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Abstract: MRI is the primary imaging approach for diagnosing prostate cancer. Prostate Imaging
Reporting and Data System (PI-RADS) on multiparametric MRI (mpMRI) provides fundamental
MRI interpretation guidelines but suffers from inter-reader variability. Deep learning networks show
great promise in automatic lesion segmentation and classification, which help to ease the burden
on radiologists and reduce inter-reader variability. In this study, we proposed a novel multi-branch
network, MiniSegCaps, for prostate cancer segmentation and PI-RADS classification on mpMRI.
MiniSeg branch outputted the segmentation in conjunction with PI-RADS prediction, guided by the
attention map from the CapsuleNet. CapsuleNet branch exploited the relative spatial information of
prostate cancer to anatomical structures, such as the zonal location of the lesion, which also reduced
the sample size requirement in training due to its equivariance properties. In addition, a gated
recurrent unit (GRU) is adopted to exploit spatial knowledge across slices, improving through-plane
consistency. Based on the clinical reports, we established a prostate mpMRI database from 462 patients
paired with radiologically estimated annotations. MiniSegCaps was trained and evaluated with
fivefold cross-validation. On 93 testing cases, our model achieved a 0.712 dice coefficient on lesion
segmentation, 89.18% accuracy, and 92.52% sensitivity on PI-RADS classification (PI-RADS ≥ 4) in
patient-level evaluation, significantly outperforming existing methods. In addition, a graphical user
interface (GUI) integrated into the clinical workflow can automatically produce diagnosis reports
based on the results from MiniSegCaps.

Keywords: prostate cancer; PI-RADS classification; multi-parametric MRI; CapsuleNet; convolutional
neural network

1. Introduction

Prostate cancer is the second leading cause of cancer death in men, with an estimated
1,414,259 new deaths in 2020 worldwide [1]. Prostate MRI is widely used to diagnose
clinically significant prostate cancer in biopsy-naïve patients. It has been shown that
prebiopsy MRI is superior to systematic biopsy in prostate cancer detection [2]. Multipara-
metric magnetic resonance imaging (mpMRI), including T2-weighted, diffusion-weighted,
and dynamic contrast-enhanced scans, plays an integral role in enhanced visualization
of prostate cancer, improved biopsy targeting, and monitoring proactive signs of disease
progression [2]. In addition, MRI-guided biopsy is also increasingly adopted clinically for
risk assessment, replacing the conventional transrectal ultrasound-guided biopsy [3].

The demand for prostate MRI is growing due to mounting evidence and guideline
recommendations, and radiologists are facing a substantial increase in referrals [4]. The
prostate imaging reporting and data system (PI-RADS) provides fundamental guidelines for
assessing prostate MRI by classifying lesions into risk significance as the score increases [5].
PI-RADSv2 has been shown to help radiologists and specialists detect high-grade prostate
lesions with high sensitivity [6]. However, PI-RADS has been hindered by poor inter-reader
and intra-reader agreement [7]. Furthermore, PI-RADS reporting requires substantial
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expert knowledge, and radiologists with less experience had more significant inter-reader
variability in PI-RADS scoring [8].

With recent developments in deep learning, convolutional neural networks (CNNs)
exceeded human performance in natural image analysis [9], especially in image classifica-
tion [9] and segmentation [10]. Deep learning-based artificial intelligence (AI) algorithms have
shown great promise in medical image segmentation, detection, and classification [11–13] in
recent years.

Deep learning-based lesion detection and PI-RADS classification algorithms are
needed for prostate MRI reporting in clinical practice. Recent studies have shown the
feasibility of detecting prostate cancer on mpMRI, using deep neural networks [14–17].
Some networks distinguished prostate cancer from normal tissues and provided the like-
lihood of prostate cancer [18–20]. Some studies compared the performance of network
predictions with radiologists’ PI-RADS reports [18,21]. However, the existing method for
PI-RADS classification is semi-automated, as manual lesion contours must be inputted
into the model [22]. Additionally, these CNNs require a large amount of annotated data
and data augmentation, alleviating class imbalance. Few of them addressed lesion detec-
tion and classification tasks jointly in one network [23,24] taking spatial relation between
prostate lesion and zonal area into consideration which might be important for PI-RADS
classification. The recent study only achieved reasonable performance at a PI-RADS cutoff
value ≥ 4 [24] with three independent networks for lesion detection and classification
which was time-consuming and required more data to train multiple networks. Therefore,
this study aimed to solve above-mentioned issues and develop a multi-task network to
segment and predict PI-RADS category efficiently by exploiting spatial relation between
the prostate lesion and zonal area using limited data.

Capsule Network (CapsNet) [25] helps mitigate data starvation in deep learning-
based medical image analysis due to its promising equivariance properties, representing
the spatial/viewpoint variability of an object in a capsule (i.e., vector) format [26]. The
basic idea of CapsNet is to encode the part-whole relationships (e.g., scale, locations,
orientations, brightnesses) between various entities, i.e., objects, and parts of an object, to
achieve viewpoint equivariance [25]. Unlike CNN models that learn all partial features of
an object, CapsNet understands the relationship between these features through weights
that are dynamically computed in each forward pass [25]. This optimization mechanism,
dynamic routing, allows the contribution of parts to the whole object to be weighted
differently during training and inference [25]. CapsNet has been applied to medical image
segmentation in recent studies [27,28], demonstrating the prominence of hybrid architecture
between Capsule-based and traditional neural networks in medical image analysis [27].

