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Abstract: Diabetic retinopathy (DR) is one of the major complications caused by diabetes and is
usually identified from retinal fundus images. Screening of DR from digital fundus images could be
time-consuming and error-prone for ophthalmologists. For efficient DR screening, good quality of the
fundus image is essential and thereby reduces diagnostic errors. Hence, in this work, an automated
method for quality estimation (QE) of digital fundus images using an ensemble of recent state-of-the-
art EfficientNetV2 deep neural network models is proposed. The ensemble method was cross-validated
and tested on one of the largest openly available datasets, the Deep Diabetic Retinopathy Image
Dataset (DeepDRiD). We obtained a test accuracy of 75% for the QE, outperforming the existing
methods on the DeepDRiD. Hence, the proposed ensemble method may be a potential tool for
automated QE of fundus images and could be handy to ophthalmologists.

Keywords: diabetic retinopathy; quality estimation; DeepDRiD; EfficientNetV2; fundus image

1. Introduction

Diabetic retinopathy (DR) is a common disease caused by diabetes, majorly affecting
working individuals and leading to loss of vision. By 2040, it is estimated that 600 million
people will suffer from diabetes, and approximately one third of them will have a chance of
getting DR [1]. An ophthalmologist usually identifies DR by visual examination of digital
fundus images for the presence of one or more retinal lesions such as microaneurysms,
soft exudates, hemorrhages, and hard exudates [2]. DR can broadly be classified into non-
proliferative DR (NPDR) and proliferative DR (PDR). The preliminary stage of DR is NPDR,
where the microaneurysms are visible in the digital fundus image, and the advanced stage
of DR is PDR which can lead to severe vision loss. The NPDR is further subdivided into
three types: mild, moderate, and severe NPDR. The international clinical DR severity scale
contains five grades to classify fundus images—grade 0 is no apparent retinopathy, grade
five is PDR, and the types mentioned above of NPDR are classified as grade one, two, and
three, respectively.

The manual evaluation of fundus images may create a severe burden on ophthalmol-
ogists. Moreover, accurate grading of DR requires trained healthcare professionals and
manual grading could be prone to errors while handling large amounts of data. Hence,
automated methods for DR screening are warranted to reduce diagnostic oversights by

Diagnostics 2023, 13, 622. https://doi.org/10.3390/diagnostics13040622 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13040622
https://doi.org/10.3390/diagnostics13040622
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5735-9418
https://orcid.org/0000-0003-3936-8665
https://orcid.org/0000-0002-1939-4842
https://orcid.org/0000-0001-6722-8366
https://orcid.org/0000-0002-1515-3187
https://doi.org/10.3390/diagnostics13040622
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13040622?type=check_update&version=1


Diagnostics 2023, 13, 622 2 of 12

ophthalmologists and healthcare practitioners. Furthermore, poor-quality digital fundus
images due to uneven illumination, blurring, and other artifacts can lead to false positives.
Hence, it is vital to first estimate the quality of acquired funds images before proceeding
with DR grading [3]. Therefore, fully automated methods for accurate quality estimation
(QE) of digital fundus images are in demand since the ratio of doctors to patients is deterio-
rating. Overall, there is a need for objective evaluation of fundus image quality to mimic
the quality diagnosis of ophthalmologists.

In the past decade, several state-of-the-art deep learning (DL) architectures, includ-
ing AlexNet [4], VGGs [5], GoogLeNet [6], ResNet [7], DenseNet [8], EfficientNets [9,10],
and, recently, vision transformer (ViT) [11] based models were developed for various
computer vision tasks such as object localization, object detection, and classification.
Even though training large DL models from scratch requires massive data, transfer learn-
ing (TL) could facilitate adapting these already trained models for new classification
tasks, thus eliminating the need for huge data for retraining. Furthermore, both TL
and DL have been playing a major role in healthcare by building automated diagnostic
systems for several diseases using medical images from radiographs, computed tomog-
raphy, digital fundus images, positron emission tomography, and magnetic resonance
imaging, etc. These systems are primarily used for diagnostic and prognostic tasks and
also assist medical practitioners in several scenarios such as faster data acquisition and
quality control [12–14]. EfficientNetV2 is one of the recently developed DL architectures
based on progressive learning with a combination of training-aware neural architecture
search and compound scaling to improve both the training speed and parameter effi-
ciency [9], and it outperformed several previous state-of-the-art models including ViTs
in image classification tasks on the ImageNet challenge. Therefore, the following are the
contributions of this work:

i. A fully automated method for the overall QE of digital fundus images is pro-
posed using an ensemble of pretrained EfficientNetV2- small (S), medium (M),
and large (L) models since model ensembling was effective in some previous
studies [15,16].

ii. The proposed ensemble model is cross-validated and tested on a large publicly
available dataset called the Deep Diabetic Retinopathy Image Dataset (DeepDRiD),
as the QE of fundus images from this dataset seems challenging [3].

iii. The ability of the proposed ensemble model for overall QE is further stratified
concerning DR disease severity.

