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Abstract: Lung cancer presents one of the leading causes of mortalities for people around the world.
Lung image analysis and segmentation are one of the primary steps used for early diagnosis of cancer.
Handcrafted medical imaging segmentation presents a very time-consuming task for radiation
oncologists. To address this problem, we propose in this work to develop a full and entire system
used for early diagnosis of lung cancer in CT scan imaging. The proposed lung cancer diagnosis
system is composed of two main parts: the first part is used for segmentation developed on top
of the UNETR network, and the second part is a classification part used to classify the output
segmentation part, either benign or malignant, developed on top of the self-supervised network.
The proposed system presents a powerful tool for early diagnosing and combatting lung cancer
using 3D-input CT scan data. Extensive experiments have been performed to contribute to better
segmentation and classification results. Training and testing experiments have been performed
using the Decathlon dataset. Experimental results have been conducted to new state-of-the-art
performances: segmentation accuracy of 97.83%, and 98.77% as classification accuracy. The proposed
system presents a new powerful tool to use for early diagnosing and combatting lung cancer using
3D-input CT scan data.

Keywords: lung cancer segmentation; lung cancer classification; medical images; deep learning;
transformers

1. Introduction

Cancer is becoming one of the most frequent causes that lead to deaths around the
world. According to the latest statistics of global cancer statistics (GLOBOCAN) [1], there
are 19.3 million new cancer cases around the world. In 2020, 9.96 million people died
from cancer. Lung cancer segmentation presents one of the most important research
fields, and many studies have been elaborated. Numerous cancer treatment techniques
have been developed to control malignant tumors and to enhance life quality for cancer
patients, in addition to surgical restriction [2], including chemotherapy [3], radiation [4],
thermotherapy [5], and immunotherapy [6].

Radiation therapy (RT) has made significant strides recently and is an essential com-
ponent of lung cancer control [7]. The achievement of RT relies on precisely irradiating the
tumor targets, protecting the organs at risk (OARs), and preventing consequences from
radiotherapy. To deliver the prescribed dose to the gross tumor volume (GTV), it is crucial
to segment GTV and OARs during RT treatment. Precise planning to manually segment
the GTV and OARs by radiation oncologists presents a difficult task to perform. This
could cause considerable RT treatment delays and low survival rates, especially in clinics
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with insufficient funding. Proficiency in manual segmentation also depends on radiation
oncologists’ expertise. There can still be inconsistencies in the segmentation for both intra-
and interobservers, even if they segmented the GTV and OARs following the same rules.
On the other hand, the automatic segmentation method may result in accurate and efficient
diagnoses. Several image segmentation methods have been introduced recently, leading to
more precise and effective image segmentation for clinical diagnosis and treatment [8]. The
diagnosis of lung cancer at an early stage and the monitoring of lung cancer throughout
therapy need the use of medical imaging technologies. Lung cancer detection has been thor-
oughly researched using a variety of medical imaging modalities, including chest X-rays,
magnetic resonance imaging, positron emission tomography, computed tomography, and
molecular imaging methods. Lung cancer presents the first cause and highest morbidity
and fatality rates in different countries worldwide [9,10].

Non-small-cell lung carcinoma (NSCLS) accounts for about 85–88% of cases of lung
cancer, while small-cell lung cancer (SCLC) accounts for 12–15% of cases [11]. Lung cancer
is invasive and heterogeneous, making early detection and treatment crucial to improving
the five-year survival rate overall [12]. The detection of lung nodules has been thoroughly
studied over the past decade using a variety of medical imaging techniques, including chest
X-ray, positron emission tomography (PET), magnetic resonance imaging (MRI), computed
tomography (CT), low-dose CT (LDCT), and chest radiograph (CRG).

It is crucial to pay more attention to the medical field and, especially, to build new
systems used for early cancer diagnosis in order to limit its mortality rate. The segmentation
accuracy is a key consideration when using lung cancer segmentation results. Radiolo-
gists typically perform segmentation manually, but manual segmentation occasionally
produces unreliable results due to interobserver variability due to inconsistency. To ad-
dress this problem, an automatic segmentation system of CT scan lung cancer images is
highly relevant.

