
Citation: Elseddik, M.; Mostafa, R.R.;

Elashry, A.; El-Rashidy, N.;

El-Sappagh, S.; Elgamal, S.;

Aboelfetouh, A.; El-Bakry, H.

Predicting CTS Diagnosis and

Prognosis Based on Machine

Learning Techniques. Diagnostics

2023, 13, 492. https://doi.org/

10.3390/diagnostics13030492

Academic Editor: Dechang Chen

Received: 26 December 2022

Revised: 12 January 2023

Accepted: 20 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Predicting CTS Diagnosis and Prognosis Based on Machine
Learning Techniques
Marwa Elseddik 1,2, Reham R. Mostafa 2 , Ahmed Elashry 3 , Nora El-Rashidy 4,* , Shaker El-Sappagh 5,6,* ,
Shimaa Elgamal 7, Ahmed Aboelfetouh 2,8 and Hazem El-Bakry 2

1 Department of the Robotics and Internet Machines, Faculty of Artificial Intelligence, Kafrelsheikh University,
Kafr El Sheikh 33516, Egypt

2 Department of Information Systems, Faculty of Computers and Information, Mansoura University,
Mansoura 35516, Egypt

3 Department of Information Systems, Faculty of Computers and Information, Kafrelsheiksh University,
Kafr El Sheikh 33516, Egypt

4 Department of Machine Learning and Information Retrieval, Faculty of Artificial Intelligence,
Kafrelsheiksh University, Kafr El Sheikh 33516, Egypt

5 Faculty of Computer Science and Engineering, Galala University, Suez 43511, Egypt
6 Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University,

Banha 13518, Egypt
7 Department of Neuropsychiatry, Faculty of Medicine, Kafrelsheiksh University, Kafr El Sheikh 33516, Egypt
8 Delta Higher Institute for Management and Accounting Information Systems, Mansoura 35511, Egypt
* Correspondence: noura.alrashidy@ai.kfs.edu.eg (N.E.-R.); sh.elsappagh@gmail.com (S.E.-S.)

Abstract: Carpal tunnel syndrome (CTS) is a clinical disease that occurs due to compression of the
median nerve in the carpal tunnel. The determination of the severity of carpal tunnel syndrome is
essential to provide appropriate therapeutic interventions. Machine learning (ML)-based modeling
can be used to classify diseases, make decisions, and create new therapeutic interventions. It
is also used in medical research to implement predictive models. However, despite the growth
in medical research based on ML and Deep Learning (DL), CTS research is still relatively scarce.
While a few studies have developed models to predict diagnosis of CTS, no ML model has been
presented to classify the severity of CTS based on comprehensive clinical data. Therefore, this
study developed new classification models for determining CTS severity using ML algorithms. This
study included 80 patients with other diseases that have an overlap in symptoms with CTS, such
as cervical radiculopathysasas, de quervian tendinopathy, and peripheral neuropathy, and 80 CTS
patients who underwent ultrasonography (US)-guided median nerve hydrodissection. CTS severity
was classified into mild, moderate, and severe grades. In our study, we aggregated the data from
CTS patients and patients with other diseases that have an overlap in symptoms with CTS, such as
cervical radiculopathysasas, de quervian tendinopathy, and peripheral neuropathy. The dataset was
randomly split into training and test data, at 70% and 30%, respectively. The proposed model achieved
promising results of 0.955%, 0.963%, and 0.919% in terms of classification accuracy, precision, and
recall, respectively. In addition, we developed a machine learning model that predicts the probability
of a patient improving after the hydro-dissection injection process based on the aggregated data after
three different months (one, three, and six). The proposed model achieved accuracy after six months
of 0.912%, after three months of 0.901%, and after one month 0.877%. The overall performance for
predicting the prognosis after six months outperforms the prediction after one and three months. We
utilized statistics tests (significance test, Spearman’s correlation test, and two-way ANOVA test) to
determine the effect of injection process in CTS treatment. Our data-driven decision support tools
can be used to help determine which patients to operate on in order to avoid the associated risks and
expenses of surgery.

Keywords: carpal tunnel syndrome (CTS); machine learning (ML); ultrasonography (US); nerve
condition studies (NCS); Boston Carpal Tunnel Syndrome Questionnaire (BCTQ)
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1. Introduction
1.1. Overview

Carpal tunnel consists of transverse carpal ligaments and carpal bones. The tunnel is
comprised of nine flexor tendons and the median nerve. CTS is the most common entrap-
ment neuropathy and involves pressuring of the median nerve within the carpal tunnel,
depending on the severity and duration of neural compression [1]. The impact of carpal
tunnel syndrome on productivity, function, and quality of life, as well as the significant
costs associated with its management, are associated with a significant socioeconomic
burden [2]. The prevalence and severity of CTS increase with age, and women are three
times more likely to have CTS than men. Others risk factors include a family history of CTS
and a personal history of diabetes, obesity, hypothyroidism, pregnancy, and rheumatoid
arthritis. The risk of CTS is also significantly increased by work-related activities that
require a high degree of repetition and force or using hand-operated vibratory tools [3–6].