For PI-RADS, the categorization depends on not only the dimension, edge morphology,
and signal intensity, but also the positional relations of the lesion (e.g., extraprostatic
extension/invasion) and its zonal location relative to the transition zone (TZ) and peripheral
zone (PZ) [5]. Specifically, each lesion can be scored 1–5 on diffusion-weighted imaging
(DWI) and T2-weighted (T2W) MRI, as well as by the presence or absence of dynamic
contrast enhancement. The contribution of these scores to the overall PI-RADS assessment
differs depending on whether the lesion is located in the TZ or PZ of the prostate. For
the TZ lesion, the PI-RADS assessment is primarily determined by the T2W score and
sometimes modified by the DWI score. For the PZ lesion, the PI-RADS assessment is
determined mainly by the DWI score and modulated by the presence of dynamic contrast
enhancement [5]. Such spatial relationships and other lesion properties (location, scale,
dimension, etc.) can be encoded and represented by CapsNet in a single capsule vector,
which is helpful for prostate cancer detection and classification.
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Due to our relatively small database, the model in this study was based on a multi-task
network with MiniSeg [29] as the backbone for prostate cancer segmentation and PI-RADS
classification. Our model, named MiniSegCaps, is built upon a 2D CapsuleNet block, which
considers positional relations between the lesion, TZ, and PZ, and 2D convolutional encoder
and decoder. Previous studies for PI-RADS classification based on convolutional blocks
mainly used one-hot encoding for multi-class classification [23,24]. Different classes were
assumed to be equally distanced, ignoring that cancer is a progressive disease. Inspired
by Gleason Score prediction in [29], we adopt the ordinal encoding for different PI-RADS
categories to encode the lesion progression into vectors. Ordinal encoded vectors are not
mutually orthogonal and can suggest the similarities and differences between PI-RADS
categories compared with one-hot encoding [29]. In our work, MiniSegCaps encodes five
labels, i.e., four PI-RADS categories plus a normal issue type, into ordinal encoded vectors,
predicting the ordinal encoded vector for each pixel using mpMRI. Mini-SegCaps can pre-
dict lesion masks, the scope (i.e., ordinal encoding) of PI-RADS categories, benign prostatic
hyperplasia (BPH), and lesion malignancy. Inspired by a recurrent fully convolutional
network (RFCN) [30], a gated recurrent units (GRU) module [31] leveraging inter-slice
spatial dependences is also integrated into MiniSegCaps, to exploit the spatial information
across adjacent slices, which are represented by capsule vectors, from the entire volume.

The contributions of our work are summarized as follows. Firstly, we proposed a
multi-task network to segment and classify prostate cancer on mpMRI jointly. MiniSegCaps
inherits the merits of both the 2D CapsuleNet to exploit spatial information and the 2D
convolutional blocks to learn better visual representation. Secondly, for MiniSegCaps, we
adopted the ordinal encoding to characterize PI-RADS score and the GRU on capsules to
exploit spatial knowledge across slices in the entire volume.

2. Materials and Methods
2.1. MRI Protocol

Approval from the institutional review board was obtained for this retrospective study,
including 462 patients who underwent prebiopsy MRI and prostate biopsy for network
training and evaluation. Patients with prior radiotherapy or hormonal therapy were
excluded. All MR imaging was performed on 3 T and 1.5 T scanners (286 patients on 3 T,
157 patients on 1.5 T; both 3 T and 1.5 T MRI systems were from GE Healthcare) with the
standardized clinical mpMRI protocol, including T2 weighted (T2w) and apparent diffusion
coefficients (ADC). We used axial T2w turbo spin-echo (TSE) imaging and maps of the ADC
using echo-planar imaging (EPI) DWI sequence. For T2w, the echo time (TE)/repetition
time (TR) was 80/5400 ms on 3 T, and TE/TR = 105/7100 ms on 1.5 T, respectively. T2w on
both 3 T and 1.5 T had parameters: FOV = 348 mm × 348 mm, matrix = 512 × 512, number
slice = 40, in-plane resolution = 0.68 mm/pixel, and through-plane resolution = 5 mm/slice.
For reduced-FOV DWI, TE/TR = 80/5900 ms on 3 T, and TE/TR = 84/7000 ms on 1.5 T.
Other parameters were identical on the two scanners: FOV = 300 mm × 300 mm, matrix
size = 256 × 256, in-plane resolution = 1.17 mm/pixel, slice thickness = 4 mm, and three
b-values = 0/700/1400 s/mm2. The ADC maps were obtained using a linear least-squares
curve fitting of pixels (in log scale) in the three b0 and diffusion-weighted images against
their corresponding b values.

Inclusion criteria for this study were (1) MRI performed between February 2014 and
April 2021, (2) men aged from 37 to 90, and (3) patients diagnosed with a consecutive clinical
examination or participation in our active surveillance program. We established a cohort
of 569 patients with mp-MRI, including T2w, diffusion-weighted, and dynamic contrast
material-enhanced MRIs performed at our institution. In this study, we only used two
mpMRI sequences including T2w and diffusion-weighted imaging (DWI) due to the limited
function of dynamic contrast material-enhanced (DCE) imaging in mpMRIs in the update
of PI-RADSv2 [5]. Apparent diffusion coefficient (ADC) maps used in this study were
obtained from corresponding DWI data. For this study, we focused on the 494/569 patients
with one or more detectable prostate cancer lesions classified by radiologists due to PI-
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RADS score according to PI-RADSv2 [5]. Exclusion criteria were a history of treatment
for prostate cancer (including antihormonal therapy, radiation therapy, focal therapy, and
prostatectomy) and incomplete MRI sequences (either missing T2w or ADC images). After
excluding 32 patients based on the exclusion criteria, imaging data from 462 patients due
to PI-RADS score ≥ 1 were used in this study; each case has both T2w and ADC images.