Deep-learning-based models have recently demonstrated great performance in various
computer vision and artificial intelligence fields. The use of deep learning in the medical
field has witnessed significant development, especially when applied to organ cancer seg-
mentation. Deep-learning-based models have demonstrated more outstanding capabilities
in the auto-segmentation of medical images. Deep learning models autonomously learn
feature representation and then use the high-dimensional abstraction they have to complete
segmentation tasks without any manual intervention. One of the most frequent issues
in applying deep learning architectures is using massive datasets. Small datasets do not
contribute to better results when applying deep learning models. Compared to other fields,
expanding the number of datasets, including medical images, is generally challenging. This
is because obtaining medical imaging is expensive, and patients’ privacy needs protection.
Transfer learning of a pre-trained model [13], data augmentation [14], and artificial dataset
generation utilizing generative adversarial networks (GANs) have been proposed [15] to
overcome the need for large-scale datasets in the training stage. Applying deep learning
to the healthcare field has solved other health issues by using deep learning for classifi-
cation, detection, or segmentation. Automatically detecting and diagnosing cancer in CT
scans with deep learning is extremely important to prevent cancer from advancing to the
metastasizing stages.

Medical image segmentation presents a fundamental axis in computer vision. This
task presents one of the most critical and challenging parts of image processing. Medical
image segmentation has succeeded dramatically, especially after the appearance of deep
learning, and made tremendous advances, especially after the arrival of deep learning and
deep convolutional network architectures.

Lung cancer is the second most common type of cancer, representing 11.4% of all new
cases. Meanwhile, it dominates cancer-related mortality globally, accounting for 18.0% of
all cancer-related deaths [1].

Based on the above, designing an early lung cancer diagnosis system is extremely
important to save lives and prevent metastasized stages.
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The target is often segmented using conventional automatic segmentation algorithms
based on the shallow properties of the image, such as the grayscale, texture, gradient, etc.
Many works on lung segmentation have utilized traditional image processing methods,
such as thresholding, edge detection, and clustering [16].

Deep learning as a subfield of artificial intelligence is getting more attention in image
automatic segmentation due to significant advancements in computing methodologies
and data accumulation [17]. Deep learning, such as convolutional neural networks, fully
convolutional networks (FCNs) [18], and U-Net, can represent more complex phenomena,
in addition to continuing to increase the model depth by hierarchically extracting features
from the input data via the hidden layers and repeatedly training the network with the
input data [19]. Further, these architectures have been widely used in different studies to
solve the problem of image segmentation. In the medical field, other works have been
proposed to address the issue of lung cancer detection, as it presents the second highest
cancer mortality cause around the world [1].

In [20], Nishio et al. proposed a new lung cancer segmentation system using deep
learning techniques. Their study aimed to create and assess a segmentation method for lung
cancer using transfer learning and a pre-trained model. An artificial dataset produced by a
generative adversarial network served as the basis for the pre-trained model’s construction.
The authors obtained a good Dice similarity coefficient (DSC) for the NSCLC radio genomics
dataset in this study. In [21], Liu et al. proposed a review of the different methods used
to address the lung cancer segmentation issue. They also compared deep-learning-based
segmentation techniques and the atlas method [22].

Cancer is a potentially fatal disease that requires early diagnosis to improve patient
survival rates. Medical imaging is time-consuming and requires a high level of knowledge
to manually detect, segment, and classify cancer in several organs (such as the breast,
brain, lung, and skin). In [23], Wang et al. examined the most recent developments,
difficulties, and potential paths for future research in deep learning approaches for lung
cancer and pulmonary nodule identification. In [24], Ali et al. review current deep learning
segmentation and classification techniques for multi-organ cancer diagnosis and outline
potential future obstacles.

Currently, a reliable technique to precisely identify nodules from lung imaging is
3D-based segmentation. These qualities have been included in numerous strategies. To-
mography scans were used by Paing et al. [25] to create a completely automated and
improved random forest classification method for lung nodules. The borders are made bet-
ter by using a 3D-chain code method. A 3D CNN technique was developed in [26] for the
automatic diagnosis of lung cancer, and it produced effective results, with a recall of 99.6%
and an AUC of 0.913%. To assess performance, the model was trained using the LIDC-
IDRI standard dataset. Different studies have proved that integrating deep-learning-based
techniques has widely improved medical imaging segmentation results [27].

