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Abstract: Early detection of colorectal cancer is crucial for improving outcomes and reducing mortality.
While there is strong evidence of effectiveness, currently adopted screening methods present several
shortcomings which negatively impact the detection of early stage carcinogenesis, including low
uptake due to patient discomfort. As a result, developing novel, non-invasive alternatives is an
important research priority. Recent advancements in the field of breathomics, the study of breath
composition and analysis, have paved the way for new avenues for non-invasive cancer detection
and effective monitoring. Harnessing the utility of Volatile Organic Compounds in exhaled breath,
breathomics has the potential to disrupt colorectal cancer screening practices. Our goal is to outline
key research efforts in this area focusing on machine learning methods used for the analysis of
breathomics data, highlight challenges involved in artificial intelligence application in this context,
and suggest possible future directions which are currently considered within the framework of the
European project ONCOSCREEN.

Keywords: breathomics; colorectal cancer; volatile organic compounds; machine learning; artificial
intelligence; automated diagnosis; validation; manifold learning; ONCOSCREEN

1. Introduction

Cancer is a group of complex diseases linked to abnormal cell growth with devastating
consequences for the patient. It ranks as a leading cause of death and a profound barrier
to increasing life expectancy worldwide [1]. Detection of cancer in early stages along
with timely and appropriate treatment is a critical component of reducing cancer-related
mortality and morbidity [2]. Currently, there is a lack of reliable screening modalities for
highly fatal cancers like pancreatic and gastric cancer [3]. Similarly, for highly prevalent
malignancies such as breast and colorectal cancer (CRC), there is plenty of room for enhanc-
ing the existing screening practices. In particular, colonoscopy and fecal immunochemical
test (FIT) are widely accepted as the cornerstones for the early detection of CRC [4]. During
a colonoscopy procedure, early precancerous lesions can be detected and removed by a
clinical expert. Nevertheless, colonoscopy is an invasive and costly procedure with low
rates of compliance [5]. FIT serves as a complementary or alternative screening modality to
colonoscopy for patients that decline the latter [4]; it is a non-invasive and low-cost test
that serves as a widely adopted screening procedure for the large part of the average-risk
population. Nevertheless, FIT shows modest accuracy in detecting CRC and advanced
adenoma (AA), with sensitivity remaining under 70% and 50%, respectively [6]. Hence,
CRC screening suffers from both low rates of adherence to the test (e.g., colonoscopy) as
well as low detection rates (e.g., FIT).

In an effort to address the aforementioned problems, recent technological advances
have brought up new novel non- or minimally invasive approaches such as breath, blood,
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and imaging-based tests [7,8]. In recent years, metabolomics has steadily gained momentum
in various frontiers including disease detection and personalized medicine [9,10]. Breath
volatolomics, also known as breathomics, can be seen as a branch of metabolomics, focusing
on human breath. Breathomics studies volatile organic compounds (VOCs) and their metabo-
lites that come from our respiratory system and internal organs. By simply exhaling air
through a breathing device, it becomes possible to capture and analyze the profile of VOCs
that are exhaled and present in the sample. Typically, a “breath biopsy” can be acquired in a
non-invasive manner through the use of analytical methods like gas chromatography–mass
spectrometry (GC-MS) or by utilizing sensors of various electronic nose devices [11]. Over
two thousand VOCs have been reported to emanate from the human body [12], forming
an inexhaustible treasure trove of biomarkers, which in turn have been linked to various
diseases, including cancer [13,14]. Cancer cells undergo metabolic alterations which can
result in the release of specific VOCs. For example, it has been shown that these cells tend to
metabolize glucose via aerobic glycolysis rather than oxidative phosphorylation, an effect
known as the Warburg effect [15]. Researchers posit the hypothesis that these VOCs are
released into the bloodstream and eventually expelled through exhalation, passing through
the endobronchial cavity [16]. A free web-based database, also known as the Cancer Odor
Database (COD), contains comprehensive information about cancer-related VOCs, with its
data being extracted directly from the scientific literature [17]. Another more general and
recent database, the Human Breathomics Database (HBD) [18], contains comprehensive
information about VOCs reported in 2766 publications. It provides biomedical information,
underlying biochemical pathways and current scientific evidence regarding the association
of each VOC with various diseases. In particular, research efforts on the determination
of cancer-related VOCs have shown that some may contribute to more than five different
cancer types [14,19]. For example, Nakhleh et al. utilized 13 VOCs for the detection and
discrimination between 17 different disease conditions from 813 patients [14]. Despite the
fact that breath analysis is still in early stages of development, analyzing breath composition
holds significant potential for contributing to several subfields of cancer research such as
detection [11,13], screening/monitoring [20], prognosis [21], and treatment response [11,22].
This review will focus on the relevance of volatolomics to CRC and recent theoretical and
technological advancements derived from the field of breathomics in this regard.

GC-MS is undeniably the gold standard in breath analysis in terms of precision, as it
enables separation, identification, and quantification of the different VOCs in the exhaled
breath gas. Alternative ways such as sensor-based techniques have also been introduced
with increasing interest [23]. Since GC-MS is resource-intensive, time-consuming, and
requires special expertise, sensor arrays in the form of breathing electronic devices/noses
(e-noses) constitute mobile, cost-effective, and user-friendly diagnostic alternatives that
are capable of providing quick results. Studies employing e-noses and breath-based VOCs
towards detection of CRC and AA are emerging at an increasing rate [24–28]. As a trade-off
for their virtues, the latter detect mixtures of VOCs instead of identifying the actual mass
of specific compounds. In other words, sensor arrays or e-noses are designed to imitate
the human olfactory system with the use of chemical sensors [29]. Applications of e-nose
devices in terms of odor perception are most often treated as black box models, focusing
more on the accuracy of the task to be performed (e.g., diagnosis/monitoring) and less on
understanding of how and why the subsequent results are derived [29].

