

As assessed through actual visits in the hospital and discussions with an orthopedic
surgeon, who is also the corresponding author of this paper, the medical unit currently
still uses marking or barcode scanning to recognize the left and right positions of the
upper limbs for orthopedic surgeries, without any AI image recognition. Although many
AI medical image recognition methods have been proposed, none of them was applied
to recognize the left and right positions in upper limb orthopedic surgery. Therefore,
the AIIRS proposed in this paper could help avoid left and right identification errors in
upper limb orthopedic surgery. Therefore, the AIIRS proposed in this paper for left–right
recognition during upper limb orthopedic surgery could bring considerable benefits and
research value.

This paper aimed to combine an existing deep learning model based on YoloV4 with
an artificial intelligence image recognition system for preventing wrong-site upper limb
surgery. The architecture included the backbone, neck, and head. The backbone used CNN
architecture, such as CSPDarknet53. The neck used methods of integrating various scales,
such as SPP and PANet. The head used the same bounding box methods and loss function
as the head of YoloV3. CSPDarknet53 is based on CSPNet (Cross-Stage Partial Network).
CSPNet contains 5 CSP (Cross-Stage Partial) modules. In CSPNet, some input will be split
for convolution. After the convolution is completed, it will be concatenate with prior input
convolution, and then output to the input of the next layer. The output of the last layer will
be concatenate with the part of the input that was not processed repeatedly. CSPNet could
thus effectively alleviate the vanishing gradient problem and deepen the number of layers
in the network. A Spatial Pyramid Pooling (SPP) layer increased the receptive field of the
network. The maxpool method of kernel size K = {1 × 1, 5 × 5, 9 × 9, 13 × 13} was used.
Finally, feature maps of different scales were operated with concatenation. In PANet, two
feature maps are combined with a concatenate operation. The head used was the same as
the head of YoloV3. No bilinear pooling with poisoning detection module was used, since
it was assumed that no poisoning attacks existed in YoloV4 [30].

Our literature review showed that artificial intelligence (AI) systems are more and
more important in orthopedic surgery [31]. It also summarized the current state of machine
learning in the field of orthopedic surgery. Ref. [32] showed that machine learning could
be used in orthopedic surgery with good results. The utility of artificial intelligence and
machine learning in orthopedic surgery continues to grow and expand. In [33], it was
shown that artificial intelligence and machine learning applications could help expand
orthopedic surgery field. However, this research focused on lower extremity arthroplasty.
None of these studies addressed the prevention of wrong-site upper limb surgery. Therefore,
the combination of an existing deep learning neural network model, such as YoloV4, with
the coordination of model parameters through different new training data sets and test
data sets to achieve intelligent image recognition of the left and right limbs for upper limb
orthopedic surgery, as proposed in this paper, is still needed.

In our neuro-heuristic analysis model, we focused on confidence score, Accuracy, and
Recall. The performance evaluation of class confidence scores is shown in the following
experimental results. Accuracy was defined as (1) a true positive (TP), an actual positive
sample which is predicted to be a positive sample; a false positive (FP), an actual negative
sample which is predicted to be a positive sample; a false negative (FN), an actual positive
sample which is predicted to be a negative sample; and true negative (TN), an actual
negative sample which is predicted to be a negative sample, respectively. Recall was
defined as (2).

Among existing deep learning neural network models, Yolo was proven to be used
in most image recognition applications. Hence, the neural network model in this paper
adopts the most commonly used YoloV4 model. Since CSPNet in YoloV4 is based on the
DarknNet53 neural network, and DarkNet53 is developed based on ResNet, two different
models, namely ResNet50 and YoloV4, were used for simultaneous training. In the data



Diagnostics 2023, 13, 3667 7 of 17

set, the total number of photos was 810. Among these data, 122 photos were generated by
the data generation method. The ratio of the training set to the test set is 9:1. We utilized
the LabelImg software version 1.8.6 (MIT License, U.S.A.) for image-labeling purposes.
The photos were labeled one by one for the training range, and divided into two parts for
right-hand and left-hand training, as shown in Figure 3.

Figure 3. Labeling using the LabelImg software.