1.2. Problem Statement

The diagnosis of CTS requires listening to the patient’s description of the characteristic
timing and distribution of the symptoms and examining the hands to find obvious signs.
Electrophysiological studies (EPS) are among the para-clinical diagnostic techniques that
are most effective for identifying CTS. They are used by clinicians to group patients based
on the severity of their conditions and the need for post-operative care. While NCS has been
the gold standard for the diagnosis of CTS, there are still some limitations, because some
patients with clinically diagnosed CTS show normal findings [7–9]. False-negative results
can still happen because tests focus primarily on large, myelinated fibers rather than the
small fibers that are responsible for pain. Therefore, clinical history, physical examination,
and electrophysiological studies are used to make diagnoses [10]. Imaging techniques can
reveal information about the median nerve’s morphology and any local compressive causes.
A growing number of studies use ultrasound to evaluate cross-sectional area (CSA) and
median nerve compression at the carpal tunnel. It is currently the most accepted method
for diagnosing CTS [11] and is economical compared to other imaging methods, such as
magnetic resonance imaging (MRI) [12–15].

A scoring tool has been developed to check for CTS in asymptomatic people, but the
claims that the symptoms are only potential ones are called into question. The Michigan
Hand Outcomes Questionnaire (MHQ) and the Boston Carpal Tunnel Questionnaire (BCTQ)
are two other questionnaires that have been developed to quantify CTS symptoms based
on patient history following diagnosis and treatment [16]. Several studies have utilized
such ML models to detect CTS diagnosis as well as monitor progress. They utilize various
types of data, such as MRI images, CT images, and clinical and historical data. For
example, ref. [17] utilized a DL model to detect ultrasound (US) image features to make
CTS diagnoses. The highest performance was 0.95%, with 0.94 in terms of accuracy and
recall. Other studies [18,19] utilized a convolutional neural network (CNN) model to
detect CTS diagnosis based on CT scan images. The developed model was validated
using CT images aggregated from 53 patients and achieved an accuracy of 0.94%. The
same model was used in [20–23], showing promising results. However, these studies
have several limitations, including the following: (1) They depended on MRI and CT scan
images, which are considered costly and may not be available for diagnosis. (2) The studies
did not consider the overlap of CTS symptoms with other diseases, including cervical
radiculopathysasas, de quervian tendinopathy, and peripheral neuropathy. (3) Several
studies did not consider clinical, personal, and historical data, which have a significant
effect in disease diagnosis as well as treatment. In this study, we utilized the ML model to
perform CTS diagnosis based on patient historical, personal, and clinical examination data
and US images and electrodiagnostics, and then predicted the probability of the patient
improving [24–26].
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1.3. Paper Contribution

The main contribution of our study can be summarized in the following points.

(1) Aggregate data about 80 CTS patients include 40 left hands and 40 right hands with
different health status (mild, moderate, and severe) and 80 non-CTS patients with
overlapping disease symptoms, including cervical radiculopathysasas, de quervian
tendinopathy, and peripheral neuropathy.

(2) We build a Machine Learning model (bagging using random forest) that can distin-
guish between CTS and non-CTS patients based on BCTQ data and nerve conduction,
and compare the results with several traditional machine learning models.

(3) We track and monitor the results after 1, 3, and 6 months through repeating the clinical
examination tests and questionnaire.

(4) We build a machine learning model that predicts the probability of the patient improv-
ing after the hydro-dissection injection process based on the aggregated data after
3 different periods (1, 3, and 6 months).

(5) We use statistical tests such as ANOVA, t-test, and z-test to distinguish between
patient status before and after the injection process and specify the features that have
a significant impact on the probability of improvement.

1.4. Paper Organization

The rest of the paper is organized as follows. Section 2 details the literature review.
Section 3 describes the data set that is used in the study. Section 4 clarifies the proposed
work. The results and discussion are presented in Section 5. The paper concludes and
future work is mentioned in Section 6.