While the use of chemical sensors holds the potential to revolutionize today’s medical
diagnostics on CRC breath, it also faces significant challenges and limitations [30]. First and
foremost, confounding factors such as age, diet, genetics, and smoking habits can introduce
variability in breath composition, threatening with inaccurate results [14]. Second, timing
and method of breath sample collection are critical considerations also, as exhaled breath
profiles can change rapidly with fluctuations in blood chemistry [31]. Third, standardized
protocols for uniform and repeatable breath sampling are imperative. Technical sensitivity,
particularly regarding sensor responses to temperature and humidity, presents obstacles
that necessitate controlled and sterile environments for analysis [32]. Fourth, data analysis
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also poses difficulties, with the choice of statistical methods, validation, and complex
modeling needing careful consideration [33]. For example, the breath signature of CRC
derives from statistical procedure; one has to seek differences between hundreds of VOCs
that might be present. Searching for statistically significant differences between breath
profiles of CRC patients and healthy controls, one needs to take into account the multiple
comparison problem to ensure no false discoveries [33]. Today, breath-based VOCs reported
as biomarkers for CRC detection exhibit a substantial amount of variation in the scientific
literature [8,34–44]. Fifth, achieving strong predictive values for disease diagnosis and
monitoring large-scale, multicenter clinical trials with blind validation are required [30].
Sixth, special emphasis on reproducibility and adaptation to real-world clinical conditions
have to be given so as to formulate widely accepted technical and clinical standards in
order to accelerate research and finally integrate breath analysis into routine medical testing.
A study discussing technical standards and recommendations for sample collection and
analytic approaches for lung disease can be found in [45]. Addressing these challenges is
crucial to establishing breath-based diagnosis in the clinical practice.

In this article we particularly focus on how advancements from the field of ma-
chine learning (ML) and artificial intelligence (AI) can be used towards useful, reliable,
accurate, and reproducible research towards breath-based diagnosis. It is the first re-
view article that exclusively focuses on AI applications for CRC detection using breath-
omics; it aims to present the latest findings reported on the use of AI techniques and
methods targeting breath-based VOCs for CRC diagnosis and has been performed in
the context of the Horizon Europe project ONCOSCREEN (https://oncoscreen.health/,
accessed on 10 December 2023). The project seeks to develop novel methodologies for can-
cer screening and early detection, ultimately aiming to enhance citizen awareness, partic-
ipation, and adherence to relevant protocols. Among the various solutions proposed by
the project, CRC diagnosis using breath-based VOCs is planned to be pursued utilizing
both analytical and sensor-based methodologies. As a first step, a GC-MS instrument
will be used for collecting prospective breath samples from healthy controls as well as
CRC-diagnosed patients, thereby establishing a VOC signature database. Subsequently, a
previously developed sensor array-based breath analyzer prototype [46], originally used
for the detection of gastric cancer VOCs, will be modified based on the gas biomarkers
defined in the GC-MS analysis phase. The basic analytical principle of the breath ana-
lyzer is based on the activity of a gold nanoparticle sensor array. This array was made of
8 different chemistries detecting the transient effect of the breath sample on the resistance
of each of these sensors for 60 s. This led to the generation of 8 × 60 observations for
each breath sample. The recent model has been upgraded to harbor 48 sensors resulting
in 48 × 60 time points for each breath sample to enable a richer picture best analyzed by
different AI frameworks. In our opinion, this mode of VOC mixture detection and labeling
best resembles the principle of smell distinction existing in the mammalian olfactory bulb.
Finally, an AI module of the device will be trained on electrochemical signal responses
between healthy and CRC samples. The resulting new prototype will be tested prospec-
tively for its ability to offer a portable and quick way of early CRC diagnosis. The project
foresees a comprehensive testing and validation process, including a clinical validation
study involving the enrollment of 4100 patients/citizens.

The rest of the article is structured as follows: we start with a brief introduction
around CRC and then we explore its breath blueprint as it is derived from past studies. We
then report the capabilities of contemporary diagnosis models for CRC and, subsequently,
we dive into each step of a typical AI pipeline towards the diagnosis of CRC. We place
special emphasis on identifying future challenges and considerations for the extension
of the existing breathomics AI toolbox against CRC. We hope that this overview forms a
basis upon which the community can further elaborate towards new advances taking into
consideration the current challenges. A schematic representation of the topics discussed in
this work can be seen in Figure 1.

https://oncoscreen.health/
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2. Colorectal Cancer

Colorectal cancer can be categorized as colon or rectal cancer depending on where it
initially develops. Despite their differences, these cancers are often grouped together [47].
The majority of colorectal tumors emerge from small clusters called polyps on the inner lin-
ing of the colon or rectum. The probability of a polyp transforming into cancer varies greatly
depending on its type, with some of them never turning into cancer [48]. Polyps can be
widely characterized as adenomatous, hyperplastic, inflammatory, or sessile serrated [49].
Hyperplastic and inflammatory polyps are frequently detected, with the adenomatous
polyps being considered precancerous [50]. Due to a higher risk of developing into CRC,
polyps characterized as sessile serrated are also regarded as adenomas [51]. Certain char-
acteristics of polyps such as the size being larger than 1 cm, the segregation of more than
three of them, or the detection of dysplasia after removal are linked with elevated risk of
cancer development [52,53]. Over time, some precancerous polyps progress into cancer-
ous growths within the walls of the colon or rectum [54]. The majority of CRC cases are
adenocarcinomas originating from mucus-producing cells in the inner layer that play the
role of lubrication and protection for the colon and rectum [55]. Of the adenocarcinomas,
signet ring cell and mucinous cancers may have a less favorable prognosis [56,57]. Finally,
less common types of CRC include carcinoid and gastrointestinal tumors, lymphomas, and
sarcomas [58,59]. Typically, the progression of a polyp to a malignant state takes several
years [54]. In many cases, patients do not experience symptoms until the cancer has already
progressed to either an early or advanced stage of development [60,61]. Therefore, early
detection, diagnosis, and staging by making use of diverse biomarkers are essential for
effective cancer treatment [62].
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3. Breath Blueprint as Biomarker for Early Detection and Monitoring of CRC

Scientific efforts towards the discovery of a CRC blueprint in breath began in the
early 2000s [44,63,64]. Overall, CRC has been consistently linked with classes of VOCs
such as alcohols, alkanes, aldehydes, and ketones [65,66], with the last two commonly
found in cancer metabolism [67]. Multiple studies have tried to come up with a CRC breath
profile [8,14,38,42–44,64]. Typically, these studies conduct VOC analysis in breath samples
using GC-MS analysis and later check for differences between groups of CRC patients
and healthy controls. If statistically significant differences are found in the levels of VOC
prevalence between groups, then these VOCs are suggested as potential biomarkers for
the disease. However, due to several differences in methodologies, technical equipment,
pre-processing routine, sample sizes, or even different cancer stages (known to affect the
VOC profile), a reliable and reproducible pattern of VOCs as biomarkers for general clinical
practice is yet to become available. The list of CRC breath-based VOC biomarkers that
have been reported in the scientific literature can be inspected in Table 1. Their underlying
biochemical pathways and functionalities are further explored in [38,65,68].