In ResNet50, the marked data set was classified into a training set and a test set in
two folders. The two folders were converted into.record files to ensure that the model
training process could process the image files with adding a pre-training model. This model
was related to the final training results. If this pre-training model was replaced, it could
be transformed into other models. ResNet50 is shown in Figure 4. The pipeline.config
parameter of ResNet50 is listed in Table 1 [34]. The YoloV4 parameters are listed in Table 2.
The YoloV4 model is shown in Figure 5. We used the mish function as the activation
function and the CIOU function as the loss function in YoloV4 [35].

Figure 4. ResNet50 model [34].
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Table 1. Parameters in pipeline.config of ResNet50 [34].

Name Value

num_classed 2
batch_size 8

fine_tune_checkpoint_type detection

Table 2. Parameters in YoloV4 [35].

Name Value

batch 64
max_batches 6000

steps 3600, 3800
width 416
height 416
classes 2
filters 21

activation function Mish
loss function CIOU

Figure 5. YoloV4 model [35].

In the training process, num_classed will affect the number of recognized categories,
as listed in Table 1. Since there are two categories, left-hand and right-hand, in this paper,
num_classed was set to 2. batch_size represents the number of input images in each
iteration. As batch_size increases, the training time increases. In this paper, batch_size
adopted a default value of 8. fine_tune_checkpoint_type is the pretrained model. Here, it
adopted the default model of detection [34]. In Table 2, batch is defined as the batch size.
Batch adopted a default value as 64 for YoloV4. max_batches is 2000 times the number of
classes. If it is less than 6000, it will be set to 6000. As max_batches increases, the training
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time increases. The steps are 80% and 90% of 2000 times the number of classes. Since
the number of classes was set to 2 in this paper, the steps were calculated as 3200 and
3600, respectively. By reducing the number of steps, the learning rate decreases during
this training process. Training could be more stable with better convergence. Width and
height are defined as the resized input image, 416 and 416 as default. Since there are two
categories, left-hand and right-hand, in this paper, the number of classes was set to 2. Filters
can be calculated as (classes + 5)× 3. Hence, the value of filters was set to 21. The default
activation function of YoloV4 is mish. CIOU was used as the loss function in YoloV4 to
calculate the difference between the predictions and the actual data [35].

In the data used, to ensure the number of training data is adequate, some data were
generated by the data generation method. The number of training data was 810. For
the data set, the number of photos was 680. The photos, at different angles, were taken
of 15 students recruited from the laboratory to voluntarily participate. To increase the
data training set, 130 photos were generated by rotating, enlarging, and decreasing some
original photos. Hence, a total of 810 photos served as the training data set in this paper.
The labeling method used in this paper is the LabelImg software; the xml extension format
was selected for labeling. The photos were labeled one by one for the training range and
divided into two different labels, right-hand and left-hand, as shown in Figure 3.

In order to enrich the training content, 729 photos were used for training and 81 photos
were used for testing. The ratio of the test set to the training set was 1:9. In the pre-
processing of data, each training datum was labeled one by one using the LabelImg
software. The training data set was divided into right-hand data and left-hand data. In
the model training program file, the paths to the training set and validation set were set
first. The test set was separately distinguished and was not added to the training. The
classification method was to randomly select 81 photos from the 810 photos in the data set as
the test set. Training was an independent process. The test results were a separate process.

Since the AIIRS could recognize the left and right upper limbs, the AIIRS could reduce
the risk of placing surgical tools and implants in the wrong position during surgery. It also
could reduce human errors by medical staff. Therefore, the advantages of the AIIRS include
surgical accuracy improvement and human error reduction. Although the AIIRS could
accurately recognize the left and right upper limbs for orthopedic surgery, we could not use
real patient data for training and testing due to privacy and security issues. Therefore, it is
not certain whether the AIIRS could be applied to clinical left and right limb identification
in upper limb orthopedic surgery. This is the main disadvantage of the AIIRS. In order to
overcome this disadvantage, IRB approval will actively be applied for in the future to use
real patient data for training and testing so that the model can be suitable for clinical left
and right limb recognition for the purposes of upper limb orthopedic surgery.

To comply with academic theory and human research ethics, laboratory students
were used as dummy orthopedic surgery patients. Their images were used to establish
a training data set and an initial test data set. After the prototype of the deep learning
model is completed and trained, IRB approval will be applied for. Then, the second phase
of human trials will be conducted with the goal of achieving smart medical care through
industry–university cooperation.