PI-RADS scores for study cases were obtained from MRI reports based on PI-RADS
interpretation of multiparametric MRI performed by four board-certified radiologists
during the clinical routine. In addition, one radiologist reviewed all scans and manually
delineated the contours of lesions on T2w and ADC images to provide ground truths
(GT) based on clinical reports and their accompanying sector map diagrams. Note that
completely encapsulated nodules of PI-RADS score = 1 were also labeled and grouped
into one category (PI-RADS 1/2) with those of PI-RADS score = 2. Statistical details of the
labels in each category were summarized in the table of Section 3.1. As in Figure 1, zonal
masks of prostates on T2 images were obtained using pretrained UNet with an average
dice of 0.89 on two public datasets (PROSTATEX [32], NCI-ISBI-2013 [33]). Preprocessing
operations include resampling, normalization, cropping to the prostate region based on
obtained zonal masks, and registration between T2w and ADC images, etc. (Figure 1).

PRG_002, PI-RADS 3   

[0.1040, 0.8624, 0.1323, 0.0890]

Original T2

Original ADC

Image  
Registration

Prostate Zonal 
Segmentation

Prostate cancer 
segmentation and 
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classification

Prostate zonal region  
visualized on T2
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× × 3
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Figure 1. The overall pipeline of our work includes four main steps: (1) image preprocessing (regis-
tration, normalization, etc.); (2) zonal segmentation and cropping; (3) prostate cancer segmentation
and classification; and (4) diagnostic report generation.

2.2. MiniSegCaps for Prostate Cancer Detection and PI-RADS Classification

In this work, we proposed a multi-task network, MiniSegCaps, which inherits the
merits of both CapsNet and CNNs. MiniSegCaps is an end-to-end multi-class CNN to
jointly segment prostate lesions and predict their PI-RADS categories. MiniSegCaps adopts
MiniSeg [34] as the backbone due to its outstanding performance on a small database,
following the Unet-like encoder–decoder architecture [35].

As shown in Figure 2, a multi-task network MiniSegCaps with two predictive branches
was proposed for detecting and classifying lesions. A concatenation of T2W, ADC, and
zonal mask creates the model’s three-channel inputs. The decoder was one output branch
trained for predicting lesion masks and PI-RADS scoping categories under the supervision
of ordinal encoded lesion and BPH masks. Another output branch using two capsule layers
(caps-branch) was attached to the end of the encoder to produce specific malignancy, i.e.,
low-grade or high-grade lesion. Reconstructed feature maps from the caps branch were
also integrated into the decoder as an attention map to improve the performance of the
decoder branch.
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Figure 2. Architecture of the proposed MiniSegCaps, consisting of three parts: (1) MiniSeg, a
lightweight segmentation network as the backbone for lesion mask prediction; (2) Capsule predictive
branch for producing PI-RADS score; (3) CapsGRU module for exploiting spatial information across
adjacent slices. The MiniSeg module extracts convolutional features maps from input mpMRIs and
produces multi-channel masks for prostate cancer segmentation; learned features (6 × 6 × 256)
by the last downsample block of MiniSeg are used as the inputs of capsule predictive branch for
PI-RADS classification; with learned capsule feature stacks (8 × 32) by PrimaryCaps as inputs, the
CapsGRU module exploits inter-slice spatial information during learning process; reconstructed
features (6 × 6 × 256) by three fully connected layers [25] in the Capsule branch are also integrated
into the MiniSeg module for better lesion identification.

2.2.1. Capsule Predictive Branch

The encoder and decoder of MiniSeg [29] extract high-dimensional features from
inputs and generate segmentation, respectively. The model takes T2W, ADC, and zonal
mask as its three-channel input. It converts the image information to high-dimensional
features using a set of convolutional blocks in the encoder that capsules can further process.
The learned features from the encoder are reshaped into a grid of H × W × D capsules, each
represented as a single 256-dimensional vector. The capsule predictive branch contains
two convolutional capsule layers capable of encoding spatial information of objects in the
capsule vector. The number of capsule types in the last convolutional capsule layer equals
the number of categories in the segmentation, which can be further supervised by a margin
loss [25]. This branch is designed to predict the binary high-grade/low-grade PI-RADS
categories. Three fully connected (FC) layers followed by the last convolution-capsule layer
are also adopted to reconstruct the input features of the capsule predictive branch as in
previous work [25]. The reconstructed features are also integrated into the input of the
decoder by multiplying with the encoder’s learning components to focus the decoder’s
attention on features relevant to a PI-RADS category.

2.2.2. Ordinal Encoding for PI-RADS Categories

We use the decoder of MiniSeg to produce lesion segmentation and PI-RADS scoping
categories under the supervision of multi-channel GT masks with ordinal encoding. A
conventional multi-class encoder converts each label into a one-hot vector and predicts
the one-hot vector through the multi-class output [26]. However, one-hot encoding as-
sumes that different labels are independent of each other, and thus, the cross-entropy loss
penalizes misclassifications equally, which ignores the progressiveness of PI-RADS cate-
gories. Therefore, we adopt an ordinal encoding [29,36,37] for different PI-RADS categories
to encode the progressive lesion commonalities into vectors. Specifically, each bit of an
ordinal vector identifies a non-mutually exclusive condition; thus, the k-th bit indicates
whether the label is from a category greater than or equal to k (Table 1). In our model,
the GTs are encoded into 4-channel masks supervising the model to produce 4-channel
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segmentation masks. Ordinal encoding characterizes the relationships between different
labels; commonalities and differences between labels are represented as shared and distinct
bits in an ordinal vector, thus allowing the model to learn the commonalities of all lesions
and the distinction between different PI-RADS categories simultaneously [29].

