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Abstract: Radiotranscriptomics is an emerging field that aims to investigate the relationships between
the radiomic features extracted from medical images and gene expression profiles that contribute in
the diagnosis, treatment planning, and prognosis of cancer. This study proposes a methodological
framework for the investigation of these associations with application on non-small-cell lung cancer
(NSCLC). Six publicly available NSCLC datasets with transcriptomics data were used to derive
and validate a transcriptomic signature for its ability to differentiate between cancer and non-
malignant lung tissue. A publicly available dataset of 24 NSCLC-diagnosed patients, with both
transcriptomic and imaging data, was used for the joint radiotranscriptomic analysis. For each
patient, 749 Computed Tomography (CT) radiomic features were extracted and the corresponding
transcriptomics data were provided through DNA microarrays. The radiomic features were clustered
using the iterative K-means algorithm resulting in 77 homogeneous clusters, represented by meta-
radiomic features. The most significant differentially expressed genes (DEGs) were selected by
performing Significance Analysis of Microarrays (SAM) and 2-fold change. The interactions among
the CT imaging features and the selected DEGs were investigated using SAM and a Spearman
rank correlation test with a False Discovery Rate (FDR) of 5%, leading to the extraction of 73 DEGs
significantly correlated with radiomic features. These genes were used to produce predictive models
of the meta-radiomics features, defined as p-metaomics features, by performing Lasso regression. Of
the 77 meta-radiomic features, 51 can be modeled in terms of the transcriptomic signature. These
significant radiotranscriptomics relationships form a reliable basis to biologically justify the radiomics
features extracted from anatomic imaging modalities. Thus, the biological value of these radiomic
features was justified via enrichment analysis on their transcriptomics-based regression models,
revealing closely associated biological processes and pathways. Overall, the proposed methodological
framework provides joint radiotranscriptomics markers and models to support the connection and
complementarities between the transcriptome and the phenotype in cancer, as demonstrated in the
case of NSCLC.

Keywords: lung cancer; radiomics; transcriptomics; radiotranscriptomics; diagnosis; statistical
analysis; machine learning; enrichment analysis

1. Introduction

Lung cancer is a common and aggressive type of cancer in both men and women. The
majority of the affected population is aged 70 or over, while a small proportion of subjects

Diagnostics 2023, 13, 738. https://doi.org/10.3390/diagnostics13040738 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13040738
https://doi.org/10.3390/diagnostics13040738
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-5242-6060
https://orcid.org/0000-0001-8424-4157
https://orcid.org/0000-0003-3783-5223
https://orcid.org/0000-0003-3298-2072
https://doi.org/10.3390/diagnostics13040738
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13040738?type=check_update&version=3


Diagnostics 2023, 13, 738 2 of 27

(1% or lower) diagnosed with lung cancer is younger than 45 [1]. There are two main forms
of lung cancer: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC).
NSCLC is the most common form, accounting for more than 85% of lung cancer cases and
constitutes the leading cause of cancer-related deaths [2]. The treatment alternatives and
the survival rate of people with lung cancer depend mainly on the stage of the cancer when
it is diagnosed. Screening at-risk populations of lung cancer development is suggested by
doctors as a vital tool to diagnose the disease at an early stage, when the treatment has more
chance of success. The most popular screening tests include Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and PET/CT
scans, while low-dose CT scan is also widely used as a recommended screening test for
lung cancer.

Radiomics is a high-throughput image analysis technique that derives a huge amount
of quantitative imaging features. These features reflect the heterogeneity, texture, shape,
and size of the tumor. The use of “radiomics” has efficiently supported cancer diagnosis,
since imaging features reflect the tumor phenotype and staging [3]. Furthermore, radiomic
features aspire to effectively complement the qualitative semantic features that are defined
by experienced radiologists, since they may uncover distinct tumor phenotypes that are
not visible to the unaided eye. Studies have focused on the extraction of quantitative
features from medical images in order to reveal the development and progression of cancer,
providing valuable information for clinical diagnosis and treatment planning [4]. However,
tumors are characterized by somatic mutations. The genotypic markers from molecular
biology reflect many aspects of gene and protein interactions across a variety of cellular
processes, with the most widely studied being the transcriptomics forum focusing on
gene expressions under different conditions. Hence, the unveiling of the way that genetic
alterations affect the cell proliferation, and subsequently the tumor texture and shape, is
critical for a deeper understanding of the disease.