The network for volumetric segmentation learns from sparsely labeled volumetric
data. Two intriguing applications for this technique have been proposed: a fully automated
and a semi-automated arrangement. The proposed network replaces all 2D operations
with their equivalent 3D functions; the 3D-U-Net architecture was extended from the
prior U-Net architecture by Ronneberger et al. [19]. Some of the state-of-the-art works
have used 3D-based data and architectures to segment lung cancer. The majority of these
works proved that the use of 3D data achieves more promising results than 2D-based data.
In [28], nodule detection and classification methods are proposed. This study discussed an
automated method of detection and classification to assist radiologists in diagnosing the
disease. A high false-positive rate was achieved in these systems, which could result in
the wrong diagnosis. To address this problem, a new 3D-based detection and classification
technique was proposed for nodule lung cancer detection. In [29], the authors proposed
to create and verify a deep-learning-(DL)-based model and evaluated its capability to
identify lung cancer on chest radiographs. The developed deep learning model achieved a
sensitivity rate of 0.73. Planning radiation therapy requires the precise identification of lung
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tumors. Segmenting the cancer in computed tomography (CT) images is complicated and
complex because of the low contrast of the lung tumor. In [30], authors proposed a deep-
leaning-based architecture for lung tumor segmentation. This study efficiently segments
the cancerous lung area from the surrounding chest region using U-Net and the channel
attention module (CAM). Compared to state-of-the-art models, the developed model,
SegChaNet, achieved better results in learning the dense features of lung abnormalities.

Various works have been proposed in the literature to address the problem of lung
cancer segmentation in medical imaging. Still, few of them offered a complete system
that performs segmentation and diagnosis to classify the lung tumor as either malignant
or benign.

This work aims to develop a new CT scan lung cancer segmentation system. The
segmentation part of the proposed system was performed based on the UNETR neural
network [31], which consists of a combination of U-Net and transformers. To ensure a
full system used for early diagnosis of lung cancer, the proposed work presents a second
part based on a classification head, which is performed on top of the Self-Supervised
Classification Network [32]. After that, the segmentation results will be processed to be
classified as either benign or malignant pulmonary nodules.

The proposed work presents various additional advantages compared to other state-of-
the-art works, as it presents a full system for lung cancer segmentation and a diagnosis stage
via a classification head. The majority of the state-of-the-art works focus on a single task,
either a classification or segmentation task. The proposed work combines the two tasks
to develop a full system used for early prediction of lung cancer tumor presence. The
proposed system will highly contribute to the early diagnosis of lung cancer and avoiding
metastasized situations. The proposed system will also assist doctors and experts in
planning radiation therapy.

The main contributions of the proposed work are the following:

• Proposing an automatic lung cancer detection system based on the analyses of 3D CT
scan images.

• Proposing the combination of a segmentation network followed by a classification
network to predict lung cancer cases

• Proposing the use of a transformers-based segmentation network to collect more
relevant features from the 3D input data

• Proposing the use of a self-supervised network for the classification of the
segmented images

• Validating the performance of the proposed system on a publicly available dataset

The remainder of this paper is the following: Section 2 details the different parts of
the developed system used for the early diagnosis of lung cancer. Section 3 details all the
experiments conducted to contribute to the developed system. Discussion is provided in
Section 4, and Section 5 concludes the paper.

2. Materials and Methods
2.1. Problem Statement

The analysis of image characteristics of lung nodules on CT images is crucial for
computer-aided detection systems of lung cancer in order to distinguish between benign
and malignant nodules. It is increasingly important to build an automatic segmentation sys-
tem for early lung cancer diagnosis. Building such a system using classical methodologies
is extremely difficult.

During the last few years, deep-learning-based architectures have gained significant
attention and have undergone huge development to be used in the field of healthcare.
Therefore, this study aimed to create a robust and precise 3D-segmentation approach using
deep learning for lung cancer.



Diagnostics 2023, 13, 546 5 of 15

2.2. Research Objectives

The main aim of the proposed study is to build an early diagnosis system for lung
cancer. The proposed system is mainly divided into two main parts: segmentation head
and classification head used for further CT scan lung cancer classification.