2. Related Work

In this section, we discuss some recent research studies based on artificial intelligence
to classify and diagnose CTS. Several attempts have been made to enhance the performance
of CTS patients and to predict symptom improvement by utilizing machine learning and
deep learning [27]. In Dougho Park et al. [28], seven ML algorithms (Neural Network
(NN), Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Classification And
Regression Tree, Random Forest (RF), Stochastic Gradient Boosting (SGB), and eXtreme
Gradient Boosting (XGB)) were estimated based on 1037 CTS hands with 11 variables each
and were retroactively analyzed. In these datasets, CTS was corroborated, and its sharpness
was categorized into mild, moderate, and severe by using electrodiagnosis in these datasets.
XGB had the highest accuracy in multiclass classification, and its accuracy was 76.6% in
test prediction as well as 76.1% during training. Konstantinos I. Tsamis et al. [29] used
five machine learning techniques (Logistic Regression (LR), SVM, KNN, Decision Tree
(DT), and Naive–Bayes (NB)) to examine the feasibility of automatically identifying median
nerve mononeuropathy using conventional electrodiagnostic criteria utilized in clinical
practice. Based on the NCS signal data analysis gathered from 38 volunteers, the outcomes
of the classifiers were verified through neurophysiological and clinical diagnosis. With
the most accurate classifier (SVM), automated classification between patients and controls
achieved an accuracy of 0.9513 compared to NCS and 0.8906 compared to clinical diagnosis.
The results show the ability of automated identification of carpal tunnel syndrome and
can be employed in decision making, ultimately eliminating human error. US is the most
popular imaging modality used to diagnose CTS to make up for the lack of nerve electrical
inspection. Recently, using medical images, artificial intelligence algorithms have been
used to accurately and human-error-free diagnose musculoskeletal diseases. For example,
You-Wei Wang et al. [30] applied their study to 50 patients (8 healthy patients and 42 CTS
patients), each having two cases (right and left hand). A Deep Similarity Learning (DeepSL)
model known as MNT-DeepSL was proposed by the authors. The model’s formation was
used to trace the problem of median nerve location on US images. The tracing of the
median nerve is connected to image representation, input decision rules, a deep learning
model called ResNet, and a different layer. The accuracy of the model’s performance was
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0.9, which allows the physiatrist to locate the median nerve in the continuous US images.
A deep and transfer learning system was developed by Issei Shinohara et al. [31] using
US images to diagnose CTS accurately based on 60 cases (30 healthy patients and 42 CTS
patients) Three DL models (ResNet50, MobileNet_v2, and EfficientNet) popularly used
for medical image classification were selected for this study. The accuracy of ResNet-
50 and MobileNet_v2 was the highest at 0.90, with a precision of 0.86, recall of 1.00 (all
models), and 0.92 for F-measure. R.T. Festen et al. [32] rated two-dimensional median nerve
characteristics and mobility accurately based on US images using a medium-sized dataset
and U-Net model. Hafane et al. [33] combined a CNN with the probabilistic gradient vector
flow (PGVF) method to identify the median nerve. CNN identifies the region of interest
(ROI) around the nerve and a dataset collected from US images elicited from 10 videos.
The results show a median Dice Similarity Coefficient (DSC) of 0.85. A prediction model
was created and verified by Hoogendam L. et al. [20] for the likelihood of patient-reported
symptom improvement 6 months following carpal tunnel release (CTR). One statistical
algorithm and two machine learning algorithms (LR, RF, and gradient boosting machines)
were taken into consideration for training predictors based on a cohort of 2119 patients
who underwent a mini-open CTR and completed the BCTQ preoperatively and 6 months
postoperatively [34]. In the validation data set, a gradient boosting machine with five
predictors had the best calibration and discriminative performance (area under the curve).
It had a satisfactory calibration, a sensitivity of 0.77, a specificity of 0.55, and an area under
the curve of 0.723. The positive predictive value was 0.50, and the negative predictive value
was 0.81. Bowman A et al. [35] used 35 neurons in the hidden layer, a sigmoidal transfer
function, and conjugate gradient backpropagation with Powell-Beale restarts. The average
AUC for this combination was 0.763 (95% CI 0.758–0.769).

Fariborz Faeghi et al. [12] proposed a diagnostic system for CTS based on radiomic
features extracted from MNs in ultrasound images (so-called ultrasomal features). This is
known as a Computer Aided Diagnostic (CAD) system, and the radiologists’ performance
was evaluated. A CAD system can help radiologists accurately diagnose CTS. An SVM
classifier was used, and an optimum accuracy of 90.1% was achieved. Haiying Zhou
et al. [21] proposed a deep learning framework for carpal tunnel segmentation using MR
images, known as Deep CTS. Deep CTS can effectively segment the CTS area and correct
the intersection when combining the results. They applied their study to 333 CTS images
and achieved an accuracy of 0.63. Conrad J. Harrison et al. [36] developed flowcharts with
a machine learning technique entitled chi-squared automatic interaction detection, which
could enable clinicians and patients to understand the chances of a patient improving with
surgery. They also developed ML algorithms using QuickDASH response data from a
regional database and achieved an accuracy of 0.72 and 0.76. A.A. Ardakani et al. [37] used
a CTS support vector machine (SVM) and convolutional neural network (CNN). A total of
200 wristbands were included, including 100 CTS wristbands and 100 control wristbands.
CNN had the best performance, with an ACC of 0.970, while SVM achieved an ACC of
0.925 in the testing dataset to diagnose CTS.

Despite their adequate performance, these studies have different limitations, which
can be summarized as follows.

(1) the building of CTS classification models based on one type of data, which affects
model performance.

(2) the non-considering of historical data’s impact on CTS classification.
(3) using a single model in CTS classification.
(4) the non-considering of patient health progression.

Therefore, in our study, we decided to combine historical data, medical examination
data, and NCS and CSA data to provide a robust and accurate model, depending on an
ensemble to effectively address various data.
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3. Dataset Description
3.1. Data Description
3.1.1. Dataset Collection

Between April 2019 and April 2020, the dataset was obtained retrospectively from the
Neurology department at Kaferelshikh University Hospitals in Egypt. In all, 160 patients
took part in this study, divided into two groups: (1) 80 patients diagnosed with CTS via
ultrasound (US) guided median nerve hydro-dissection, and (2) 80 patients with other
diseases that have an overlap in symptoms with CTS, such as cervical radiculopathysasas,
de quervian tendinopathy, and peripheral neuropathy, from the Neurology department.
The current study was submitted to the IRB at Kaferelshikh University’s Faculty of Medicine
for approval. All patients were assured confidentiality and personal privacy throughout
the trial. Patients felt free to leave the research at any time without consequence. The
information acquired was not and will not be used for any other purpose.