Related Work

Several works related to machine learning and deep learning techniques are available
in the literature for the QE of digital fundus images. These works are primarily divided into
two-class classification and three-class classification problems which are given in Table 1.
In two-class classification, the images are divided into either good or bad quality. Whereas
in the three-class problem, the images are divided into good, moderate, and bad quality.
In [17], a partial least square (PLS) classifier was developed based on handcrafted features,
and the method achieved an area under the receiver operator characteristic curve (AUC) of
95.8% on their private dataset. Further, a support vector machine (SVM) classifier from a
mixture of private and public datasets containing fundus images of varying resolutions,
Ref. [18] demonstrated an accuracy of 91.4%, Ref. [19] obtained an AUC of 94.5%, and
Ref. [20] achieved a sensitivity of 95.3% in fundus image QE. In other studies, based on
EyePACS Kaggle datasets [21,22], pre-trained deep learning models were fine-tuned for
feature extraction. These extracted features were further fed to the SVM classifier to detect
bad quality fundus images. The highest classification accuracy in these studies is 95.4%.
Furthermore, several ML classifiers were developed using the openly available DRIMDB
dataset, including gcforest and random forest regressor [23–25], and achieved accuracies
above 88%.
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Some recent studies on the three-class classification of fundus image quality using
lightweight CNN [26] and an ensemble of CNNs [27] based on Kaggle datasets obtained
accuracies above 85%. In the most recent study using pretrained ResNet50 [28], the fine-
tuned model on a Kaggle dataset demonstrated an accuracy of 98.6%. Overall, using these
private and public datasets mentioned thus far, the classification task is generally easier
since the images are quite differentiable to the naked eye. However, in a recent digital
fundus image QE grand challenge [3], the good and bad quality images in the DeepDRiD
dataset are complicated to differentiate, and hence the highest accuracy obtained in the
QE grand challenge was 69.81%. Therefore, the present study explored the effectiveness of
EfficientNetV2 models and their ensembling [9] to improve the overall performance of QE
on the DeepDRiD.

Table 1. Previous works on assessing the fundus image quality using different machine learning and
deep learning methods on various private and public datasets.

Study Method Dataset Image Resolution Performance (%)

Yu H et al. [17] PLS classifier Private—1884 4752 × 3168 AUC: 95.8

Yu F et al. [21] SM + AlexNet + SVM Kaggle—5200 (subset) Original: 2592 × 1944
Resized: 256 × 256

Accuracy: 95.4
AUC: 98.2

Yao Z et al. [18] SVM Private—3224 - Accuracy: 91.4
AUC: 96.2

Welikala RA et al. [20] SVM UK Biobank—800
(subset) 2048 × 1536 Sensitivity: 95.3

Specificity: 91.1

Wang S et al. [19] SVM Private and
Public—536

Private: 2560 × 1960
Public: 570 × 760 and

565 × 584

AUC: 94.5
Sensitivity: 87.4
Specificity: 91.7

Shao F et al. [22] DT, SVM and DL EyePACS at
Kaggle—4372 Multiple resolutions

Accuracy: 93.6
Sensitivity: 94.7
Specificity: 92.3

Sevik U et al. [23] Several ML classifiers DRIMDB—216 570 × 760 Accuracy: 98.1

Raj A et al. [27] Ensemble of CNNs FIQuA (EyePACS at
Kaggle)—1500 Multiple resolutions Accuracy: 95.7 (3-class

classification)

Perez AD et al. [26] Light-weight CNN
Kaggle—4768 (2-class)

Kaggle—28,792
(3-class)

896 × 896 Accuracy: 91.1 (2-class)
Accuracy: 85.6 (3-class)

Liu H et al. [25] gcforest DRIMDB—216 (3-class)
ACRIMA—705 (2-class) Multiple resolutions

Accuracy: 88.6
(DRIMDB dataset)

Accuracy: 85.1
(ACRIMA dataset)

Karlsson RA et al. [24] Random forest
regressor

Private—787 oximetry
and 253 RGB

DRIMDB—216 (194
were used)

1600 × 1200 (oximetry)
3192 × 2656 (RGB)

760 × 570 (DRIMDB)

Accuracy: 98.1
(DRIMDB)