2.3. Segmentation Head

The segmentation part is basically developed on top of a combination of transformers
and U-Net networks. This architecture was proposed in [31] and named “UNETR”. The
UNETR network uses a transformer as the encoder to effectively capture the global multi-
scale information and learn sequence representations of the input volume. The encoder
and decoder are designed using the well-established “U-shaped” network architecture.
To calculate the final semantic segmentation output, the transformer encoder is directly
connected to a decoder via skip connections at various resolutions. In UNETR, the encoder
and decoder are coupled by skip connections in a contracting–expanding pattern using a
stack of transformers as the encoder. The transformers were widely used in the natural
language processing field. Transformers operate using a 1D sequence of input. Similar to
transformers, UNETR creates from 3D input data a 1D sequence. The 3D input data are x
ε RH × W × H × C; the input data present a resolution of (H, W, D, C). C presents the number
of channels that are divided into homogeneous, non-overlapping, flattened patches. xv

ε RN × (P3 . C), where each patch’s resolution is indicated by (P, P, P), N = (H ×W × D)/P3,
denotes the sequence length. Then, the patches are projected using a linear layer into a
K-dimensional embedding space that is constant across all transformer levels. To be able to
maintain the retrieved patches’ spatial information, a 1D learnable, positional, embedding
Epos is added to the architecture. E∈ R(P3 . C)× K is according to Equation (1).

z0 = [x1
vE, x2

vE, . . . , xN
v E] Epos (1)

Following the embedding layer, a stack of transformer blocks is applied, composed
of multi-head self-attention (MSA) and multilayer perceptron (MLP) sublayers. MSA and
MLP are defined as Equations (2) and (3), respectively.

Z′i = MSA(Norm(zi− 1)) + zi− 1, i = 1 . . . L (2)

Zi = MLP
(
Norm

(
Z′i )) + Z′i , i = 1 . . . L (3)

The norm denotes layer normalization. Two linear layers with GELU activation
functions compose the MLP, along with an intermediate block identifier i, and the number
of transformer layers is L. MSA’s self-attention sublayer (SA sublayer) consists of n parallel
SA heads. A parameterized function called the SA block, in particular, learns the mapping
between a query (q) and the representations of the corresponding key (k) and value (v) in a
sequence z ε RN × K. The attention weights (A) are calculated by comparing two entries in
z and their key-value pairs, as in Equation (4).

A = Softmax
QKT
√

Kh
(4)

where Kh = K/n serves as a scaling factor to keep the several parameters that affect a
constant value, the key’s values, which uses the calculated attention weights. The output
of SA layers is calculated as in Equation (5) for v values in the sequence z.

SA(z) = Av (5)

Here, v represents the values in the input sequence, and a scaling factor, Kh = K/n, is
used. Additionally, the MSA’s output is calculated as in Equation (6).

MSA(z) = [SA1(z); SA2(z); . . . ; SAn(z)] Wmsa (6)
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where Wmsa reflects the weights of the multiple trainable parameters. Figure 1 provides a
detailed architecture of the UNETR architecture used for lung cancer segmentation.
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2.4. Classification Head

In order to ensure an early diagnosis of lung cancer, the segmentation output will be
fed into the classification head to classify input data as either benign or malignant. The
“self-supervised neural network” [32] was adopted to perform the classification process
for the proposed diagnosis system. This architecture presents an innovative end-to-end,
self-supervised, classification learning technique. Self-Classifier optimizes for same-class
prediction of two enhanced perspectives of the same sample, simultaneously learning labels
and representations in a single-stage end-to-end process. A mathematically motivated
variation of the cross-entropy loss with a uniform prior asserted on the projected labels is
used to ensure non-degenerate solutions.

Over the past few years, interest in self-supervised visual representation learning
has grown [33]. The fundamental goal is to define and complete a pretext task so that
representations with semantic meaning can be learned without needing human-annotated
labels. It is possible to learn meaningful representations without any human-annotated
labels. Later, the learned representations are applied to subsequent tasks by finetuning of a
smaller dataset. Modern self-supervised models are built on the contrastive learning mind.
These methods minimize the similarity between various images under different situations,
while simultaneously maximizing the similarity between two alternative augmentations of
the same image. The self-supervised neural network provides a classification-based pretext
task whose target is, in this instance, closely related to the ultimate purpose. An unsuper-
vised classifier (Self-Classifier) was designed to categorize two alternative augmentations
of the same image similarly, while only knowing the number of classes, C. In reality, a task
like this is prone to degenerate solutions, where every sample is put in the same class. The
self-supervised neural network architecture is presented in Figure 2.
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To address this problem, asserting a uniform prior on the common cross-entropy loss
function to prevent them from making an answer that evenly divides the data presents
the best option. In fact, this architecture demonstrates that degenerating solutions are no
longer included in the set of optimal solutions. This architecture combines deep unsu-
pervised clustering architectures [34] and contrastive learning [35]. The self-supervised
architecture uses minibatch SGD to learn representations and cluster labels in a single-stage
end-to-end process. This model presents a straightforward, efficient single-stage, end-to-
end, self-supervised, classification and representation learning method. No pre-training,
expectation-maximization technique, pseudo-labeling, or external clustering is necessary
with this method.