3.1.2. Study Cohorts

The dataset for CTS patients was aggregated using the following inclusion criteria:
(I) patients between the ages of 20 and 60; (II) CTS manifestations; (III) NCS show delayed
latency of the sensory or motor conduction of the median nerve; and (IV) patients did
not respond to medical treatment at least three months after the onset of symptoms. Data
from healthy normal volunteers was also gathered from Kaferelshikh university hospitals’
inpatient and outpatient clinics, which were matched for age and gender. Pregnant women,
as well as those with thoracic outlet or brachial plexopathy, were excluded from the study.
All of the patients volunteered to take part in the trial.

3.1.3. Aggregated Features

For each patient, the following data were aggregated:
Firstly, personal, and historical data: The patient’s historical data, including personal

data (i.e., age, gender, BMI, occupation, marital status, special habits, family history of
similar conditions, and previous surgical and medical problems).

Secondly, medical questionnaire: All patients were evaluated using a computerized
CTS sheet, which included all characteristics from the BCTQ (Appendix A). The BCTQ is a
patient-reported questionnaire that is used to assess the intensity of symptoms as well as
the overall performance of the patient’s functions. It discusses the most-often-used tools
for diagnosing and evaluating CTS. BCTQ has two models: symptom severity scale (SSS)
and functional status scale (FSS). Both modules work independently and can be used either
together or separately.

SSS is an eleven-question test that evaluates a variety of criteria, including pain, pares-
thesia, numbness, weakness, nocturnal symptoms, tingling, and motor skill problems. FSS
is an eight-question questionnaire that assesses the overlap between a patient’s symptoms
and functions through questions on activities such as reading, bathing, carrying a grocery
basket, holding a book, and so on. The BCTQ’s major strength is how quick, simple, and
easy it is to administer. In our dataset, the questionnaire is repeated for all patients after
one, three, and six months of treatment to record and track patient status. It should be
noted that the score only considers the patient’s symptoms from the previous two weeks.

Patients’ medical records (pain, paresthesia, numbness, weakness, and nocturnal
symptoms) and BCTQ functional status (writing, buttoning, holding, grasping, opening jars,
household tasks, bathing, and dressing) as well as pre-intervention and post-intervention
data at one, three, and six months were used.

Thirdly, Ultrasonographic examination. A single sonographer is used to determine the
CSA. It is calculated on the US machine using the tracing feature (in mm2 at the distal wrist
crease), then directly traced around the inner border of the epineurium with no weaving
between each fascicle [38]. This method was shown to be more accurate than the ellipsoid
method. CTS is defined as a median nerve area more than 9 mm2. In this study, we followed
the classifications of El Miedany et al. [39] of the CTS severity scale according to the CSA
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(up to 13.0 mm2 for mild, 13.0 to 15.0 mm2 for moderate, and more than 15.0 mm2 for
severe) [2]. All measurements were taken three times, with the average result used for
statistical analysis. Figure 1 shows the examination was repeated after 1, 3, and 6 months
to track the progress of the treatment. All individuals in this trial received an injection of
(1 mL lidocaine, 2 mL [8 mg]).
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Figure 1. US examination of median nerve diameter (the dotted area) (A): pre-intervention, (B): at
1 month, (C): at 3 months, (D): at 6 months.

Fourthly, NCS was performed by using an NCS Apparatus (NIHON KOHDIN),
model MEB-9400K, Serial number SNI-00833, in the Neurology department, Kaferelshikh
university hospitals. It was conducted for all patients in our study. Abnormalities on
electrophysiological testing were considered the first criterion standard for CTS diagnosis.
The cut-off point utilized in the NCS was the median nerve distal sensory latency of
3.5 milliseconds. Distal motor latency (DML) was increased by 90%, to >4.5 milliseconds
onset latency [40]. Figure 2 shows normal ana abnormal of NCS for CTS and control subjects.
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3.2. Data Preparation
3.2.1. Outlier Detection

Outlier detection is the technique of identifying outliers among normal items. Per-
forming outlier detection during data preparation is considered a critical step, since it
has a significant impact on the classification and clustering models’ performance. Sev-
eral techniques are utilized to solve the outlier problem; statistical techniques include
proximity-based models, distance-based methods, etc. Despite the good performance of
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the above-mentioned methods, in this study we choose to depend on our medical expert to
specify and resolve data outliers.

3.2.2. Data Imputation

Missing values is a very common problem, especially with medical data. It could occur
due to corruption or collection error. Missing values could negatively affect the classifier
performance in terms of bias affect. Several basic methods are used to fill numeric values,
such as mean, max, min and others, to fill categorical values such as the most frequent
item [41]. In our study we have a small number of missing values in each column, ranging
from (2–5) for each column. In order to gain a high accuracy in data after imputation, we
choose a variable strategy for handling missing values, known as multivariate imputation
by chained equations (MICE) [42,43]. This approach generates n full datasets by substituting
n distinct values for missing variables. It then analyses n datasets and pools/combines them
to produce a combined resulting dataset. This technique outperforms single imputation
methods, but it requires more computational power.

3.2.3. Data Scaling

The goal of data scaling methods for ML is to identify the areas of current machine
learning where scalability plays a significant role and should be properly implemented to
reduce uncertainty, incorrect results, or increases in cost/processing time. This method
of data scaling changes the value of any feature’s smallest value to 0, while changing its
largest value to 1 [44]. In this study, applied data scaling is based on the following equation:

x′ =
x− x

δ
(1)

4. Proposed Work
Proposed Machine Learning Model

The initial stage in bagging is to generate several models with different datasets based
on the bootstrap sampling technique [45–47]. Each set of samples includes random samples
from the original data. Each training sample was generated with the same size; however,
some samples repeated in several training samples, while other samples appeared just in
one training sample. Thus, if the original data set has N size, the size of each generated set
also has the same size.