Table 1. Biomarkers reported for CRC.

Technique Sample Size VOC Reference

GC-MS CRC (15); Controls (20) Acetone; heptanoic acid;
2,6,10-trimethyldodecane; Śmiełowska et al., 2023 [34]

GC-MS CRC (30); Controls (84)

2-propenoic acid ethenyl ester; lactic
acid; 2,4-dimethyl-pyrrole;

p-menth-3-ene; 6-methyl heptane;
2,2,4,4-tetramethylpentane;

2-methylfuran; propyl pyruvate; and 2
unknown identified VOCs

Cheng et al., 2022 [35]

GC-MS CRC (162); Controls (1270)

propyl propionate; dimethyl sulfide;
1-penten-3-ol;

3,4-dimethyl-1,5-cyclooctadiene;
2-propenyl ester of acetic acid;

branched tetradecane;
2-methyl-2-propanol; 4-ethyl-1-octyn-

3-ol;2,2,4-trimethyl-3-pentanol;
cyclopropane; 2-ethoxypropane;

2-phenoxy-ethanol; heptane; branched
tridecane;

Woodfield et al., 2022 [36]

IMR-MS CRC (52); Controls (45)
Dinitrogen Oxide; Nitrous Acid;

1,3-Butadiene; Acetic Acid; Unknown
identified VOCs (9)

Politi et al., 2021 [37]

GC-MS CRC (83); Controls (90)

Tetradecane; ethylbenzene;
5,9-undecadien-2-one, 6,10-dimethyl

(E); decane; benzoic acid;
1,3-bis(1-methylethenyl) benzene;
decanal; unidentified compound;

ethyl-1-hexanol; dodecane; ethanone;
1{[}4-(1-methylethenyl)phenyl{]}; acetic

acid

Altomare et al., 2020 [66]

SIFT-MS CRLM(51); Controls (54) (E)-2-Nonene; acetaldehyde; triethyl
amine Miller-Atkins 2020 [39]

SIFT-MS CRC (50); Controls (100) * Propanal Markar et al., 2019 [40]

GC-MS CRC (71); Controls (89)

2-ethylhexanol; 3-methylhexane;
5-ethyl-3-methyloctane; acetone;

ethanol; ethyl acetate; ethylbenzene;
isononane; isoprene; nonanal; styrene;

toluene; undecane

Nakhleh et al., 2017 [14]
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Table 1. Cont.

Technique Sample Size VOC Reference

GC-MS CRC(65); Controls (122) Acetone, 6 ethyl acate, ethanol,
4-methyl octane Amal et al., 2016 [8]

GC-MS CRC (48); Controls (32) **

1,2-pentadiene; beta-pinene;
2-methylbutane; 1-methyl-3-

(1-methylethyl)benzene;
2-methylpentane; 1-(1-methylethenyl)-

2-(1-methylethyl)benzene;
5-butylnonane; methylcyclopentane;

undecane; cyclohexane; heptane;
nonanal; methylcyclohexane; dodecane;

4-methyl-2-pentanone; decanal;
1-methylnaphthalene;

1-ethyl-1,2,4-trimethylbenzene;
1-octene 1-ethyl-2,4,5-trimethylbenzene;

octane;
2,3-dihydro-1,6-dimethyl-1H-indene;

1,2,3-trimethylbenzene;
2,3-dihydro-4,7-dimethyl-1H- indene;
1,3-dimethylbenzene; 1,3-dimethyl-5-

(1-methylethyl)benzene;
1,4-dimethylbenzene;

2-methylnaphthalene; propylbenzene;

Altomare et al., 2015 [41]

GC-MS CRC (20); Controls (20)

Cyclohexanone, 2,2-dimethyldecane;
dodecane; 4-ethyl-1-octyn3-ol;
ethylailine; cydoctyimethanol;

trans-2-dodecen-1-ol; 3- hydroxy-2,4,4-
timethylpentyl2-methyipropanoate;

6-t-buty4-
2,29,9-tetramethyl-3,5-decadien-7-yne

Wang et al., 2014 [42]

GC-MS CRC (37); Controls (41)

Nonanal; 4-methy1-2-pentanone;
decanal; 2-methylbutane;

1.2-pentadiene,
2-metyipentane,3-methylpentane;
methylcyclopentane; cyclohexane;

methylcyclohexane;
1,3-dimethylbenzene; 4 methyloctane;

1,4-dimethylbenzene; a(4-
methylundecane, rt = 11-3);

b(timethyldecane, RT = 13-2)

Altomare et al., 2013 [43]

GC-MS CRC (26); Controls (22)

1,10-(1-butenylidene)bisbenzene;
1,3-dmethy benzene; 1- iodononane;

{[}(1,1-dimethyiethyl)thio{]}acetic acid;
4-(4-propylcyclohexyl)-40

cyano{[}1,10-biphenyl{]}-4-yl ester
benzoic acid; 2-amino-5isopropyl-8-

methyl-1-azulenecarbonitrile

Peng et al., 2010 [44]

Note: CRLM: colorectal cancer liver metastases; GC-MS: gas chromatography—mass spectrometry; SIFT-MS:
selected ion flow tube mass spectrometry; IMR-MS: ion molecule reaction–mass spectrometry. * 50 of controls
with normal LGI tract endoscopy and 50 found positive including inflammatory bowel diseases (IBD), diverticular
disease, and polyps. ** Former patients found disease free after oncologic follow up.