Let us use the symbols x1 and x2 to represent two distinct augmented views of the
identical image sample x. The main objective for this architecture is to learn a classifier
y = f(xi) ε [C], where C is the specified number of classes that can classify two different
views of the same sample. The following cross-entropy loss should be minimized as a naive
solution to this problem:

l(x1, x2) = ∑yε[c] P(y|x1 ) log P(y|x2) (7)

where p(y|x) is the row softmax of the matrix of logits S generated by our model (backbone
+ classifier) for all classes (columns) and batch samples (rows). The network predicts a
constant y value independent of the x. Therefore, attempts to reduce Equation (7) without
further regularization will quickly converge to this degenerate solution. To fix this, we
suggest applying the Bayes and total probability laws, resulting in the following:

P(y|x2) =
p(y) p(y|x2)

p(x2)
=

p(y) p(x2|y)
∑yε[c] P(x2|y)p(y)

(8)

P(y|x1) =
p(y) p(y|x1)

p(y)
=

p(y) p(y|x1)

∑x1εB1
P(y

∣∣x1)p(x1)
(9)

where B is a collection of N samples (B1 are the batch’s first additions), S is the aforemen-
tioned matrix of logits, and p(x|y) is a softmax column.

In the self-supervised network, the authors assume that p(x1) is uniform (under the
reasonable assumption that the training samples are equiprobable) and believe that p(y)
has a uniform prior; the cross-entropy function will become Equation (10).

l(x1, x2) = −∑yε[c]
p(x2|y)

∑y P(x2

∣∣∣y) log · (N/C)
p(y|x1)

∑y p(y|x1)
(10)
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In the proposed work, the self-supervised network was used to perform a complete
lung cancer diagnosis and to classify segmented input data as either benign or malignant.

A combination between UNETR and a self-supervised network will contribute to
performing an early diagnosis of lung cancer. Figure 3 provides the central architecture of
the diagnosis system.
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3. Results

The main objective of this work is to develop a tool featuring segmentation and a
classification system used to ensure an early diagnosis of lung cancer. The effectiveness
of deep-learning-based methods for lung cancer classification and detection is largely
evaluated by lung imaging datasets. The Decathlon dataset [36] was used for training and
evaluating the proposed model. The Decathlon challenge (http://medicaldecathlon.com
(accessed on 15 December 2022)) was organized to offer a complete, open-source benchmark
for general-purpose algorithmic validation and testing that addressed several segmentation
tasks. The Decathlon lung dataset (Task06), one of several segmentation datasets included
in Decathlon, served as the study’s training and validation sets. The Decathlon lung dataset
consists of 96 sets of segmented 3D CT scans. The dataset was divided into two subsets:
train with 64 input 3D volumes and test with 32 3D volumes.

In the proposed work, the diagnosis system consists of a combination of two parts: a
segmentation head and a classification head. The input data of the segmentation part are a
3D CT scan, which the UNETR network will process to perform a semantic segmentation
as an output. The output of the segmentation part will be fed into the classification part,
which is built on top of the self-supervised network to perform a classification as either
benign or malignant.

The proposed experiments were conducted on an intel i7 CPU desktop with 32 GB
of RAM and an NVIDIA GTX 960 graphic processing unit (GPU) with 4 GB of graphic
memory. For developing the proposed 3D, CT scan, lung segmentation system, the PyTorch
deep learning framework was used with CUDA support and CUDNN library support.

3.1. Segmentation Part

Training and testing experiments were performed using the Decathlon dataset. The
dataset provides 96 input 3D CT scans. The data were divided into 64 CT scans for training
and 32 for network testing. The segmentation’s accuracy directly influences the success
or failure of the segmentation process. Therefore, four measurement variables, namely,

http://medicaldecathlon.com
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Dice, sensitivity, specificity, and accuracy, are used. The assessment also depends on true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

Dice: a tool for measuring the degree to which predictions and actual results over-
lap. The better-predicted outcome will have a higher DSC value, which ranges from 0
to 1. In the proposed experiments, the following evaluation metrics can be computed
as Equations (11)–(14).