The second stage is to generate several models by applying the same model on the
generated sample sets. In RF, we select random features to construct the optimum split.

Unlike DT, which attempts to split based on the best feature to optimize errors, random
forest involves random selection of features to construct the best split. On the other hand,
when using bagging, DT always searches for the best feature for splitting. This leads
to better correlation, where using bagging with different splitting of features leads to
less correlation among subtrees. Therefore, using random forest with bagging results in
constructing each tree with random samples, with each split built with a random sample
of predictors. As shown in Figure 3 the proposed model is divided into four stages:
(1) Data Aggregation, (2) Data prepossessing, (3) Build diagnose model, (4) Prognosis factor
classification.
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5. Results

This section is divided into two main sections: The first predicts CTS diagnosis based
on several data sources in categories between CTS and non-CTS patients, and the second
predicts the improvement of patient health status after the injection process after 1, 3, and
6 months.

5.1. Evaluation Metrics

The evaluation metrics of the CTS detection scenario include the following: accuracy,
F1-score, sensitivity, specificity, and precision. These evaluation measures were computed
using the TN (true negative), TP (true positive), FN (false negative), and FP (false positive)
calculations. The number of correctly categorized negative and positive instances, respec-



Diagnostics 2023, 13, 492 9 of 18

tively, is defined as TN and TP. The quantity of incorrectly identified positive and negative
instances is also defined as FN and FP, respectively

Recall =
TP

(TP + FN)
(2)

Specificity
TN

(FP + TN)
(3)

Precision =
TP

(TP + FP)
(4)

F1− score =
2TP

2T P + F P + F N
(5)

Accuracy =
TN + TP

TP + FP + TN + FN
(6)

5.2. Predicting CTS Diagnosis

In this section, we use the data from the 160 patients included in this study. The
patients were divided as follows: 80 patients diagnosed with CTS with different status
(mild, moderate, and severe) and 80 patients without CTS, but having other diseases having
an overlap with CTS. The total dataset was randomly divided into training and testing with
percentages of 70% and 30%, respectively. As we can see in Table 1, the utilized models
were able to differentiate between CTS and non-CTS patients with adequate performance
ranging from 0.900% to 0.955%. As we can observe, LR and NB give the same performance:
(ACC = 0.900, AUC = 0.924 for LR) and (ACC = 0.903, AUC = 0.921). MLP gives improved
performance of about 3% in most evaluation metrics. The same applies for DT, where the
proposed algorithm gives the best performance of (ACC = 0.955, AUC = 0.946). Predicting
CTS prognosis will help differentiate between the CTS cases and other cases that may have
similar symptoms. Figure 4 show the learning and validation curve for the proposed model.

Table 1. Results for CTS diagnosis.

Model Training Score Testing Score Accuracy Precision Recall F-Measure AUC

LR 0.901 ± 0.001 0.900 ± 0.02 0.900 ± 0.001 0.915 ± 0.002 0.901 ± 0.012 0.901 ± 0.013 0.924 ± 0.010
NB 0.922 ± 0.011 0.902 ± 0.001 0.903 ± 0.001 0.930 ± 0.001 0.900 ± 0.012 0.917 ± 0.012 0.921 ± 0.010

SVC 0.931 ± 0.001 0.921 ± 0.011 0.920 ± 0.001 0.942 ± 0.013 0.911 ± 0.001 0.922 ± 0.002 0.933 ± 0.011
MLP 0.922 ± 0.001 0.921 ± 0.001 0.923 ± 0.011 0.931 ± 0.021 0.921 ± 0.011 0.961 ± 0.011 0.942 ± 0.010
DT 0.952 ± 0.012 0.931 ± 0.001 0.931 ± 0.002 0.940 ± 0.012 0.921 ± 0.001 0.931 ± 0.002 0.932 ± 0.001

Proposed 0.983 ± 0.011 0.955 ± 0.001 0.955 ± 0.001 0.963 ± 0.011 0.919 ± 0.012 0.933 ± 0.013 0.946 ± 0.010
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5.3. Predicting Prognosis
5.3.1. Predicting Prognosis after One Month

In this section, we evaluate the performance of single classifiers from different types,
including the linear model and statistical model, in predicting the prognosis after one month
of medication. From Table 2, we can observe the following: (1) using LR gives the worst
performance, achieving (p = 0.835%, R = 0.805%, F-measure = 0.824%, and ACC = 0.817%),
followed by NB. (2) Using the SVC classifier gives adequate performance in terms of
different evaluation metrics, achieving (p = 0.844%, R = 0.8159%, F-measure = 0.823%, and
ACC = 0.833%). Using the MLP classifier gives the best performance in terms of traditional
machine learning. It achieves metrics (p = 0.835%, R = 0.814%, F-measure = 0.814%, and
ACC = 0.827%). The proposed algorithm improves the performance by 2–5% in terms of
different evaluation metrics. It achieves (p = 0.875%, R = 0.876%, F-measure = 0.864%, and
ACC = 0.877%). To visualize the performance of our proposed model. Figure 5 shows the
learning and validation curve in both training and testing stages.

Table 2. Results of the prognosis model after 1 month.