Table 1. PI-RADS category encoding for multi-class CNNs.

Label Class One-Hot Encoding Ordinal Encoding

Non-lesion 0 1 0 0 0 0 0 0 0 0
PI-RADS 2 1 0 1 0 0 0 1 0 0 0
PI-RADS 3 2 0 0 1 0 0 1 1 0 0
PI-RADS 4 3 0 0 0 1 0 1 1 1 0
PI-RADS 5 4 0 0 0 0 1 1 1 1 1

2.2.3. Capsule Gated Recurrent Unit (CapsGRU) for Volumetric Information Integration

To achieve coherent lesion segmentation and prediction of PI-RADS across different
slices in one volume, we also introduced a gated recurrent unit (GRU) to exploit spatial
dependences across adjacent slices, leveraging inter-slice spatial correlation. The GRU
is added to the capsule prediction branch between the encoder and decoder, taking the
features learned by the first capsule layer as input. This approach differs from the con-
ventional GRU-Unet method, as our CapsGRU applies to capsules, unlike conventional
GRU on feature maps. Here, we denote es as the output of the first capsule layer where s
indicates the slice index, i.e., sε1, . . . , S. This output consists of (256 × 6 × 6) feature maps.
A recurrent mechanism [30] is introduced to extract global features that capture the spatial
changes observed when moving from the base to the apex of the prostate by mapping es
into a new set of features, hs = Φ(hs−1, es), where Φ(•) is a non-linear function, and the
size of hs is the same as the size of es. The feature maps learn by the CapsGRU module and
are then flowed to the next capsule predictive layer to produce PI-RADS categories.

2.3. Baseline Methods

Baseline methods in our study include U-Net [35], attention U-Net [38], U-Net++ [39],
SegNet [40], MiniSeg [34], FocalNet [29]. To compare with MiniSegCaps, all these models
are supervised with ordinal encoding GT segmentations during training. To keep consistent
with our network, we adopt the same backbone MiniSeg for FocalNet. For a fair comparison,
the training and validation workflows in Figure 2, consisting of image preprocessing,
intensity normalization and variation, and image augmentation procedures, are applied
equally to all methods.

2.4. Model Training and Evaluation
2.4.1. Loss Functions

Four kinds of loss functions, including dice loss, binary cross-entropy (BCE) loss,
margin loss, and mean-squared error (MSE) loss, are adopted in our network. The model
was supervised with GT segmentations and PI-RADS categories. The dice loss and BCE loss
with the weight of 0.5 are applied at the decoder head with multi-channel GT segmentations.
The margin loss is applied to the capsule predictive branch with GT PI-RADS categories. We
also use masked MSE loss scaled down by 0.0005 in the total loss, as in previous work [25],
for reconstructing the capsule predictive branch.

2.4.2. Implementation Details

The total loss is minimized by stochastic gradient descent (Adam) with an initial
learning rate of 0.002, decaying by 0.8 every 20 steps. The network is trained for 300 epochs
with a batch size of 256. The MRI images used for patch-based training are cropped to
the same size of 100 × 100 to incorporate most prostate regions and further decrease the
receptive field of lesion detection. In addition to image normalization, common image
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augmentations, including image shifting, scaling, and flipping, are also applied during the
training. The image augmentations are performed for each batch of training images, not
the validation images.

2.4.3. Cross-Validation

We train and validate our model using fivefold cross-validation. Each fold consists of
280 or 281 training cases and 70 or 69 cases for validation. Each case contains 9 to 14 slices,
and each fold of training and validation sets has around 3300 and 840 slices, respectively.

2.4.4. Statistical Analysis

To calculate the sensitivity, specificity, positive predictive value (PPV), negative pre-
dictive value (NPV), F1 score, and accuracy in detecting prostate cancer, we defined true or
false positives/negatives for an index lesion at the per-patient level. For example, a true
positive means that a reader (deep learning method or radiologist) has correctly detected
prostate cancer at the same location and categorized the lesion with at least the PI-RADS
score category. In addition, the sensitivities and specificities of radiologists were compared
to those of the deep learning methods.

2.5. Structure Reporting Graphic User Interface (GUI)

To further aid radiologists in prostate cancer diagnosis in clinical practice, we also
designed a graphical user interface (GUI) integrated into the overall workflow to produce
diagnosis reports of prostate cancer automatically, which contains the predicted lesion
mask, lesion visualization on T2 and ADC, predicted probability of each PI-RADS category,
position, and the dimension of each lesion, etc. The main steps of the workflow in GUI
include image data importation, zonal segmentation, lesion overlay on mpMRIs, image
preprocessing (cropping, normalization, etc.), lesion segmentation, PI-RADS classification,
and diagnostic report generation (as shown in Figure 3).

Figure 3. Graphical user interface (GUI) for automatic detection, PI-RADS classification, and diag-
nostic report generation of prostate cancer on mpMRIs.
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GUI components support image processing toolboxes, picture archiving integration,
and integration of deep learning libraries. For clinical AI applications of prostate can-
cer diagnosis, GUI components included prostate cancer segmentation, PI-RADS classi-
fication, and quantification. GUI was deployed with Streamlit software (version 1.2.0,
https://streamlit.io/, accessed on 1 May 2022), integrating image processing toolboxes
for image preprocessing and postprocessing and training deep learning models for zonal
segmentation, lesion segmentation, and PI-RADS classification.