Several important studies on early diagnosis markers derived from modalities asso-
ciated with either the phenotype or the genotype of a disease have been conducted [2].
The field of radiotranscriptomics/radiogenomics aims to investigate the combination of
the information captured from the phenotype and the genotype of the tumor. The main
aspect of radiotranscriptomics is the discovery of the associations between a patient’s
transcriptome with imaging phenotypes to support personalized medicine [5–7]. In this
respect, recent studies have attempted to increase the sensitivity and specificity in early di-
agnosis, and further associate the prognostic outcome with combined imaging and genomic
markers and significant associations between the radiomic features and gene expression
patterns [8]. The majority of the radiogenomic studies in NSCLC focus on the prediction of
oncogenic mutations, such as the epidermal growth factor receptor (EGFR) and the Kirsten
rat sarcoma viral oncogene homolog (KRAS) mutations, solely from the non-invasive ra-
diomic features [9–14]. In lung cancer, associations between imaging features extracted
from PET/CT scans and gene expressions [15–17], as well as between radiomic features
extracted from CT medical images and gene expressions and mutations [13,17–19], have
been investigated.

In radiomics studies, imaging characteristics are accumulated in a massive set of
features, which entail either qualitative and quantitative image descriptors measured
within the segmented volume of interest [20] or features “engineered” through advanced
AI techniques (deep learning [21]). Such features might be considered as byproducts and
manifestations of the genomic variation at the cellular level, which controls the specific
disease phenotype and/or response to treatment. In that respect, our working hypothesis
examines if radiotranscriptomics correlations could uncover the underlying biology of the
imaging features and reveal the signaling pathways to comprehensively characterize the
morphological complications of the disease at tissue level.

In this work, a methodological framework for the investigation of the associations
between the subcellular biomarkers measured through gene expression profiling and the
radiomic features extracted from images is proposed. Through these associations, the
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radiomic features are biologically justified based on the enrichment analysis of their tran-
scriptomics regression models. To this end, a rigorous marker selection procedure was
performed in order to derive reliable transcriptomic markers that form the transcriptomics
signature, with discrimination and predictive power, as well as stable radiomics mark-
ers that form the meta-radiomics signature, with representative distribution across the
population. On the basis of these “single-modality” signatures, a combined analysis was
conducted by performing regression analysis of radiomics based on transcriptomics, to
generate reliable mappings for cancer associations between the two modalities, forming
the p-metaomics features.

The novelty of the current study lies in the rigorous methodological approach for the
investigation of the transcriptomics features that are subsequently used for the modeling
and biological interpretation of the radiomic features. Hence, the arbitrary radiomic
features that describe the phenotype are modeled by significant genes, so that their use can
be biologically justified by the transcriptomic substrate of that model.

2. Materials and Methods

The overall design and methodology used is depicted in Figure 1. Three main fields
of development, based on the data modalities and the research question, are considered.
First, in the radiomics analysis (A), medical imaging data are used to produce an initial
number of discriminating radiomics features and then cluster them. In the transcrip-
tomics analysis (B), the most significant (discriminant) genes are identified and validated
for their diagnostic potential in NSCLC. This procedure is implemented using statisti-
cal analysis and machine learning algorithms for validation of the predictive ability of
the derived transcriptomic signature. Third, in the radiotranscriptomics analysis (C),
which forms the main contribution of our work, both the imaging and the transcriptomics
data are used to investigate joint (radiomics–transcriptomics) predictive associations in
NSCLC cancer. Furthermore, the radiotranscriptomics associations are strengthened by
exploring the biological justification of radiomics features based on the transcriptomics
regression models (D).
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Figure 1. Workflow of the analysis. The overall design of our work can be organized in three main
areas: (A) In the radiomic analysis, shown on the left, radiomics features are extracted from the
imaging datasets and subsequently clustered to yield a limited set of “prototypes” called “meta-
radiomics”; (B) In the transcriptomic analysis, shown on the right, differential expression analysis
produces an initial list of differentiating genes and a transcriptomics-based validation of selected genes
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is later performed on different gene expression datasets to select the transcriptomics signature; (C) In
the core of our approach, shown in the central area of the picture, a combined radiotranscriptomics
analysis aims to fuse the information discovered in the previous steps, i.e., integrate the radiomics
prototypes with the most discriminating gene transcripts and generate a list of “p-metaomics” features.
Finally, in (D), the discriminative ability of the derived p-metaomics features is evaluated and the
radiotranscriptomics associations are biologically interpreted by characterizing the radiomics features
based on the biological analysis of their transcriptomics regression models.