Model Training Score Testing Score Accuracy Precision Recall F-Measure AUC

LR 0.828 ± 0.001 0.815 ± 0.01 0.817 ± 0.001 0.835 ± 0.002 0.805 ± 0.011 0.824 ± 0.013 0.819 ± 0.010
NB 0.861 ± 0.001 0.833 ± 0.011 0.828 ± 0.011 0.833 ± 0.012 0.833 ± 0.001 0.828 ± 0.016 0.828 ± 0.020

SVC 0.832 ± 0.001 0.821 ± 0.011 0.8331 ± 0.21 0.844 ± 0.013 0.8159 ± 0.01 0.823 ± 0.002 0.822 ± 0.011
MLP 0.842 ± 0.003 0.833 ± 0.001 0.827 ± 0.011 0.835 ± 0.021 0.814 ± 0.012 0.814 ± 0.019 0.801 ± 0.035
DT 0.886 ± 0.002 0.855 ± 0.001 0.853 ± 0.002 0.828 ± 0.012 0.859 ± 0.001 0.845 ± 0.002 0.821 ± 0.001

Proposed 0.916 ± 0.001 0.875 ± 0.01 0.877 ± 0.001 0.875 ± 0.002 0.876 ± 0.011 0.864 ± 0.013 0.839 ± 0.010
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5.3.2. Predicting Prognosis after Three Months

In this section, we evaluate the performance of in predicting the prognosis after
three months of medication. From Table 3, we can observe the following: (1) using LR
gives the worst performance, achieving (p = 0.831%, R = 0.825%, F-measure = 0.831%,
and ACC = 0.825%). (2) SVC and NB give similar performances; SVC achieved 0.831%,
0.820%, 0.838%, 0.818%, and 0.866% in terms of accuracy, P, R, and F measures, and AUC,
respectively; the best performance obtained from DT with max depth = 6 according to
different evaluation metrics, achieving (p = 0.855%, R = 0.852%, F-measure = 0.852%, and
ACC = 0.900%). The proposed algorithm outperforms other algorithms by about 3–4%. It
achieves (p = 0.911%, R = 0.900%, F-measure = 0.898%, and ACC = 0.901%). The model’s
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performance improved in predicting the prognosis in three months over predicting after
one month by about 1–4% in most models. Figure 6 shows the learning and validation
curve in both training and testing stages.

Table 3. Results of the prognosis model after 3 months.

Model Training Score Testing Score Accuracy Precision Recall F-Measure AUC

LR 0.833 ± 0.002 0.821 ± 0.001 0.825 ± 0.001 0.831 ± 0.012 0.825 ± 0.002 0.831 ± 0.002 0.822 ± 0.001
NB 0.852 ±0.001 0.824 ± 0.023 0.821 ± 0.011 0.833 ± 0.001 0.823 ± 0.002 0.833 ± 0.002 0.846 ± 0.001

SVC 0.850 ±0.010 0.820 ± 0.001 0.831 ± 0.012 0.820 ± 0.002 0.838 ± 0.021 0.818 ± 0.001 0.866 ± 0.021
MLP 0.857 ± 0.001 0.85 ± 0.002 0.832 ± 0.003 0.851 ± 0.001 0.833 ± 0.002 0.844 ± 0.031 0.885 ± 0.013
DT 0.882 ± 0.003 0.863 ± 0.002 0.847 ± 0.021 0.855 ± 0.011 0.852 ± 0.002 0.852 ± 0.029 0.900 ± 0.015

Proposed 0.912 ± 0.0021 0.901 ± 0.001 0.901 ± 0.031 0.911 ± 0.022 0.900 ± 0.039 0.898 ± 0.011 0.895 ± 0.011
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5.3.3. Predicting Prognosis after Six Months

This section investigates the ability of our proposed ML model in predicting the prog-
nosis of CTS after 6 months of medication. Table 4 shows the results of using traditional
ML models as well as our proposed model. From that table, we can observe the follow-
ing. (1) LR and NB give similar performance in terms of different metrics; NB achieved
0.821%, 0.813, and 0.823% and LR achieved 0.823%, 0.846%, and 0.8012% in terms of ac-
curacy, precision, and recall, respectively. The best performance was obtained from the
MLP classifier with one hidden layer according to different evaluation metrics, achieving
(p = 0.85%, R = 0.833%, F-measure = 0.844%, and ACC = 0.832%). The proposed algorithm
outperforms other algorithms by about 3–4% (p = 0.898%, R = 0.909%, F-measure = 0.898%,
and ACC = 0.912%). The overall performance for predicting the prognosis after six months
outperforms the prediction after one and three months.

Table 4. Results of the prognosis model after 6 months.