Meta-analyses on the diagnosis of cancer focusing exclusively on breath-based VOCs
have consistently shown optimistic results [68,69]. Specifically, on a systematic review and
meta-analysis on different cancer types, Hanna et al. reported that despite a substantial
variability among 63 studies, the pooled sensitivity reached 79% along with a pooled
specificity of 89%. Xiang et al. further ratified previous results by focusing exclusively
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on gastrointestinal cancer and CRC, thus reporting pooled sensitivity of 85% and pooled
specificity of 89%. They both concluded that while breath-based VOCs have the potential
for clinical screening, standardized tools and protocols have to be introduced in an effort
to mitigate the heterogeneity in the discriminatory VOCs reported and the subsequent
diagnostic metrics. Finally, a more recent meta-analysis [23] considering 52 studies and
3677 patients with cancer, including CRC, reported 90% sensitivity and 87% specificity.
The study exclusively focused on the diagnostic power of e-noses and though the authors
reported optimistic results, they stated that most of the studies considered involved a small
sample size and poor standardization.

Apart from meta-analyses relying only on breath-based VOCs, there have been some
studies considering VOCs coming from different sources, such as fecal and urine VOCs.
That being said, according to a meta-analysis on CRC screening using VOCs from different
sources [70], the authors considered 10 studies spanning from 2012 to the end of 2019. The
reported pooled sensitivity and specificity were found to be 82% and 79%, respectively. The
results suggested that VOCs can be considered a stable and robust tool for CRC screening
but not as a single and exclusive diagnostic test. Interestingly, VOCs associated with breath
exhibited higher sensitivity and specificity than their counterparts (e.g., VOCs from feces
and urine). Another meta-analysis from Wang. et al. [71] focused on diagnosis of neoplasms
of the digestive system including CRC, using VOCs from different sources. Specifically for
CRC, the authors included 16 studies (out of a total of 36 with over 3000 participants) and
reported 84% pooled sensitivity and 82% specificity. Remarkably, the authors reported that
breath-based VOCs behaved better (i.e., in terms of diagnostic metrics) than VOCs from
other sources. Specifically, by considering only breath-based studies, the reported pooled
sensitivity and specificity were both 87%. In Table 2 we present sensitivity and specificity
rates reported in studies using breath-based VOCs as biomarkers for diagnosing CRC.

Table 2. Reported sensitivity and specificity on diagnosis of CRC based on exhaled VOCs.

Technique Sample Size Sensitivity Specificity Reference

Sensors CRC (105); Controls (186) 0.79 0.53 Pol,aka et al., 2023 [72]

GC-MS CRC (15); Controls (20) 0.94 1 Śmiełowska et al., 2023 [34]

GC-MS CRC (30); Controls (84) 0.8 0.7 Cheng et al., 2022 [35]

GC-MS CRC (162); Controls (1270) 0.79 0.86 Woodfield et al., 2022 [36]

IMR-MS CRC (52); Controls (45) 0.96 0.73 Politi et al., 2021 [37]

GC-MS + sensors CRC (82); Controls (87) 0.9 0.93 Altomare et al., 2020 [38]

SIFT-MS CRLM (51); Controls (54) 0.28 0.89 Miller Atkins et al., 2020 [39]

e-nose CRC (62) * 0.88 0.75 Steenhuis et al., 2020 [26]

e-nose CRC (70); Controls (125) 0.95 0.64 Keulen et al., 2020 [27]

SIFT-MS CRC (50); Controls (50)
CRC (50); Controls (50) **

0.96
0.90

0.76
0.66 Markar et al., 2019 [40]

e-nose CRC (15); Controls (15) 0.93 0.1 Altomare et al., 2016 [73]

GC-MS + sensors CRC (65); Controls (122) 0.85 0.94 Amal et al., 2016 [8]

GC-MS CRC (48); Controls (32) *** 1 0.98 Altomare et al., 2015 [41]

GC-MS CRC (37); Controls (41) 0.86 0.83 Altomare et al., 2013 [43]

Note: CRLM: colorectal cancer liver metastases; GC-MS: gas chromatography—mass spectrometry; SIFT-MS: selected
ion flow tube mass spectrometry; IMR-MS: ion molecule reaction–mass spectrometry. * Detection of extraluminal
local recurrences or metastases in the follow-up of curatively treated CRC patients. ** Inflammatory bowel diseases
(IBD), diverticular disease, and polyps. *** former Patients found disease free after oncologic follow up.

4. Applications of Machine Learning in Exhaled Breath Analysis: The Case of CRC

Machine learning (ML) can be seen as a part of AI that revolves around the devel-
opment of methods aiming to enable machines to learn from data. Applications of ML



Diagnostics 2023, 13, 3673 8 of 21

span various domains, including medicine and disease diagnosis, particularly in situations
where traditional algorithms are impractical and/or insufficient. Roughly speaking, ML
approaches can be divided into three broad categories of learning, namely supervised,
unsupervised, and reinforcement learning. The main difference between the supervised
and the unsupervised learning paradigm lies in the fact that in the first case the computer is
learning from labeled examples with known inputs and desired outputs. On the other hand,
unsupervised learning tries to discover inherent structures from unlabeled data without
explicit guidance, typically with consideration of some measure of similarity between the
data entities. Finally, reinforcement learning typically involves an agent that is learning to
make decisions through trial and error, receiving feedback in the form of rewards/penalties.
Through an iterative process, long-term cumulative rewards are maximized based on the
observed outcomes. For the rest of this review, we will focus on the supervised and the
unsupervised learning paradigms.

In the following, we sketch the main pillars of the standard ML methodology in
VOC analysis. Typically, the analysis pipeline starts with data acquisition, either with an
analytical or a sensor-based method (for their relative advantages and disadvantages see
Section 1). It continues with the pre-processing and feature extraction steps. Preprocessing
is a stage where we transform the raw data into a comprehensible format to augment the
downstream analysis. Feature extraction is the process of generating new values (features)
from the initial measurements that are informative, non-redundant, and aid in the subse-
quent learning, ultimately leading to useful and informed models. The next step usually
includes feature selection, a level of analysis where we choose the most discriminatory
features/biomarkers present in our dataset, towards parsimonious modeling to enhance
predictive and generalization capabilities. Then, we proceed to the actual modeling for dis-
crimination between patients and healthy controls in a supervised/unsupervised manner.
Finally, model validation takes place to assess the model’s performance and confirm the
usefulness of the model in real world applications.

In Table 3 we present the key characteristics of the pipeline used in studies considering
breath-based VOCs towards the diagnosis of CRC.

Table 3. Analysis pipelines of studies using breath-based VOCs towards CRC diagnosis.