From the MiniSeg branch, the ordinal encoding channel with the the largest number
of non-zero pixels was chosen as the final cancer segmentation and PI-RADS prediction.
In our generated diagnostic report, the lesion location, i.e., peripheral/transition zone
and left/right, was obtained from the intersection between the predicted lesion mask and
zonal mask and the relative position of the lesion to the midpoint of the image. The lesion
dimensions were computed by the product of the image resolution and the number of
lesion pixels.

3. Results
3.1. Study Sample Characteristics

As shown in Table 2, the study sample was randomly divided into a subset used for
training and a separate test set. In the training sample, 365 men had 3196 lesions, including
441 of 3196 (14%) PI-RADS category 2, 895 of 3196 (28%) PI-RADS category 3, 1098 of 3196
(34%) PI-RADS category 4, and 798 of 3196 (24%) PI-RADS category 5 lesions. The 93 test
patients had 1021 lesions, including 142 of 1021 (14%) PI-RADS category 2, 281 of 1021
(27%) PI-RADS category 3, 353 of 1021 (35%) PI-RADS category 4, and 245 of 1021 (24%)
PI-RADS category 5 lesions.

Table 2. Characteristics and data splitting of the included study samples.

Database MRI Scans Total Lesions
+ Benign Nodules

PI-RADS 1/2
(Lesion + Benign Nodules) PI-RADS 3 PI-RADS 4 PI-RADS 5

Train 365 626 + 719 68 + 719 150 246 162
Test 97 150 + 262 14 + 262 37 53 46

In Total 462 776 + 981 82 + 981 187 299 208

3.2. Prostate Lesion Segmentation

We compare our MiniSegCaps with SOTA baseline segmentation approaches in
prostate cancer segmentation evaluated on the testing cohort using the Dice coefficient met-
ric. In addition, a combination version of MiniSeg and CapsuleNet, supervised by ordinal
encoding GTs, was also implemented to prove the effectiveness of incorporating Capsule
layers into MiniSegCaps. Tables 3 and 4 show the image-level and patient-level evaluation
of these algorithms on prostate cancer segmentation and benign nodule segmentation.

Table 3. Comparison of the image-level and patient-level performance between our method and
baseline methods in prostate cancer segmentation (PI-RADS ≥ 3).

Image Level Patient Level

Model Dice Coefficient (DSC %) Dice Coefficient (DSC %)

2D U-Net 53.39 55.20
Attention U-Net 48.01 49.79

U-Net ++ 49.57 51.06
FocalNet 62.59 64.38
SegNet 53.20 56.41
MiniSeg 64.89 66.73

MiniSegCaps w/o CapsGRU 68.26 70.89
MiniSegCaps 70.17 71.16

https://streamlit.io/
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Table 4. Comparison of the image-level and patient-level performance between our method and
baseline methods in benign nodule segmentation (e.g., BPH).

Image Level Patient Level

Model Dice Coefficient (DSC %) Dice Coefficient (DSC %)

2D U-Net 47.70 49.05
Attention U-Net 50.16 51.37

U-Net ++ 46.26 48.03
FocalNet 55.01 56.59
SegNet 47.84 49.16
MiniSeg 55.63 56.74

MiniSegCaps w/o CapsGRU 56.35 57.98
MiniSegCaps 57.96 59.14

Among baseline methods, 2D U-Net, attention U-Net, and U-Net++ have an averaged
Dice coefficient of 51% lower than MiniSeg (65%) in image-level evaluation, as well as
similar performance in patient-level evaluation, which indicates that a lightweight model
(MiniSeg) performs better in dealing with a small database. Both MiniSegCaps and MiniSeg-
Caps without CapsGRU in Table 3 outperform MiniSeg, SegNet, and FocalNet by a large
margin. It indicates that our MiniSegCaps integrating Capsule layers can better identify
prostate cancer from normal tissues by learning the relative spatial information of prostate
cancer to different anatomical structures. Moreover, our MiniSegCaps obtained better re-
sults than MiniSegCaps w/o CapsGRU. As expected, CapsGRU in MiniSegCaps captured
the spatial information across adjacent slices, boosting the prostate cancer segmentation
performance. Our proposed MiniSegCaps finally improved the performance of prostate
cancer segmentation by an average of 5% in the Dice coefficient compared with MiniSeg.

Figure 4 illustrates a visual comparison of the cropped T2, cropped ADC, cropped zonal
mask, lesion ground truth (yellow contour), and predicted lesion mask by MiniSegCaps
(red contour) on T2 and ADC images among five different cases. Our model successfully
produced satisfactory segmentation of prostate cancer and revealed the spatial relationship
between the zonal mask, lesion on T2, and ADC, which might help lesion location and
classification. We also obtained consistent segmentations across adjacent slices within one
volume, as shown in Figure 5. The results indicate that CapsGRU in MiniSegCaps helped
capture spatial information and achieve better segmentations across adjacent slices.
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Figure 4. Visualization of lesion segmentation results among different cases. The yellow contour is
the ground truth, and the red contours are from the deep learning predictions.
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Figure 5. Visualization of lesion segmentation results on eight slices from one case. The yellow
contour is ground truth, and the red contours are predictions from the MiniSegCaps without or with
CapsGRU. MiniSegCaps with CapsGRU can better delineate the prostate cancer contours across
different slices in one case compared to that without CapsGRU.

Moreover, the results of benign nodule segmentation shown in Table 4 indicate that our
model achieved the best performance among these algorithms. Figure 6 also shows a visual
comparison of benign nodule ground truth (green contour) and predicted segmentation
(blue contour) by deep learning models on T2 and ADC images among different cases.