Model Training Score Testing Score Accuracy Precision Recall F-Measure AUC

LR 0.836 ± 0.002 0.825 ± 0.001 0.8231 ± 0.02 0.846 ± 0.012 0.8012 ± 0.002 0.825 ± 0.002 0.844 ± 0.001
NB 0.842 ±0.001 0.834 ± 0.023 0.821 ± 0.011 0.813 ± 0.001 0.823 ± 0.002 0.821 ± 0.002 0.835 ± 0.002

SVC 0.850 ±0.010 0.830 ± 0.001 0.831 ± 0.012 0.820 ± 0.002 0.818 ± 0.021 0.818 ± 0.001 0.856 ± 0.011
MLP 0.887 ± 0.001 0.85 ± 0.002 0.832 ± 0.003 0.85 ± 0.001 0.833 ± 0.002 0.844 ± 0.031 0.885 ± 0.033
DT 0.842 ± 0.003 0.842 ± 0.002 0.849 ± 0.011 0.825 ± 0.021 0.814 ± 0.002 0.824 ± 0.019 0.891 ± 0.035

Proposed 0.928 ± 0.0021 0.912 ± 0.001 0.912 ± 0.031 0.898 ± 0.022 0.909 ± 0.039 0.898 ± 0.011 0.903 ± 0.011
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The reason behind that improvement is based on several points, including (1) severity
of the syndrome at presentation (decreased motor amplitude); (2) the extent of thenar
muscle atrophy, and the patient’s primary employment (dentist, computer engineer, house-
wife, etc.); (3) using hormonal contraception via injection or oral means helps recurrence
of entrapment. Obesity (BMI > 25), bilateral entrapment, hypothyroidism, uncontrolled
diabetes, and uremia are additional systemic conditions that negatively affect the outcome
of CTS treatment. Figure 7 shows the learning curve and the validation curve of the
proposed model.
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5.4. Comparison with Other Work

Carpal tunnel syndrome (CTS) is a clinical disease caused by compression of the
median nerve in the carpal tunnel. Identifying the severity of CTS is essential to providing
appropriate therapeutic interventions. Few studies have used a private small dataset that
includes patient historical data, MRI images, US images, and CT images. Some studies
used SVM to classify CTS patients. For example, ref. [28] utilized XGB with sample size
1073 [254(+), 761(−)] and achieved 0.76 in terms of ACC. In [29], the authors used SVM
with a sample size of 64 [46(+), 19(−)] and achieved ACC = 0.9513, but the developed
model may not be robust due to the small size of the dataset.

In [12], the authors used a sample size of 122 [65(+), 57(−)] and achieved the best
performance of 0.901 using SVM. Though this study achieved adequate performance in
terms of ACC, it showed inconsistency between true negative (TN) and true positive
(TP) values.

Our proposed model utilized bagging with RF in 160 [80(+), 80(−)], achieving 0.955 and
0.946 in terms of ACC and AUC, respectively. Table 5 details the comparison with other
studies in CTS classification. There are several reasons that our proposed model is superior
to the state of the art: (1) Most studies have tried to categorize between CTS patients and
normal patients, which may not make sense from the medical side. In our study, we aggre-
gate the data from CTS patients and patients with other diseases that have an overlapping
symptom with CTS, such as cervical radiculopathysasas, de quervian tendinopathy, and
peripheral neuropathy. (2) Our proposed model considers historical data, which has a
significant effect in disease diagnosis. (3) Our model did not show differences between
training and testing and showed adequate consistency between TP and FP, which indi-
cates the consistently of our model. Therefore, the proposed method could be considered
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as a generalized and robust model that could be used as an alternative to the clinical
CTS diagnosis.

Table 5. Comparison with other work in terms of diagnosis detection.

Reference Year Models Dataset Results Type Data Availability

[28] XGB 761 CTS hands and 254 controls ACC: 76.6 EDx Public data
[29] SVM 46 CTS hands and 19 controls ACC: 0.9513 EDx Provided upon request

[30] MNT-DeepSL 84 CTS hands and 16 controls
16 controls ACC: 0.90 US Private

[12] SVM 65 CTS hands and 57 controls ACC: 0.901
AUC: 0.926

US
EDx Private

Proposed 160 patients (80 CTS and 80 controls) ACC = 0.955, AUC = 0.946 US, EDx
BCTQ Private

Table 6 shows the comparison between other studies in predicting prognosis. Very
few studies are concerned with predicting improvement during the treatment process. All
of these studies build their model on data after patient surgery. For example, [20] used
gradient boosting to predict the probability of improvement after surgery based on the
data aggregated from 2119 patients. They concluded with a model that could predict the
progress with an AUC of 0.7229; in [36], the authors used XGB and achieved AUC = 0.791.
We chose to make three models, to predict the improvement after one, three, and six
months based on the data from questionnaire and the nerve condition. The proposed
model achieved promising results in terms of different metrics for predicting after one
month, (ACC = 0.875, AUC = 0.839), after three months (ACC = 0.901, AUC = 0.895), and
after six months (ACC = V, AUC = 0.903). Accordingly, our model could be utilized to
identify patients who may benefit from decompression. Our data-driven decision support
tools can be used to help determine which patients to operate on, to avoid the associated
risks and expenses of surgery.

Table 6. Comparison with other work in terms of diagnosis prediction.