Technique Sample Size
Preprocessing
Pipeline/Feature
Extraction

Feature
Selection

# of
Features Classifier Validation Validation

Type Reference

Sensors CRC (105);
Controls (186)

Data
normalization;
removal of
erroneous sensor
signals; extraction
of statistical
measures

Greedy
stepwise
selection;
evolution-
ary search

75 (model
with best
results
based on
accuracy
reported)

Random
Forest, C4.5
(decision tree
classifier);
Artificial
Neural
Network;
Naïve Bayes

70–30% split
training and
validation
set

Internal Pol,aka et al.,
2023 [72]

GC-MS CRC (15);
Controls (20)

Removal of
artifacts;
imputation using
median;
Shapiro–Wilk test;

Mann–
Whitney U
test; DFA;
forward
stepwise
method;
filtering
based on
certain
metabolic
reactions;

3
Artificial
Neural
Networks

10-fold Cross
validation Internal Śmiełowska

et al., 2023 [34]

GC-MS CRC (30);
Controls (84)

Noise removal;
baseline correction;
alignment;
normalization;
peak picking;
scaling

Features
detected in
at least
20% of all
classes
considered

10 Isolation Forest LOOCV Internal Cheng et al.,
2022 [35]
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Table 3. Cont.

Technique Sample Size
Preprocessing
Pipeline/Feature
Extraction

Feature
Selection

# of
Features Classifier Validation Validation

Type Reference

GC-MS CRC (162);
Controls (1270)

Log-
transformation;
variance
stabilization;
normalization

ANOVA;
Random
forest

-

Random
Forest,
alphanet, SVM,
LASSO; elastic
net regression;

Repeated
5-fold Cross
validation

Internal Woodfield et al.,
2022 [36]

IMR-MS CRC (52);
Controls (45)

Exclusion of
specific chemicals
(via t-test with
reference sample);
Standardization
prior to modelling;

LASSO
15 (13
VOCs,
Age, Sex)

Logistic
Regression

50-fold Cross
validation Internal Politi et al.,

2021 [37]

GC-MS +
sensors

CRC (82);
Controls (87) -

Mann–
Whitney U
test;
univariate
analysis
and
ranking of
features;
multivari-
ate
Stepwise
Logistic
Regres-
sion;

15 (14
VOCs,
Age)

Logistic
Regression LOOCV Internal Altomare et al.,

2020 [38]

SIFT-MS CRLM (51);
Controls (54)

Log-
transformation;
PCA noise removal;
imputation of
missing values
(mean)

-
24 (22
VOCs, Sex,
Age)

Random Forest

LOOCV on
95% of the
dataset. 5%
as a Test set

Internal Miller Atkins
et al., 2020 [39]

e-nose CRC (62) * TUCKER3 - -
Artificial
Neural
Networks

10-fold cross
validation Internal Steenhuis et al.,

2020 [26]

e-nose CRC (70);
Controls (125)

Standardization;
TUCKER3 -

11 (compo-
nents
derived
from
TUCKER3)

Artificial
Neural
Networks

10-fold cross
validation Internal Keulen et al.,

2020 [27]

SIFT-MS

CRC (50);
Controls (50)
CRC (50);
Controls (50) **

-

Univariate
statistics;
Multivari-
ate
Logistic
Regression

1 Logistic
regression

100% of data
as training
set

Internal Markar et al.,
2019 [40]

e-nose
CRC
(15);Controls
(15)

Calculation of
mean response of
the signal

PCA based
on
variance
explained

2 (1st and
2nd
principal
compo-
nent)

Probabilistic
Neural
Networks

LOOCV Internal Altomare
et al., 2016 [73]

GC-MS +
sensors

CRC (65);
Controls (122) - -

1
(Canonical
variable
from DFA
applied to
all sensing
features)

DFA

70–30% split
training and
validation
set

Internal Amal et al.,
2016 [8]

GC-MS
CRC (48);
Controls (32)
***

-
Mann–
Whitney U
test

11
Probabilistic
Neural
Networks

LOOCV Internal Altomare et al.,
2015 [41]
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Table 3. Cont.

Technique Sample Size
Preprocessing
Pipeline/Feature
Extraction

Feature
Selection

# of
Features Classifier Validation Validation

Type Reference

GC-MS CRC (37);
Controls (41) -

Mann–
Whitney U
test

15
Probabilistic
Neural
Networks

LOOCV Internal Altomare et al.,
2013 [43]

Note: GC-MS: gas chromatography—mass spectrometry; IMR-MS: ion molecule reaction–mass spectrometry;
SIFT-MS: selected ion flow tube mass spectrometry; CRLM: colorectal cancer liver metastases; LOOCV: Leave
one out cross validation; PCA: Principal Component Analysis; LASSO: Least absolute Shrinkage and selection
operator; SVM: support vector machine. * Detection of extraluminal local recurrences or metastases in the Follow
Up of curatively treated CRC patients. ** Inflammatory bowel diseases (IBD), diverticular disease, and polyps.
*** former patients found disease free after oncologic follow up.

4.1. Pre-Processing and Feature Extraction

Pre-processing is the initial stage of processing raw data. Roughly speaking, pre-
processing involves transforming raw data into a format that is comprehensible and aug-
ments the performance of the following steps. The most commonly applied strategies
can be broadly categorized as baseline manipulation, compression, and normalization
transforms [74]. The baseline manipulation refers to the transformations that attempt to
correct for the baseline of the signal with the aim of suppressing the effect of sensor drifts
(e.g., signal slowly deviates independently of the measured property due to changes in
temperature, electronic aging of components, etc.). Compression transformations address
the problem of dimensionality, effectively reducing the number of measurements trying
to optimize the trade-off between an accurate representation and a reasonable size of the
final dataset. Normalization transformations are commonly applied to smooth variations
between sensors, such as for example an inherently higher signal magnitude of some sensor
over the others. Other forms of preprocessing align more to the quality assurance of the
data. Such procedures include the removal of artefacts, suppression of noise, and handling
the missing values via imputation [34]. These types of transformations can also enhance the
performance of ML algorithms in terms of faster convergence in the optimization process,
robustness of results, and accuracy [75].