ICC: 0.85 (oximetry)
ICC: 0.91 (RGB)

Shi C et al. [28] Pretrained ResNet50 Kaggle—2434 (2-class) Multiple resolutions
Accuracy: 98.6
Sensitivity: 98.0
Specificity: 99.1

Liu R [3] ISBI 2020 grand
challenge

DeepDRiD—2000
(2-class) Multiple resolutions Accuracy: 69.81

DeepDRiD: Diabetic retinopathy—grading and image quality estimation challenge dataset. Particularly, the
previous works on the DeepDRiD dataset are highlighted in bold. CNN: convolution neural network. ML:
machine learning, DL: deep learning, PLS: partial least squares, SVM: support vector machine.
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2. Methods
2.1. Dataset

In this study, an openly available dataset DeepDRiD from diabetic retinopathy—
grading and image quality estimation challenge of ISBI 2020 was used [3]. The dataset
consists of 2000 regular fundus images from 500 subjects (patients), where four images
(two acquisitions per eye) for each patient were acquired. All the images are centered at the
macula and optic disc. Table 2 presents the basic details of subsets formed from DeepDRiD
for performance evaluation. The dataset is divided into Set-A, Set-B, and Set-C for the
individual model’s training, validation, and testing.

Table 2. Details of training, validation, and test set formed from DeepDRiD regular fundus images.
BMI: body mass index.

No. of
Images

No. of
Subjects Female (%) Age (Years) BMI (kg/m2)

Set-A
(training) 1200 300 49.00 70.63 ± 7.70 25.17 ± 3.13

Set-B
(validation) 400 100 56.00 65.13 ± 1.89 24.88 ± 3.21

Set-C
(testing) 400 100 54.00 61.36 ± 7.23 25.01 ± 2.6

For a fair comparison of the proposed ensemble model performance with the literature,
the training, validation, and test sets in the DeepDRiD challenge remain unaltered. The
images in the dataset were labelled as good and bad quality by two authorized ophthal-
mologists, and the labels were confirmed or revised by a third senior ophthalmologist. The
example fundus images with both good and bad quality are shown in Figure 1.
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Figure 1. Sample fundus images of DeepDRiD dataset for good and bad quality, shown for all grades
of DR. DR: diabetic retinopathy, NPDR: non-proliferative diabetic retinopathy, PDR: proliferative
diabetic retinopathy.

The dataset containing good and bad quality images further stratified concerning DR
severity is given in Table 3 for all training, validation, and test sets. Here, by considering all
2000 images, 45.65 percent of fundus images are with no DR, 48.75 percent are with NPDR,
and the rest 5.6 percent of images are with PDR.
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Table 3. The number of good and bad quality images in the training, validation, and test set stratified
with respect to DR severity. DR: diabetic retinopathy, NPDR: non-proliferative diabetic retinopathy,
PDR: proliferative retinopathy.

No DR Mild NPDR Moderate
NPDR

Severe
NPDR PDR

Set-A
(Training)

Good: 234
Bad: 306

Good: 74
Bad: 66

Good: 126
Bad: 108

Good: 108
Bad: 106

Good: 34
Bad: 38

Set-B
(Validation)

Good: 62
Bad: 112

Good: 32
Bad: 14

Good: 48
Bad: 44

Good: 30
Bad: 38

Good: 10
Bad: 10

Set-C
(Testing)

Good: 86
Bad: 113

Good: 22
Bad: 14

Good: 44
Bad: 28

Good: 22
Bad: 50

Good: 6
Bad: 14

2.2. EfficientNetV2

EfficientNetV2 [9], an improved version of EfficientNetV1 [10], is a new family of
convolutional neural networks with a special focus on two aspects: improving training
speed and enhancing parameter efficiency. Towards this goal, a combination of training-
aware neural architecture search and compound scaling was used. The faster training was
achieved by using both MBConv and Fused-MBConv blocks. MBConv layers are basic
structures of MobileNetV2 [29] built from inverted residual blocks. In the Fused-MBConv
layer, two blocks (depth-wise 3 × 3 convolution and expansion 1 × 1 convolution block)
in MBConv were replaced by a single (regular 3 × 3 convolution) block, as shown in
Figure 2. Further, a squeeze and excitation (SE) block in MBConv and Fused-MBConv
was used to adaptively weigh different channels. Finally, a 1 × 1 squeeze layer was
placed to reduce the number of channels equal to the channels present in the input of
MBConv/Fused-MBConv.