3. Results

Since this paper is a pilot study, the experiments were executed by our lab members,
not real patients, to avoid seeking ethical permission. In addition, it was assumed that the
lighting in the operating room is sufficient, since image recognition for left and right upper
limbs would be executed before surgery.

At the small model evaluation stage, many indicators may cause confusion for per-
formance evaluation. This paper selected two indicators, Accuracy and Recall, to measure
the overall performance of our model to simplify the decision-making process. This paper
focused on Accuracy and Recall since the proportion of correct classifications and correct
samples in the overall model needed to be judged. Hence, Accuracy and Recall are the
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main performance metrics in our experimental results. Accuracy was defined as (1) a true
positive (TP), an actual positive sample which is predicted to be a positive sample; a false
positive (FP), an actual negative sample which is predicted to be a positive sample; a false
negative (FN), an actual positive sample which is predicted to be a negative sample; and
true negative (TN), an actual negative sample which is predicted to be a negative sample,
respectively. Recall was defined as (2).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Recall =
TP

TP + FN
(2)

The confidence value (Conf_threshold) close to the recognition frame was defined as the
threshold value of object frame recognition and could be adjusted. It was also an important
parameter in our proposal. For example, if the confidence value is set to 0.9, only the object
frame in which Conf_threshold of object frame recognition is larger than 0.9 could be shown
on the screen, as shown in Figure 6.

Figure 6. Cont.
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Figure 6. Example with Conf_threshold larger than 0.9.

When the size of the input image is the same, a lower Conf_threshold will lead to
an FP, resulting in a decrease of the overall accuracy. In order to determine the optimal
Conf_threshold, the Conf_threshold was increased by 0.1 each time to calculate Accuracy and
Recall with input sizes of 608 × 608, 512 × 512, and 416 × 416, respectively.
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Figures 7 and 8 show Accuracy and Recall with an input size of 608× 608 and Conf_threshold
increased by 0.1 each time. Figures 8 and 9 show Accuracy and Recall with an input size of
512 × 512 and Conf_threshold increased by 0.1 each time. Figures 8 and 10 show Accuracy
and Recall with an input size of 416 × 416 and Conf_threshold increased by 0.1 each time.
The experimental results in Figures 7–12 show that the optimal Conf_threshold is 0.9.

Figure 7. Accuracy with input size 608 × 608.

Figure 8. Recall with input sizes 608 × 608, 512 × 512, and 416 × 416.
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Figure 9. Accuracy with input size 512 × 512.

Figure 10. Accuracy with input size 416 × 416.

The following experimental results are based on the comparison of Accuracy and Recall
while Conf_threshold is 0.9 and input size is 608 × 608, as shown in Figures 7 and 8, since
the AIIRS had optimal Accuracy and Recall with a Conf_threshold of 0.9 and an input size
of 608 × 608. AIIRS-608 is defined as the AIIRS with an input size of 608 × 608 and others
follow in the same way. Hence, the optimal value of Conf_threshold was set to 0.9 for AIIRS
and ResNet50, where ResNet50-608 is defined as ResNet50 with an input size of 608 × 608
and others follow in the same way.
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Figure 11. Accuracy under AIIRS and ResNet50 with Conf_threshold of 0.9 (the orange color represents
AIIRS and the blue color represents ResNet50).

Figure 12. Recall under AIIRS and ResNet50 with Conf_threshold of 0.9 (the orange color represents
AIIRS and the blue color represents ResNet50).

Figure 11 shows that Accuracy with an input size of 608 × 608 in both the AIIRS and
ResNet50 was higher than Accuracy with other input sizes while Conf_threshold was set
to 0.9. It also shows that Accuracy in the AIIRS was higher than Accuracy in ResNet50. In
the same way, Recall with an input size of 608 × 608 in both the AIIRS and ResNet50 was
higher than Recall with other input sizes, as seen in Figure 12, while Conf_threshold was set
to 0.9. Figure 12 also shows that Recall in the AIIRS was higher than Accuracy in ResNet50.