In the context of ML and pattern recognition, feature extraction plays a crucial role as
it involves taking an initial set of measurements and generating new values (features) that
are informative, non-redundant, and aid in the subsequent learning and generalization
processes. Despite the fact that it is very difficult to categorize the different families of
methodologies, feature extraction methods can be divided into three main groups, the
piecemeal, the curve fitting/statistical measures, and the transformation-based techniques.
Regarding the piecemeal features, these are the features that are directly computed on
the sensor’s response, including first and second derivatives which can be translated as
the reaction rate of the sensor and the acceleration, respectively. Other features in this
category involve measures such as the computation of maximum value, the rising and
the falling slopes during steady state, transient response, and others [76]. In the case
of the curve fitting methods, we actually fit a model on the sensor’s response in order
to measure specific model parameters [77]. Models that are commonly used for fitting
purposes include polynomial function, exponential, and auto-regressive models. Here,
we could also consider statistical measures that are computed directly on the distribution
of the sensor-response such as mean, median, skewness, kurtosis, etc. Finally, there are
transformation-based methods involving the conversion of our signal to the frequency
domain such as the Discrete Fourier Transform (DFT) or the Discrete Wavelet Transform
(DWT), which combine the virtues of DFT but also preserves temporal information. An
example of successful application of DWT can be found in [78]. The authors pre-processed
their data using DWT and later applied Principal Component Analysis (PCA) trying to
discriminate between the different odors.

Since the preprocessing routine plays a significant role in the subsequent steps of a
long pipeline, it is particularly important to be reported in detail, so as to have a common
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ground and the diverse results reported by different authors can be compared. In Table 3 the
reader can inspect the different preprocessing pipelines used in studies considering breath-
based VOCs towards CRC diagnosis. It is remarkable that for 5 out of 14 studies included
in Table 3, we did not manage to find comprehensible information on the preprocessing
pipeline applied by the authors.

4.2. Feature Selection

Distinct from feature extraction, feature selection focuses on choosing a subset of
existing features rather than creating new ones. Overall, feature selection plays a crucial
role in enhancing the efficiency and effectiveness of data analysis. It aims to simplify
models, reduce computational times, increase accuracy, robustness of learning, and enable
the interpretability of the final model (such as suggesting a few biomarkers that are probably
connected to a disease) [79]. The rationale/hypothesis behind feature selection is that the
data usually contain redundant and/or irrelevant features that can be eliminated without
significant information loss. While the simplest approach involves testing each possible
subset to minimize the error rate, this exhaustive search is computationally impractical for
large feature sets. The feature selection algorithms are divided into three broad categories:
filter, wrapper, and embedded methods [24].

Filter methods are computationally efficient and capture the usefulness of the features
based on statistical measures such as correlation but are not tuned to a specific model. For
example, there is no complex predictive model involved and, thus, no parameter selection
is needed. Instead, these methods may measure the degree of association between the
target and the independent variables (e.g., in our case, how the healthy population differs
from the diseased; with respect to which features?). They tend to produce more general
feature sets but they usually score lower in prediction performance than wrappers or
embedded methods. Examples of such methods and their applications include the Analysis
Of Variance (ANOVA) [36,40], Welch’s t-test [8], and the Mann–Whitney U test [41,43].
Wrapper methods use a predictive model to score feature subsets. Each subset is used to
train and test a model with its error rate, producing a final score. While computationally
intensive, wrapper methods are most likely to produce better results than filter methods.
Examples and applications include stepwise selection [38,72], the recursive feature elimina-
tion process [21], and the evolutionary search [72]. Embedded methods incorporate feature
selection as part of the model construction process. Examples of such methods and their
applications include the Least Absolute Shrinkage and Selection Operator (LASSO), which
penalizes regression coefficients using L1 norm regularization [37,80], ridge regression (L2
norm regularization), Elastic Net regularization [36] (which combines L1 and L2 norm
regularization), and Random Forests which utilize the Gini impurity index or information
gain/entropy for ranking features by relative importance [36,39]. These methods offer a
balance between filters and wrappers in terms of computational complexity.

4.3. Modeling and Classification

The most relevant features considered in the previous steps constitute the final feature
set that is naturally used for modeling and classification. This can be performed in either a
supervised or unsupervised manner. The latter does not involve class labels and tries to
blindly find statistical similarities between data points with the ultimate goal of finding
associations or distinct clusters of similar data points in a sample. A popular algorithm for
data-driven modeling in an unsupervised manner is the Principal Component Analysis
(PCA) [73,81], which can be used in conjunction with the K-means clustering algorithm
for classification purposes. K-means have been utilized in cancer research including
CRC [82,83]. On the other hand, supervised learning uses class labels as ground truth
to train a model performing over specific tasks. Applications of supervised learning
include algorithms such as Random Forests [35,39], Support Vector Machines (SVM) [36],
Logistic Regression [37,38,40], Artificial Neural Networks (ANN) [26,27,41,43,73], and
Linear discriminant Analysis (LDA) [8]. Despite the fact that supervised learning is more
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extensively used in disease diagnosis, unsupervised learning is particularly helpful for
visualizing the data through clustering and gaining insights into the nature of a particular
phenomenon or disease.

It should be noted that every algorithm has its own strengths and weaknesses and no
consensus on the general use of specific algorithms exists in the literature. The algorithms
can be further divided into linear and non-linear. The non-linear algorithms assume a
nonlinear relationship between the target variable and predictors used for classification. In
the linear case, separation between groups can be achieved through a linear combination of
the explanatory variables and, in simplifying terms, this can be thought of as a straight line
on a 2D plane. The nonlinear case involves nonlinear relationships among predictors to
achieve separation. Despite the conceptual superiority of non-linear algorithms and the
often better predictive performance, they are more complex and therefore often hinder the
ability to interpret the final model [84,85]. Explainability in the context of AI applications
refers to our ability to explain why and under which circumstances a decision is made by
a trained model. For example, in a clinical setting, medical experts are interested in the
clinical inference, which in turn plays a crucial role in the diagnosis, staging, or following
of a specific curative treatment [86]. Finally, other factors to consider when it comes to the
selection of a specific algorithm are the computational complexity and the proneness to
overfitting which must be assessed thoroughly through the process of model validation [87].