In the present work, we employed EfficientNetV2-S, -M, and -L models that use Fused-
MBConv blocks in the early layers. The EfficientNetV2-S model architecture starts with a
standard 3 × 3 convolution layer followed by three Fused-MBConv and three MBConv
layers. The final layers contain a 1 × 1 convolution and maxpooling followed by a fully
connected layer. Further, the EfficientNetV2-S model was scaled up using the compound
scaling procedure to get EfficientnetV2-M/L. For complete details on compound scaling,
refer to [9].

Furthermore, the training speed was further enhanced by progressively increasing the
image size during training. However, this progressive training often results in a drop in
accuracy and is prone to overfitting, which can be tackled by adaptive regularization such
as dropout and data augmentation. That means weak augmentation was used for small
image sizes and stronger augmentation for larger images.

2.3. Model Training and Validation

Initially, all the fundus images of DeepDRiD are resized to a spatial resolution of
224 × 224. Further, the model training and validation were conducted under Google
Colab Pro cloud computing graphical processing unit environment with the high-level
Keras API present at the backend of TensorFlow 2.0. The final classification layer of
the pre-trained EfficientNetV2-S, -M, and -L models is removed, and an output neuron
is added for the final classification of good vs. bad image quality. For this study, the
hyperparameters of the models were selected empirically. The Adadelta optimizer with a
learning rate of 0.1 was used for training, and the number of epochs was set to 10. As
described in Equation (1), binary cross-entropy (CE) was used as the loss function since
it is a 2-class classification.

CEloss = − 1
N

N

∑
i=0

ylog(ŷ) + (1 − y)log(1 − ŷ) (1)
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In (1), N is the number of fundus images; y is the true label and ŷ is the predicted
label by the individual models. Only the last 20 percent of the total parameters were
allowed to be fine-tuned for all individual models during training and the first 80 percent
of parameters were unaltered. The validation set (Set-B) was used to make sure that the
individual models were not overfitting.
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2.4. Ensemble Model

For the ensemble model, no separate training was involved as we implemented the
ensembling using the predicted probabilities of the individual models. The predicted proba-
bility of the ensemble model pen is calculated as the mean of the individual EfficientNetV2-S,
-M, and -L model’s predicted probabilities ps, pm, and pl , respectively. Mathematically, it is
described in Equation (2).

pen =
ps + pm + pl

3
(2)
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2.5. Evaluation Metrics

To evaluate the performances of the individual and the ensemble model, accuracy,
F1-score, and balanced accuracy (BA) are used, which are described in Equations (3)–(5).
Here, F1-scores and BA values which are computed from recall, specificity, and precision
scores are mathematically described in Equations (6)–(8). In addition, the confusion matrix
(CM), and the area under the receiver operating characteristic curve (AUC) are also used
as model performance indicators. For example, in CM, given in Equation (9), TP is a true
positive (poor image quality; label 1), TN is a true negative (good image quality; label 0),
FP is a false positive, and FN is a false negative.

accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 − score =
2 ∗ precision ∗ recall

precison + recall
(4)

BA =
sensitivity + speci f icity

2
(5)

sensitivity (recall) =
TP

TP + FN
(6)

speci f icity =
TN

TN + FP
(7)

precision =
TP

TP + FP
(8)

CM =

[
TP FN
FP TN

]
(9)

3. Results and Discussion

Table 4 presents the complete performance details of individual and ensemble models.
As anticipated, the ensemble model performs better than the individual EfficientNetV2-S,
-M, and -L models with an accuracy of 75.0 percent and an AUC of 74.9 percent on the
test dataset. Among the individual models, EfficientNetV2-L showed better performance.
Further, the performance scores of the individual models and their ensembling for the
QE concerning DR grades are also presented in Table 5 in detail. The accuracy and AUC
for QE of fundus images with PDR are 90.0 and 83.3 percent, respectively. In general, the
performance metrics for QE are better for fundus images with PDR than those with NPDR
(mild, moderate, and severe) and no DR.

Table 4. Performance metrics for QE of all test set images for individual EfficientNetV2 models and
their ensembling (all the values are in percentages). BA: balanced accuracy, AUC: area under the
curve, QE: quality estimation.

EfficientNetV2-S EfficientNetV2-M EfficientNetV2-L Ensemble
Model

Accuracy 72.3 72.8 74.0 75.0

AUC 73.1 72.6 73.5 74.9

F1-Score 72.2 72.8 73.9 75.0

BA 73.1 72.6 73.5 74.9



Diagnostics 2023, 13, 622 8 of 12

Table 5. Performance metrics for QE of test images stratified concerning DR severity for individual
EfficientNetV2 models as well as their ensembling. BA: balanced accuracy, AUC: area under the curve,
QE: quality estimation, DR: diabetic retinopathy, NPDR: non-proliferative diabetic retinopathy, PDR:
proliferative diabetic retinopathy.