PRG_470-0490-

PRG_083-0095

PRG_050-0064

PRG_470-0489

T2-viz ADC-vizCropped  
Zonal Mask

Cropped  
adc

Cropped  
t2 T2-viz ADC-vizT2-viz ADC-viz

MiniSegCaps
MiniSegCaps 
w/o CapsGRUMiniSeg

Case 1

Case 2

Case 3

Case 4

Figure 6. Visualization of benign nodule (e.g., BPH) segmentation results among different cases. The
green contour is the ground truth, and the blue contours are from the deep learning predictions.

3.3. PI-RADS Category Prediction

The quantitative results of SOTA baseline methods and our methods in prostate cancer
classification in terms of both image-level and patient-level performance in the testing
cohort are shown in Tables 5–12.
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Table 5. Comparison of the image-level performance between our method and baseline methods in
prostate cancer classification on PI-RADS ≥ 3.

Image Level

Model Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score (%) Time per

Image (s)

2D U-Net 64.13 29.23 97.09 90.48 59.22 44.19 0.03
Attention

U-Net 56.05 85.81 33.42 49.50 75.60 62.78 0.03

U-Net ++ 57.14 89.53 33.34 49.68 81.25 63.90 0.03
FocalNet 52.38 13.04 97.24 84.34 49.51 22.58 0.03
SegNet 53.81 75.53 37.98 47.02 68.06 57.96 0.03
MiniSeg 53.06 82.92 31.44 46.69 71.76 59.74 0.03

MiniSegCaps
w/o

CapsGRU
66.37 76.22 59.01 58.13 76.87 65.96 0.03

MiniSegCaps 67.20 77.37 59.20 59.89 76.87 67.52 0.03

Table 6. Comparison of the patient-level performance between our method and baseline methods in
prostate cancer classification on PI-RADS ≥ 3.

Patient Level

Model Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score (%) Time per

Case (s)

2D U-Net 65.14 30.04 97.63 92.13 60.13 45.30 0.35
Attention

U-Net 57.21 86.52 33.93 50.99 76.01 64.17 0.35

U-Net ++ 56.05 87.68 32.73 49.02 78.26 62.88 0.35
FocalNet 51.98 12.52 96.62 80.72 49.41 21.68 0.35
SegNet 55.79 78.57 39.26 48.43 71.62 59.92 0.35
MiniSeg 54.67 84.62 32.52 48.13 74.07 61.35 0.35

MiniSegCaps
w/o

CapsGRU
68.80 79.44 60.84 60.28 79.82 68.55 0.35

MiniSegCaps 70.20 80.73 61.76 62.86 80.01 70.68 0.35

Table 7. Comparison of the image-level performance between our method and baseline methods in
prostate cancer classification on PI-RADS ≥ 4.

Image Level

Model Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score (%) Time per

Image (s)

2D U-Net 67.35 52.23 85.07 80.39 60.32 63.32 0.03
Attention

U-Net 57.85 88.29 32.06 52.41 76.36 65.77 0.03

U-Net ++ 58.54 71.54 51.71 43.78 77.56 54.32 0.03
FocalNet 57.53 30.41 85.42 68.18 54.42 42.06 0.03
SegNet 63.70 80.82 44.55 62.77 65.85 70.66 0.03
MiniSeg 67.54 85.71 52.88 59.46 82.11 70.21 0.03

MiniSegCaps
w/o

CapsGRU
87.89 91.51 86.21 75.49 95.63 82.73 0.03

MiniSegCaps 89.17 92.79 87.50 77.44 96.33 84.43 0.03
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Table 8. Comparison of the patient-level performance between our method and baseline methods in
prostate cancer classification on PI-RADS ≥ 4.

Patient Level

Model Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score (%) Time per

Case (s)

2D U-Net 68.38 53.16 86.46 82.35 60.85 64.62 0.35
Attention

U-Net 59.09 89.28 33.08 53.48 78.18 66.89 0.35

U-Net ++ 59.66 73.17 52.56 44.78 78.85 55.56 0.35
FocalNet 58.22 31.33 86.62 71.21 54.42 43.52 0.35
SegNet 65.19 82.19 45.16 63.83 68.29 71.86 0.35
MiniSeg 68.41 86.45 53.68 60.36 82.93 71.09 0.35

MiniSegCaps
w/o

CapsGRU
88.07 91.67 86.41 75.86 95.69 83.01 0.35

MiniSegCaps 89.18 92.52 87.58 78.16 96.06 84.74 0.35

Table 9. Comparison of the image-level performance between our method and baseline methods in
prostate cancer classification on PI-RADS = 5.

Image Level

Model Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score (%) Time per

Image (s)

2D U-Net 56.93 29.53 82.42 60.98 55.69 39.79 0.03
Attention

U-Net 72.87 86.89 64.10 60.23 88.65 71.14 0.03

U-Net ++ 75.39 86.89 68.21 63.10 89.26 73.10 0.03
FocalNet 56.92 26.31 84.62 60.75 55.93 36.72 0.03
SegNet 63.81 66.51 60.13 69.50 56.79 67.97 0.03
MiniSeg 79.07 76.74 79.88 57.14 90.76 65.51 0.03

MiniSegCaps
w/o

CapsGRU
86.94 80.41 89.18 71.89 92.98 75.91 0.03

MiniSegCaps 87.34 81.44 89.36 72.48 93.33 76.70 0.03

Table 10. Comparison of the patient-level performance between our method and baseline methods in
prostate cancer classification on PI-RADS = 5.