4.4. Model Training and Validation

Model training and validation can be seen as two distinct parts towards modelling.
Training refers to the process of fitting the best combination of parameters to the model using
a training set, while validation refers to the evaluation of performance using a validation
set (e.g., to tune hyperparameters) and a test set. In practice, in order to develop an AI
model, multiple models are fitted and we ultimately choose the best candidate (with specific
parameters and hyperparameters) judging by its performance on the validation set. If we
incorrectly assess a model’s performance, then we might choose a useless configuration.
Naturally, the validation strategy affects both the internal parameters (such as weights
and biases, which are parameters automatically derived during the training process) and
hyperparameters (which are essential for optimizing the model and are externally set by
the researcher) of a model. In cases where we consider a feature selection process during
training (i.e., candidate models consider different feature sets), insufficient validation may
affect the suggested biomarkers [88–90]. That said, model validation is involved whenever
training occurs, either only to estimate (e.g., in an unbiased manner) prediction performance
(e.g., accuracy, sensitivity, specificity, etc.) or to tune parameters with respect to them. At
last, the final error estimate is obtained when the best candidate model is finally applied
on unseen test samples. Of course, we expect that the model scores more or less the same
as when applied to the validation data. In a case where the test error is much larger than
the validation error, overfitting can occur. Hence, model validation gives us a hint of the
expected test error while testing aims for an unbiased estimate of the model’s performance
in a real clinical setting, battling the well-known phenomenon of overfitting [88,91]. The test
dataset should be independent of the training and validation sets.

Commonly applied validation strategies for both tuning AI algorithms and estimation
of performance are the Hold-out strategy (e.g., splitting into train, validation, and test
set) and CV. The Hold-out strategy splits the data into training, validation, and test sets
and follows the procedure described above. CV divides data into k subsets. The model is
trained and evaluated repeatedly k times, each time using different subsets leaving one
subset out for validation and the rest for training purposes. Next, performance metrics
are obtained and averaged with the aim of providing estimates of the model’s prediction
error. When k matches the number of samples in the data set, the method is called Leave
One Out Cross Validation (LOOCV). The main difference between the two approaches
is that cross-validation utilizes the entire dataset enabling all data to be incorporated in
model training and validation. CV may help in reducing the variance in model performance
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estimates induced by a specific split into training and testing data [91]. The last step is again
to test the best candidate model (e.g., based on CV score) on an unseen and independent
testing dataset.

Finally, the validation strategy can be characterized as internal or external depending
on the cohorts/datasets used for validation. Internal validation refers to the validity of the
model inside a single cohort, while external validation refers to the validity of the model
spanning external cohorts. External validation is much more powerful than internal in the
sense that the model is capable of performing as intended even when there are substantial
differences among data sources. For a diagnosis model on CRC, external validation would
mean to test the ability of the model to diagnose the disease in cohorts of hospitals in
different countries, for patient populations with different demographics, etc. Here, we have
to note that none of the 14 studies included in Table 3 used an external dataset to validate
findings. Moreover, most of the time the authors reported the validation error (e.g., mainly
due to the fact of using limited samples) since the cross validation is applied on the entirety
of the available datasets (Table 3).

5. Future Considerations: Extending the AI Toolbox towards Disease Diagnosis

This section delves into future considerations that extend the AI toolbox currently
in use, regarding breath-based diagnosis of CRC. These forward-looking directions are
framed within the context of the ONCOSCREEN project’s ongoing advancements and de-
velopments. We explore three key axes: manifold learning, deep learning, and explainable
AI, each representing a critical dimension in the quest to enhance the understanding and
performance of the contemporary models on diagnosis of CRC.

Over the past years, linear data-driven approaches such as PCA and LDA have become
part of the conventional breath analysis research towards preprocessing, dimensionality
reduction, visualization, and modelling in terms of a few “dominant”, discriminatory
variables [8,73,81]. In the context of dimensionality reduction, nonlinear alternatives of the
aforementioned methodologies have been introduced like the kernel Principal Component
Analysis (kPCA), ISOmetric feature MAPping (ISOMAP), Locally linear Embedding (LLE),
and Diffusion Maps [92–95]. Originating from the field of manifold learning, the funda-
mental assumption is based on the manifold hypothesis, suggesting that high-dimensional
data often lie on or near a lower-dimensional manifold within the high-dimensional space.
In simpler terms, it is assumed that the data can be effectively represented in a lower-
dimensional space taking into account nonlinear (or locally linear) measures (such as the
geodesic distance between data points [90]) of similarity between data points. By exploring
and leveraging the intrinsic structure of high-dimensional data, one can enhance not only
the diagnostic capabilities of a model, but also uncover subtle patterns and relationships
within complex datasets. For example, given a number of features resembling either a sen-
sor’s resistance or the levels (e.g., abundance) of VOCs in the breath samples, we can find
eigenvectors that capture non-linear combinations of our initial feature set and tentatively
follow the intrinsic geometry of the underlying manifold. This may allow for visualization
and exploration of non-trivial and subtle properties. Such techniques have been successful
in various fields where big, complex data and non-linear phenomena are involved. Applica-
tions include the diagnosis of schizophrenia with the use of functional magnetic resonance
imaging data [90,96], classification of images of handwritten digits [92], forecasting of brain
signals [97] and financial time series [98], bifurcation analysis from spatio-temporal data
produced by lattice Boltzmann simulations [99], and others. Specifically, Gallos et al. [96]
used a variety of manifold learning techniques to construct (embedded) brain connectivity
networks (e.g., by mapping correlation matrices in the low dimensional space prior to net-
work construction), utilizing graph theoretic measures towards diagnosis of schizophrenia.
Diffusion Maps outperformed their linear counterparts in terms of diagnostic capability.
In a follow up study [90], ISOMAP was also applied to demonstrate that learning and
feature selection on the low dimensional space was again beneficial in simplifying and
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raising the predictive performance of the model, ultimately leading to the discovery of a
few informative biomarkers for the disease.