Dice =
2TP

2TP + FP + FN
(11)

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

TN + FP
(13)

Accuracy =
(TN + TP)

(TN + FN + FP + TP)
(14)

During training and testing experiments, different experiment settings were adopted.
Table 1 provides all the experiment settings used in the conducted experiments, where
TP, TN, FP, and FN stand for true positive, true negative, false positive, and false negative
voxels, respectively.

Table 1. Experiment parameters used.

Parameter Value

Input patch size 16 × 16 × 16
Learning rate 0.0001

Regression weight 0.00001
Heads number 12

Encoder VIT-B/16
Optimizer AdamW/Nadam

Table 2 provides the results of the segmentation in terms of accuracy and processing speed.

Table 2. Segmentation performance obtained.

Encoder Heads Accuracy Speed

VIT-B/16 12 97.83 1

As mentioned in Table 2, the developed lung cancer segmentation system provides
encouraging results that outperform the state-of-the-art results on the Decathlon dataset.
Aiming to obtain the best segmentation performances, we performed the network training
and testing using different optimizers; in this work’s case, AdamW and Nadam. Table 3
reports the obtained performances.

Table 3. Optimizer’s impact on segmentation performance.

Optimizer Accuracy

AdamW 96.79
Nadam 97.83

As mentioned in Table 3, by modifying the network optimizer, we succeeded in con-
tributing to better segmentation results. By using the Nadam optimizer, better segmentation
performances were obtained. The segmentation accuracy was improved by around 1%
compared to the AdamW network optimizer.
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As mentioned above, different evaluation metrics were used to highlight the network
segmentation performances obtained. The achieved results obtained in the conducted
experiments are reported in Table 4.

Table 4. Evaluation metrics results.

Metric Value (%)

Dice 96.42
Sensitivity 96.85
Specificity 97.12
Accuracy 97.83

3.2. Classification Part

In the proposed work, we aim to develop a full system for early lung cancer diagnosis.
The proposed system consists of two main parts: a segmentation head (detailed in the
previous subsection) and a classification head based on the self-supervised network, which
will be described in the following.

We should add a classification part for the segmentation results to contribute to a lung
cancer diagnosis system. In this work, the output of the segmentation part (segmented CT
scan) will be fed into the classification part to be classified as either malignant or benign.
Table 5 reports all the experiment settings used during the training process.

Table 5. Experiment settings used.

Parameter Value

Learning rate 0.01
Momentum 0.6
Optimizer Adam/SGD

Weight decay 0.00001
Number of iterations 600/800/1000

Batch size 16
Activation function ReLU/Leaky ReLU

The network optimizer plays an essential role in achieving better performances. To
this end, we tried two different optimizers: Adam and SGD. Table 6 reports the obtained
performances regarding classification accuracy and speed for the two different optimizers.

Table 6. Optimizer’s impact on classification performance.

Optimizer Accuracy

SGD 97.18
Adam 98.77

As depicted in Table 6, the network classification performances were improved when
using the Adam optimizer instead of SGD. The best classification rates were achieved with
the Adam optimizer.

The number of iterations also highly impacted the network classification perfor-
mances obtained. Table 7 provides the accuracies obtained when modifying the number
of iterations.

Table 7. The number of iterations’ impact on classification performance.

Number of Iterations 600 800 1000

Accuracy 96.47 97.78 98.77
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As mentioned above, the proposed work presents a full scheme and a full system that
can be used for lung cancer diagnosis. Based on the obtained results (segmentation and
classification performances), the proposed system presents a new powerful tool that can be
used to improve the patient’s life and to combat lung cancer.

Inference time and flops were calculated based on an input with a size of 96 × 96 × 96
based on the sliding window technique. The achieved number of parameters proved that
the proposed model is computationally extensive, but a high performance was achieved.
Table 8 presents the proposed model’s computation complexity and inference speed.

Table 8. Computation complexity and inference speed.

Parameters (M) Flops (G) Inference (S)

93.32 37.28 10.23

An illustration of the predicted binary mask is presented in Figure 4. The predicted
mask highlights the tumor region for further processing, using the classification network to
indicate if the tumor is malignant or benign.
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3.3. Comparison

In order to study the performances obtained by the proposed system and their robust-
ness, a comparison against the state-of-the-art works should be presented. In the proposed
work, two main parts for early diagnosis of lung cancer are presented: the segmentation
and classification parts. Table 9 presents a comparison against state-of-the-art works on
lung cancer segmentation.