Patient Level

Model Accuracy (%) Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score (%) Time per

Case (s)

2D U-Net 63.44 69.05 42.37 35.26 71.67 51.67 0.35
Attention

U-Net 61.14 71.43 46.51 39.47 76.92 54.52 0.35

U-Net ++ 62.18 69.75 51.78 33.93 70.06 48.13 0.35
FocalNet 58.33 38.10 74.07 53.33 60.61 44.43 0.35
SegNet 65.74 71.15 60.71 62.71 69.39 66.67 0.35
MiniSeg 80.72 79.17 81.36 63.33 90.57 70.37 0.35

MiniSegCaps
w/o

CapsGRU
87.25 81.82 89.86 79.41 91.18 80.60 0.35

MiniSegCaps 88.24 84.85 89.86 80.00 92.54 82.35 0.35
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Table 11. Comparison of the image-level performance between our method and baseline methods in
PI-RADS classification of prostate cancer.

Image
Level

Model PI-RADS Accuracy
(%)

Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score

(%)
Time per
Image (s)

MiniSegCaps
w/o

CapsGRU
1/2/3 64.75 57.96 76.97 81.91 50.44 67.88 0.03

MiniSegCaps 1/2/3 69.64 66.61 75.10 82.80 55.56 73.83 0.03

MiniSegCaps
w/o

CapsGRU
4/5 64.75 76.97 57.96 50.44 81.91 60.94 0.03

MiniSegCaps 4/5 69.64 75.10 66.61 55.56 82.80 63.87 0.03

Table 12. Comparison of the patient-level performance between our method and baseline methods in
PI-RADS classification of prostate cancer.

Patient
Level

Model PI-RADS Accuracy
(%)

Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) F1 Score

(%)
Time per
Case (s)

MiniSegCaps
w/o

CapsGRU
1/2/3 66.32 59.68 78.79 84.09 50.98 69.81 0.35

MiniSegCaps 1/2/3 71.56 69.01 76.32 84.48 56.86 75.97 0.35

MiniSegCaps
w/o

CapsGRU
4/5 66.32 78.79 59.68 50.98 84.09 62.65 0.35

MiniSegCaps 4/5 71.56 76.32 69.01 56.86 84.48 65.17 0.35

For PI-RADS scoping classification (Tables 6, 8 and 10), the average accuracy of the
three categories produced by baseline methods was 57% (PI-RADS ≥ 3), 63% (PI-RADS ≥ 4),
65% (PI-RADS = 5) in the patient-level evaluation, respectively, slightly higher than those
results in the image-level evaluation. Due to the consideration of the spatial relationship
between objects, both of the last two models integrated capsule layers in Tables 4–9 outper-
form the baseline methods substantially, improving the accuracy of classes (PI-RADS ≥ 3,
PI-RADS ≥ 4, PI-RADS = 5) by 15%, 21%, 8%, respectively, and improving the sensitivi-
ties of (PI-RADS ≥ 4, PI-RADS = 5) by 5% on average, compared to those of MiniSeg in
the patient-level evaluation. Furthermore, our MiniSegCaps consisting of Conv encoder,
DeConv decoder with fused feature inputs, and Capsule predictive branch with CapsGRU,
perform better in all PI-RADS classes, especially in patient-level evaluation, than MiniSeg-
Caps w/o CapsGRU, the combination version of MiniSeg and CapsuleNet, which contains
Conv encoder, DeConv decoder with fused feature inputs and capsule predictive branch.
The CapsGRU in MiniSegCaps also improved consistency across adjacent slices to improve
the PI-RADS classification results as expected. As a result, our MiniSegCaps achieved
the best performance in all PI-RADS scoping classes. MiniSegCaps also improved the
accuracy of PI-RADS scoping classification by an average of 15% in patient-level evaluation
compared with MiniSeg.

For binary high-grade/low-grade PI-RADS classification (Tables 11 and 12), the
patient-level accuracy and sensitivity of the class (PI-RADS = 4/5) produced by MiniSeg-
Caps were 71.56% and 76.32%, respectively. In addition, the CapsGRU in MiniSegCaps
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further improved the overall performance of binary high-grade/low-grade lesion differen-
tiation compared with MiniSegCaps w/o CapsGRU.

4. Discussion

In this study, we presented a pipeline for automatic diagnosis of prostate cancer and
a novel deep learning method, MiniSegCaps, for prostate cancer segmentation and PI-
RADS classification on mpMRI. Our MiniSegCaps, a multi-branch network consisting of
capsule predictive layers, exploited the spatial relationships between objects on mpMRI,
and a CapsGRU to utilize spatial information across adjacent slices, predicting lesion
segmentation and PI-RADS classifications jointly. We trained and validated MiniSegCaps
under fivefold cross-validation using 462 pre-operative mpMRIs with annotations of all
MRI-visible prostate cancer lesions and benign nodules (e.g., BPH). Experimental results
show that our MiniSegCaps outperformed all six CNN-based baseline methods in PI-RADS
classification, especially for PI-RADS ≥ 4, which is of great value for diagnosing clinically
significant prostate cancer. For lesion segmentation, MiniSegCaps also achieved better
performance than baseline methods. We also deployed a structured report GUI integrated
into the overall workflow to automatically produce a prostate MRI report, which contained
the predicted lesion mask, lesion visualization on T2 and ADC, and predicted probability
of each PI-RADS category, position, and the dimension of each lesion, etc.