Beyond the classic ML methodologies, a subset of ANN-based frameworks also known
as deep learning (DL) led to breakthroughs in several fields such as medical image process-
ing [100] and medical diagnosis [101]. DL’s ability to process large scale data enables the
analysis of raw data even without pre-processing, frequently with high precision [24,102].
In particular, applications on breath-based VOCs towards cancer diagnosis have been intro-
duced [103] and frameworks have been suggested. These include time series stemming
from e-nose devices [104]. Specifically, for CRC, the efforts have targeted colonoscopic [105],
endoscopic [106] and histopathological [107] images, mostly by using Convolutional Neu-
ral Networks (CNN), an architecture designed for analyzing visual data. These types of
ANNs utilize convolutional layers to automatically extract meaningful features and have
achieved remarkable success in computer vision tasks such as image recognition and object
detection. A review can be found in [108]. Within the context of DL, different architectures
exist. These include Autoencoders, which utilize a bottleneck layer to extract meaningful
features or reduce the dimensionality [103]. An additional method is Recurrent Neural
Networks (RNN), which consist of recurrent connections to preserve information across
time steps, hence allowing for them to capture temporal dependencies. The latter are also
suitable for time series analysis and have been applied towards the optimization of e-nose
systems [109] and odor classification [110]. Despite their merits, DL frameworks have their
own limitations and challenges. Typically, they need vast amounts of data in order to reach
their full potential, they are computationally expensive, have elevated probabilities of over-
fitting, and are accompanied by high complexity and low interpretability. A comprehensive
discussion can be found in [111].

In an effort to address the interpretability of the AI models, remarkable advancements
have been made towards the establishment of tools and frameworks that provide under-
standable explanations regarding outputs and decisions made by the AI models [112–114].
In the literature, the predominant terminology for this field is Explainable AI (XAI) [115].
A characteristic framework is the so-called Shapley additive explanations (SHAP), an ap-
proach originating from game theory that attempts to explain the output of AI models. The
Shapley values can be used in a model agnostic way [116], thus serving as a useful tool that
may accompany various machine learning algorithms. Conceptually, it can be regarded as
an extension of the Local Interpretable Model-agnostic Explanations (LIME) approach [117].
In simple terms, the absolute Shapley value reflects how each feature contributes to the
final outcome as it is derived from an AI model [113]. However, only a few studies have
considered such frameworks on CRC [112]. For example [112], tried to classify CRC pa-
tients based on the gut microbiome, and managed to both find CRC-associated bacteria and
explore subgroups of CRC patients based on PCA that was imposed on SHAP values. Other
frameworks include Gradient-weighted Class activation mapping (Grad-Cams), and these
can be applied to CNN-based models to provide transparency and visual explanations [118].
Applications on the diagnosis of CRC include the diagnostic evaluation from colonoscopy
images [105] and, more recently, CRC diagnosis and grading utilizing histopathological
images [107]. Since this methodology is compatible with CNN-based models, it is natural
that it can also be used on time series data employing 1D CNN models [119,120] or even
encoding (multivariate) time series data (e.g., one univariate time series per sensor of an
e-nose) into two-dimensional images (e.g., a correlation matrix or a dissimilarity matrix
in general) towards classification/diagnosis (e.g., CRC patients and healthy controls) via
pattern recognition [121].

6. Challenges and Pitfalls in the Use of AI Modelling towards Diagnosis

While the use of AI and especially ML towards diagnosis has been predominant
in the past years, one has to put a significant emphasis on model validation to ensure
their model generalizes into new unseen data [91]. Estimation of the true capabilities
of the contemporary AI models should not be taken lightly. First of all, in cases where
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the dataset is imbalanced, something very common in disease diagnosis, splits of the
dataset (e.g., into training and test splits) should be performed in a stratified manner. This
means to practically keep the same percentages of classes in each split. Second, in order
to avoid data leakage, transformations such as standardization of data or PCA should
consider only the training data. This applies because we do not want our model to be
trained using information contained on the unseen test dataset, for this would strongly
bias our estimates of performance and likely the true capabilities of the model. Third, it is
of paramount importance that wherever a CV procedure is used (with the exception for
LOOCV), the estimated performance of the model should be reported in terms of average
and standard deviation, which reflect the variability of the model’s performance [89]. For
even better/refined estimates of model performance or parameter tuning, repeats of CV
can also be beneficial [122]. Fourth, even a loop of CV may not be enough to come up
with an unbiased estimate of the model’s performance, especially when feature selection is
taking place at the same time inside the same loop [90,123]. Fifth, feature selection should
be used in conjunction with CV (especially when embedded methods are used), as the
opposite has been shown to strongly overestimate model’s performance [122]. To put it
simply, it is crucial that the feature selection process does not “see” all data and then use
the optimal feature set to evaluate the performance of a model on the same set. Hence, it is
strongly advised that the validation of AI models should take place in the form of a nested
CV consisting of an inner loop for optimizing hyperparameters and an outer loop of CV
for evaluating performance. Sixth, it is highly recommended to always test the final model
on an unseen test dataset (i.e., that is not considered during the model construction phase)
after estimating the predicted performance of using a CV scheme. Specifically, Varma
et al. [123] reported that the difference between the single CV error estimate and the true
error was in some cases greater than 20%, which can be dramatically significant, especially
in cases where the classification rates are moderate. Finally, it should be made clear that a
CV for assessing a model’s performance produces an estimation of prediction error and
by no means can this be considered the true test error, which can only be inducted by
using sufficiently large unseen test samples (i.e., external validation). This is a common
misconception in the scientific community [122,124].

7. Conclusions

This article focused on AI/ML methods used for the analysis of breathomics data in the
context of CRC. The needs for improved CRC screening and monitoring were highlighted
in parallel with the reported shortcomings of the contemporary standard protocols. VOCs
that have been identified as potential biomarkers in previous studies have been presented.
Further, we presented the diagnostic performances of contemporary models along the
AI pipelines. We explored the main steps of typical AI pipelines in breath analysis for
both analytical and sensor-based techniques. The latter are promising methods holding
several potential advances over analytical methods in terms of cost, time, portability,
and ease of use. Next, we stated future considerations and challenges with a view on
extending the AI toolbox that is currently used towards CRC diagnosis via breathomics.
The review discusses new potentials in the use of AI, such as the applications of non-linear
dimensionality reduction/manifold learning algorithms, DL frameworks, and XAI sets
of tools. These tools can potentially enhance diagnostic performance, explore non-linear
and complex relationships among features, and provide insights into a “finer” choice of
biomarkers with contribution to diagnosis. Despite the optimistic results of breath-based
diagnosis in terms of sensitivity and specificity, there is substantial variability among
studies and a reliable device and/or pipeline is yet to be developed. In this direction,
model training and validation procedures have to be strictly defined and the model’s
capabilities need to be reported in terms of both internal and external validation. Finally,
preprocessing pipelines should be reported transparently and in more detail towards
reproducible research.
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