EfficientNetV2-S EfficientNetV2-M EfficientNetV2-L Ensemble Model

No DR

Accuracy 71.5 73.0 72.5 75.5

AUC 72.3 72.7 71.5 74.9

F1-Score 71.6 73.0 72.3 75.5

BA 72.3 72.7 71.5 74.9

Mild NPDR

Accuracy 72.2 77.8 75.0 77.8

AUC 69.5 76.2 73.1 77.9

F1-Score 71.8 77.8 74.8 78.0

BA 69.5 76.2 73.1 77.9

Moderate NPDR

Accuracy 70.2 70.5 70.6 71.0

AUC 70.5 70.8 70.8 71.8

F1-Score 70.1 70.1 71.1 71.2

BA 70.5 70.9 70.8 71.5

Severe NPDR

Accuracy 76.4 72.2 77.8 77.8

AUC 79.2 68.5 73.8 76.4

F1-Score 77.3 72.5 77.8 78.2

BA 79.2 68.5 73.8 76.4

PDR

Accuracy 70.0 90.0 85.0 90.0

AUC 69.0 83.3 75.0 83.5

F1-Score 71.0 89.3 83.2 89.3

BA 69.0 83.3 75.0 83.5

Furthermore, Figure 3 shows the confusion matrices on the whole test set for individual
models and their ensembling. Compared with the methods presented in the DeepDRiD
grand challenge 2 for QE [3], our proposed ensemble model has achieved an overall
accuracy of 75.0 percent, which is more than five percentage points indicating the improved
robustness using our method as well as the power of ensembling. In addition, the confusion
matrices for the ensemble model on the test set stratified for DR severity are given in
Figure 4. In general, the method worked well for PDR images compared to the rest. For
PDR images, the ensemble model has achieved 100 percent sensitivity as can be seen from
the respective CM in Figure 4. In addition, the sensitivity is approximately 80 percent
for fundus images with no DR and mild and severe NPDR. Another important aspect to
observe is that the accuracy metric is typically less reliable since the labels are imbalanced
in Set-C, especially for all NPDR and PDR cases as can be seen in Table 3. However, to
correct for this we have employed specific performance metrics like F1-score and BA and
from Table 5 we can see that these scores are very close to the accuracy values indicating
that the proposed model indeed is effective in QE of fundus images.
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Compared with previous studies outside the DeepDRiD on the QE of fundus images,
the QE of DeepDRiD images is quite challenging since there are minimal visual differences
between good and bad quality images, as can be seen in Figure 1. Further, this study
demonstrates the QE with respect to DR severity that was not implemented so far to our
knowledge. Moreover, in Table 1, the very high-performance metric values of various
models could be because the fundus images from DRIMDB, ACRIMA, and other Kaggle
datasets are quite easily differentiable to the naked eye. However, this was not the case
for DeepDRiD. In addition, we suggest that the predicted probability of the proposed
individual or the ensemble model can be used as the indirect measure of the estimated
quality of the fundus image.
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Figure 4. Confusion matrices of the test set for predicting the quality of digital fundus images
stratified with respect to DR severity using the ensemble model. DR: diabetic retinopathy, NPDR:
non-proliferative diabetic retinopathy, PDR: proliferative diabetic retinopathy.

Limitations

The size of Set-C is relatively small when the results concerning DR severity are strati-
fied. The proposed ensembling method should be tested on other larger datasets that are
similar to DeepDRiD to corroborate the ability of the proposed method for QE and there
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exists scope for improvement. Although the individual EfficientNetV2 model hyperparame-
ters were empirically chosen, a more thorough search of hyperparameters, including the
optimizer’s choice, may be performed via grid or random search. Nevertheless, based on a
few experiments conducted, Adadelta worked better in terms of overall accuracy than other
well-known optimizers including RMSprop and Adam. Further, it would be interesting to
add explainability to the proposed model to better understand its decisions and to identify
the degraded regions in the bad quality fundus images. We would like to explore this
direction in a future study.

4. Conclusions

In this study, we have proposed a framework for QE of digital fundus images using
EfficientNetV2-S, -M, and -L models. The ensemble model presented in this study has
achieved an accuracy of 75.0 percent and an AUC of 74.9 percent on the whole test set
for QE. The performance is better than the existing works for QE of fundus images from
the DeepDRiD. Further, the performance metrics of QE are generally superior for images
with PDR than all NPDR and no DR. Hence, the proposed ensemble model could assist
ophthalmologists by automating the QE of the fundus image before proceeding with DR
severity grading. The code for this study could be provided upon reasonable request.
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