Table 9. Segmentation performance comparison.

Method Imaging Type Dataset Sensitivity (%) Dice (%) Accuracy (%)

[20] CT scan Decathlon 74.28.2 72.55 -
V-NAS-Lung [37] CT scan Decathlon - 66.95 -

3D UNet [38] CT scan Decathlon 61.08 -
VNet [39] CT scan Decathlon - 57.82 97.58

[40] CT scan Decathlon - 71.0 -
Proposed CT scan Decathlon 96.85 96.42 97.83

In the proposed work, a 3D, CT scan, segmentation system is developed based on
the UNETR network. Based on the results mentioned in Table 8, the presented system
outperforms the state-of-the-art works.
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The proposed lung cancer diagnosis system contains a classification part used to clas-
sify the segmentation head output as either benign or malignant CT scans. Table 10 provides
an in-depth comparison against state-of-the-art works on lung cancer classification tasks.

Table 10. Classification performance comparison.

Method Imaging Type Dataset Accuracy

[41] CT scan LIDC-IDRI 91.6%
[42] CT scan LIDC 97.3%
[43] CT scan LIDC-IDRI 96.69%
[44] CT scan LIDC-IDRI 98.2%

Proposed CT scan LIDC-IDRI 98.28%

The segmentation output is fed into the classification part in order to make a final
prediction about the segmentation results. The developed system has shown better per-
formance based on a detailed comparison with state-of-the-art lung cancer classification
works. It is extremely important to mention that the proposed classification system works
on 3D-input-segmented CT scan images.

4. Discussion
4.1. Segmentation Part

In order to contribute to a lung cancer segmentation system, different experiments
have been conducted to achieve better results. The UNETR network presents a 3D network
that can work with 3D input data. In the proposed experiments and the segmentation
part of this work, the Decathlon dataset, which provides 3D input CT scan data, is used to
train and test the network. We evaluated the impact of modifying the patch resolution; the
results are presented in Table 11.

Table 11. Patch resolution’s impact on segmentation performance.

Patch Resolution Accuracy Speed

32 96.12 15
16 97.83 11

Experiments were conducted to demonstrate that lowering the resolution consistently
results in better performance, as presented in Table 10. In particular, reducing the patch
resolution from 32 to 16 improves efficiency by around 1.5%. By decreasing the input patch
size, the network gains in segmentation performance accuracy, but the processing time
will increase.

4.2. Classification Part

After the segmentation process, and aiming to achieve better classification rates, in the
proposed experiments, we evaluated the self-classification network using two activation
functions: ReLU and Leaky ReLU. Table 12 provides all the obtained results in this regard.

Table 12. Activation function’s impact on classification performance.

Activation Function Recognition Rate

ReLU 97.23
Leaky ReLU 98.77

Modifying the network activation function from ReLU to Leaky ReLU positively
impacted the network classification rate. By using Leaky ReLU instead of ReLU, the
classification rate improved by around 1.5%.
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The proposed work presents a new tool that can be widely used to diagnose lung
cancer and prevent patients from reaching metastases stages. This paper proposes an
end-to-end neural network that combines two powerful neural networks: UNETR and a
self-supervised network. By combining these two neural networks, the proposed work
succeeded in providing a new tool that can be widely employed in CT scan images for
combatting lung cancer.

5. Conclusions

Lung cancer is one of the most frequent threats to patients’ lives worldwide. Different
works have been proposed to address this problem, but none have been efficient, as they
either treat the problem of lung cancer through segmentation or classification. Extensive
experiments have been conducted to achieve better segmentation and classification results.
Aiming to fulfill this goal, in this work, we developed a 3D lung cancer diagnosis system in
CT scan imaging. The proposed system consists of two main parts: the first part is for the
segmentation, developed on top of the UNETR network, and the second part is used for
the classification of the segmentation output, created on top of the self-supervised network.

The proposed system presents a new tool that can be used for 3D, CT scan, lung cancer
diagnosis. Very encouraging segmentation and classification results have been obtained,
which makes the proposed system efficient enough to help radiologists and doctors in
combatting lung cancer. A segmentation accuracy of 97.83% is obtained, and a classification
performance of 98.77% is achieved. The main limitations of the proposed model are that it
is computationally intensive and requires a high-performance GPU to run smoothly. This
limitation can be handled by deploying the proposed model on cloud-based systems or
local machines with high capabilities.
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