4. Discussion

Given that Conf_threshold has an impact on performance metrics such as Accuracy
and Recall, our primary objective in the experimental results was to ascertain the optimal
value of Conf_threshold. Figures 7–10 show that the optimal Conf_threshold for the AIIRS
was 0.9. Figures 7–10 also show that the optimal input size for the AIIRS was 608 × 608.
Figures 11 and 12 show that Accuracy and Recall in the AIIRS were higher than Accuracy and
Recall, in ResNet50. Figures 11 and 12 also show that the optimal input size for ResNet50
was 608 × 608. Figure 8 shows that Recall with different input sizes (608 × 608, 512 × 512,
and 416 × 416) was all the same. Conf_threshold only affected false positives (FPs) and true
negatives (TNs).

To evaluate the success of the classification problem and the location of errors, in
addition to Accuracy and Recall, a confusion matrix of randomly selected experimental results
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of 81 test images was created, as listed in Table 3. It proved that the AIIRS could indeed
achieve left and right position recognition for upper limb orthopedic surgery.

Table 3. Confusion matrix of AIIRS.

Actual Values Positive Actual Values Negative

Predicted Positive 81 0

Predicted Negative 0 81

The experimental results prove that our designed intelligent image recognition system
based on YoloV4 could be applied for the prevention of wrong-site upper limb surgery.
Based on the pilot experimental results, we will apply for an IRB for our artificial intelligence
image recognition system (AIIRS) for the prevention of wrong-site upper limb surgery.
Hence, in future, our experimental results will be closer to perfection and consistent with
actual left and right upper limb position identification for orthopedic surgery.

5. Conclusions

Among the different types of surgical medical negligence, wrong-site surgery reached
second place among the most common types of surgical error events. Orthopedic surgery
is where surgical errors most commonly occur. Of these, as many as 56% are left–right
errors, and only 5.4% could be corrected before the operation. Since surgical site errors are
often caused by human negligence, 50% of them could be prevented. Therefore, preventing
surgical site errors is a top priority in orthopedic surgery.

However, the current methods of preventing wrong site selection in upper limb
orthopedic surgery are mainly marking or barcode scanning. However, the above methods
are still prone to errors due to many external factors. Therefore, this study, in cooperation
with orthopedic surgeons at our hospital, integrates medical and artificial intelligence
technologies and develops an intelligent image recognition system for left and right side
recognition during upper limb orthopedic surgery to replace the above-mentioned marking
and barcode machine scanning methods.

Through image recognition of the upper limbs and machine learning technology, the
system we develop can judge whether the left upper limb in the image is the left or the
right upper limb. Then, doctors can obtain the correct surgical position to help orthopedic
surgeons prevent the occurrence of wrong-site upper limb surgery. It is believed that the
results of this project will be of considerable benefit and research value for upper limb
orthopedic surgery.

To apply our research results to clinical treatment at the hospital, laboratory students
were used as simulated patients in the prototype stage to complete the deep learning model.
For the second phase of human trials, we will apply for an IRB. This way, the model can
be actually applied to clinical medical treatment in hospitals and help to achieve smart
medical treatment.

In our artificial intelligence image recognition system (AIIRS), brightness, shooting
angle, and image resolution were set in advance. In addition, it was assumed that the
patients would not be covered by any objects. However, these potential limitations or
challenges to implementing the image recognition system may occur in real-world clinical
settings. Hence, in the future, the AIIRS will be improved in terms of brightness, shooting
angle, image resolution, and objects covering the patient to address concerns about its
practicality and feasibility. Moreover, once our IRB application is approved, the neural
network model will be trained and tested again by collecting training and test data sets from
actual patients and applying them for left and right limb recognition in clinical upper limb
orthopedic surgery. In addition, orthopedic surgery also includes lower limb orthopedic
surgery. Like upper limb orthopedic surgeries, currently, lower limb orthopedic surgeries
mostly use marking or barcode scanning to recognize left and right limb positions without
any AI methods. Hence, we believe that the AIIRS proposed in this paper could be applied
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to left and right recognition in lower limb orthopedic surgery through different training
data sets, test data sets, and parameter modifications of the neural network model.

We will also continue to optimize the model architecture used for training, hoping to
achieve the same results with lower layers and fewer neurons (nodes), so that the system
requirements are reduced and recognition speed is further improved in order to facilitate
practical applications. At the moment, the system is able to run smoothly thanks to our
hardware facilities.
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