Reference Models Dataset Results and Evaluations Type Medical Treatment

1916 patients ACC: 0.718, AUC: 0.791 BCTQ Surgery
[36] XGB 1916 patients ACC: 0.718, AUC: 0.791 BCTQ Surgery
[20] Gradient boosting 2119 patients AUC: 0.7229 BCTQ Surgery

Proposed 80 patients ACC: 0.912, AUC: 0.903 BCTQ Hydrodissection injection

5.5. Statistical Analysis

First, with regard to family history the statistical test shows that a median abnormality
or prior carpal tunnel surgery had a substantial impact on CTS with a positive family
history of the condition (chi square = 20.484, p < 0.001). Second, with regard to CSA with a
cut-off point of 11 mm2, there was a statistically significant rise in CSA cases compared to
controls. With a sensitivity of 95% and a specificity of 100%, this is regarded as a superb
test for differentiating CTS patients from controls. Table 7 shows that there is a statistically
significant interaction between the three US groups diagnosed with CTS (mild, moderate,
and severe). Third, with regard to the questionnaire, we discovered a highly significant
reduction in symptoms measured by the SSS, FSS, and pain analogue scale, as well as
a reduction in CSA, after 1, 3, and 6 months post-injection when we assessed patient
status and compared the baseline evaluation with the results after the injection process.
Table 8 shows that, in terms of the medical questionnaire, there is a statistically significant
interaction between the three groups of diagnosed CTS (mild, moderate, and severe).
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Table 7. Changes in CSA after 1, 3, and 6 months.

Measurement Mild Moderate Severe p Value

Percentage 25% 30% 45%

<0.001
Median 1.1 0.7 0.4

25th percentile–75th percentile 0.9–1.3 0.6–0.75 0.4–0.5
Pairwise comparison A A B

Table 8. Descriptive statistics of FSS and SSS between the three US severity groups over time.

Parameter Timing Mild Moderate Severe
Group Time Interaction

F p

FSS

Initial 24.6 ± 1.8 21.4 ± 2.8 24.8 ± 5.6

4.964 0.024
One-Month 10.8 ± 1.3 10.8 ± 1.6 16.2 ± 2.2

Three-Month 12.6 ± 0.74 11.1 ± 1.3 17.8 ± 17.8

Six-Month 13.4 ± 0.94 12.4 ± 1.6 19.2 ± 19.1

SSS

Initial 33.2 ± 3.4 33.8 ± 4.8 39.2 ± 5.1

9.112 <0.001
One-Month 14.2 ± 2.1 17.2 ± 3.1 28.2 ± 6.6

Three-Month 18.2 ± 2.8 19.7 ± 2.7 30.2 ± 6.2

Six-Month 19.8 ± 2.8 21.5 ± 2.5 33.5 ± 6.2

6. Conclusions and Future Work

CTS can be differentiated easily from many other medical disorders based on ML;
carpometacarpal arthritis of the thumb NCS shows normal values of terminal latency,
conduction velocity, and amplitude. Dequervian neuropathy also shows normal parameter
of NCS. Peripheral neuropathy shows abnormality within NCS according to the type of
neuropathy: demyelinating or axonal neuropathy prolonged latency, decreased amplitude,
and conduction velocity. Finally, the most common disorder confused with CTS is cervical
radiculopathy, mainly C6 radiculopathy; this can also be easily differentiated by ML. In
this study we develop the model as follows: First, we developed an ML model that could
distinguish between CTS patients and non-CTS patients based on BCTQ data and nerve
conduction and then compared the results with several machine learning models. Second,
a prediction model was established for measuring the improvement as a result of the
treatment process among CTS patients after one, three, and six months. The model was
trained and validated using CTS patient data. The model displayed reasonable discrimi-
native ability, high sensitivity, and reasonable specificity. In the future, we plan to extend
our work to (1) try different hyper parameter tuning algorithms and compare the perfor-
mance; (2) gather insights from different datasets to ensure comprehensiveness; (3) test our
developed model using several real datasets to ensure robustness and generalization ability.
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Appendix A

Boston Carpal Tunnel Syndrome Questionnaire (BCTQ).

Appendix A.1 . Symptom Severity Scale (11 Items)

1 2 3 4 5

1. How severe is the hand or wrist
pain that you have at night? Normal Slight Medium Severe Normal

2. How often did your hand or
wrist pain wake you up during a
typical night in the past two weeks?

Normal Once 2 to 3 times 4 to 5 times Normal

3. Do you typically have pain in
your hand or wrist during
the daytime?

No pain Slight Medium Severe No pain

4. How often do you have hand or
wrist pain during the daytime? Normal 1–2 times/day 3–5 times/day More than 5 times Normal
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1 2 3 4 5

5. How long on average does an
episode of pain last during
the daytime?

Normal <10 min 10~60 min
Continuous >60 min Normal

6. Do you have numbness (loss of
sensation) in your hand? Normal Slight Medium Severe Normal

7. Do you have weakness in your
hand or wrist? Normal Slight Medium Severe Normal

8. Do you have tingling sensations
in your hand? Normal Slight Medium Severe Normal

9. How severe is the numbness (loss
of sensation) or tingling at night? Normal Slight Medium Severe Normal

10. How often did hand numbness
or tingling wake you up during a
typical night during the past
two weeks?

Normal Once 2 to 3 times 4 to 5 times Normal

11. Do you have difficulty with the
grasping and use of small objects
such as keys or pens?

Without difficulty Little difficulty Moderately difficult Very difficult Without difficulty

Appendix A.2 . Functional Status Scale (8 Items)

No Difficulty Little Difficulty Moderate
Difficulty Intense Difficulty

Cannot Perform the
Activity at All Due to

Hand and Wrist Symptoms

Writing 1 2 3 4 5

Buttoning of clothes 1 2 3 4 5

Holding a book while reading 1 2 3 4 5

Gripping of a telephone 1 2 3 4 5

Opening of jars 1 2 3 4 5

Household chores 1 2 3 4 5

Carrying of grocery basket 1 2 3 4 5

Bathing and dressing 1 2 3 4 5
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