Previous studies for prostate cancer diagnosis on mpMRI mainly focused on prostate
cancer detection based on classic segmentation networks such as U-Net [14–17,19–21].
They showed reasonable performance in distinguishing prostate cancer from normal tis-
sues [14–17,19–21]. However, few considered the relative spatial information of prostate
cancer to different anatomical structures to help identify prostate cancer from other anatom-
ical tissues. Furthermore, most of them require a large amount of annotated data which
are costly and difficult to acquire in practice. Instead, our MiniSegCaps can integrate
anatomical knowledge by exploiting the spatial relationship between objects learned by
the capsule branch. It can also be practicable on a small database due to the promising
equivariance properties of capsule layers modeling the spatial/viewpoint variability of an
object in the image and a lightweight MiniSeg backbone. Furthermore, the CapsGRU in our
model is designed to utilize spatial information across adjacent slices, which could reduce
flaws in the 2D model when dealing with a series of slices in volume. The experimental
results in this study demonstrate that our MiniSegCaps achieved the best performance on
prostate cancer detection compared with those classic segmentation networks.

The previous algorithms for PI-RADS classification did not address prostate lesion
detection and required manual lesion contouring by radiologists [22]. However, recent
work [21,24] comparing prostate cancer detection and PI-RADS classification between deep
learning methods and radiologists showed comparable performance between classic CNNs
and radiologists. However, the trained models in these studies achieved prostate cancer de-
tection in separate steps. They cannot predict specific lesion segmentations [21], and mainly
achieved good performance at a PI-RADS cutoff value ≥ 4. Furthermore, those studies
only achieved classification on PI-RADS 3, 4, and 5, not including PI-RADS 1/2. Instead,
our multi-branch MiniSegCaps can simultaneously produce prostate cancer masks by the
decoder branch and the binary high-grade/low-grade PI-RADS categories (PI-RADS 1/2/3,
4/5) by the Capsule-predictive branch in an end-to-end diagnosis pipeline. Our MiniSeg-
Caps also considered the anatomical priors by learning spatial relationships between objects
and achieved the best performance on PI-RADS scoping classification compared with those
existing deep neural networks. FocalNet [29] was a multi-class segmentation network for
prostate cancer detection and Gleason scores prediction on mpMRIs with focal loss and
mutual finding loss. We also applied this method to our prostate cancer segmentation and
PI-RADS classification tasks for comparison. The experimental results demonstrate that
our MiniSegCaps outperformed the FocalNet in lesion segmentation and PI-RADS classifi-
cation due to exploiting the spatial relationship between objects for PI-RADS prediction
by capsule predictive layers in comparison with FocalNet. A more recent study [23] used
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3D cascaded U-Net, residual network architecture for prostate cancer detection, and PI-
RADS classification, which required more training data than the 2D networks. Although it
achieved acceptable performance in lesion segmentation (0.359 dice coefficient), the overall
performance in the PI-RADS classification was unsatisfactory (30.8% accuracy). We tried a
residual network (ResNet18 [41]) for PI-RADS classification based on segmented lesions.
According to our experiments, the trained model was always prone to over-fitting during
the training process, and the corresponding results on the testing cohort were unsatisfac-
tory (30.56% accuracy). Instead, our MiniSegCaps showed prominence in dealing with a
small database and achieved better performance in both lesion segmentation (0.712 dice
coefficient) and PI-RADS classification (71.56% accuracy) in patient-level evaluation.

Our MiniSegCaps achieved satisfactory prostate cancer detection and PI-RADS classi-
fication compared with state-of-the-art methods, especially for cutoff at PI-RADS 3, with
clinical importance in disease management. Distinguishing PI-RADS 2 and 3 is challenging
for radiologists due to the insignificant difference in hypointense and homogeneous signal
intensity on mpMRI. Meanwhile, determining PI-RADS 2 and 3 plays a pivotal role in the
differential diagnosis of prostate cancer as it directly affects the clinical decision-making,
i.e., biopsy or not. Specifically, prostate cancer with PI-RADS ≥ 3 usually requires a further
biopsy to assess lesion aggressiveness by giving a histologically assigned Gleason score
(GS) in clinical practice [2]. Therefore, accurate differentiation of PI-RADS 2/3 based on
mpMRI reduces unnecessary biopsies [3].

Our multi-task MiniSegCaps can jointly predict prostate cancer masks and PI-RADS
categories and achieve satisfactory performance by exploiting spatial relationship between
objects. The proposed framework could assist inexperienced readers or non-experts in
providing consultations about the prostate cancer contour and PI-RADS categorical prob-
abilities. However, there are also some limitations to this study: (1) We only achieved
satisfactory results on PI-RADS scoping and binary high-grade/low-grade classification,
not including specific PI-RADS categories due to the sample size limitation; (2) The per-
formance of lesion segmentation and PI-RADS classification on low scores needs further
improvement; (3) This study only conducted experiments on local data from one imaging
center, not including data from multiple centers. These problems are expected to be solved
by incorporating more cases of low PI-RADS categories and enlarging the database from
multiple centers. Incorporating the public data from different sites into our database, e.g.,
those from PROSTATEx [32] and NIH cancer image archive [42], to enlarge the database for
PI-RADS classification is currently underway in our lab. In the future, we plan to extend
our work to multi-center datasets, further improving the performance of our model on
multi-center datasets by incorporating meta learning [43] or few-shot learning [44].

5. Conclusions

Our MiniSegCaps predicted lesion segmentation and PI-RADS classification jointly.
As a result, our model achieved the best performance in prostate cancer segmentation and
PI-RADS classification compared with state-of-the-art methods, especially for PI-RADS ≥ 3,
which was highly important in clinical decision-making.
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