Most of the analysis was performed using MATLAB (Mathworks Inc., Natick, MA,
USA, version R2016b) with the exception of specific cases, stated in the text, where R
(version 4.1.2) and Python (version 3.8.2) programming languages were used.

2.1. Datasets

Seven different datasets were used during the procedure analysis. The gene expression
microarray data of all datasets were obtained from the publicly available Gene Expression
Omnibus (GEO) database. In each dataset, the probesets were coded into their corre-
sponding Entrez Gene ID according to the Illumina platform and, in cases of multiple
mappings, the probeset with the largest gene expression value was used to express the
corresponding Entrez Gene ID. Table 1 represents an overview of the used datasets. De-
tailed information regarding the clinical characteristics of used samples is provided in
Supplementary Table S1b–h.

Table 1. Overview of used datasets.

Datasets
(GEO Accession)

Demographics and Clinical
Characteristics Radiomic Features Datasets Utilization and Methodology

Dataset 1
(GSE28827)

Samples
24 NSCLC samples

No. of Genes
24371

Authors
Nair et al. (2012)

Age, y (range)
66.6 (46–84)

Gender (female) 6
Histology

19 LUAD/5 LUSC
Stage
(4) (0)

(5) IA1/(3) IA2/(6) IB
(3) IIB/(3) IIIA

CT emphysema 8

749

• First-order statistics
• Shape 3D features
• GLCM
• GLRLM
• GLSZM
• GLDM
• NGTDM

• Radiomics Features Extraction
• Meta-Radiomics Signature

Extraction
• Radiotranscriptomics Cross-

Correlation Analysis (SAM,
Spearman rank correlation test,
FDR 5%)

• p-metaomics Signature Modeling

Dataset 2
(GSE75037)

Samples
83 NSCLC samples

83 non-malignant lung
samples

No. of Genes
19227

Authors
Girard et al. (2016)

Age, y (range)
68.1 (39–90)

Gender (female) 59
Histology
83 LUAD

Stage
(24) IA/(26) IB
(3) IIA/(17) IIB

(1) III/(9) IIIA/(1) IIIB
(2) IV

CT emphysema n/a

-

• Transcriptomics Signature
Extraction (SAM, 2-fold change)

• Transcriptomics Validation
• p-metaomics Models Evaluation

Dataset 3
(GSE76925)

Samples
40 normal

lung samples
No. of Genes

17130
Authors

Morrow et al. (2017)

Age, y (range)
65.7 (42–86)

Gender (female) 25
CT emphysema 18

-
• Transcriptomics Signature

Extraction (SAM)
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Table 1. Cont.

Datasets
(GEO Accession)

Demographics and Clinical
Characteristics Radiomic Features Datasets Utilization and Methodology

Dataset 4
(GSE18842)

Samples
44 NSCLC samples

44 non-malignant lung
samples
Authors

Sanchez–Palencia
et al. (2011)

Age, y (range) n/a
Gender (female) n/a

Histology
12 LUAD/32 LUSC

Stage
(6) IA/(32) IB
(1) IIA/(2) IIB

(2) IIIA/(1) IIIB
CT emphysema n/a

-

• Transcriptomics Validation (SVM
classification, BHI and BSI
calculation)

Dataset 5
(GSE27262)

Samples
25 NSCLC samples

25 non-malignant lung
samples
Authors

Wei et al. (2012)

Age, y (range)
58.1 (34–77)

Gender (female) n/a
Histology
25 LUAD

Stage
(7) IA/(18) IB

CT emphysema n/a

-
• Transcriptomics Validation (SVM

classification)

Dataset 6
(GSE30219)

Samples
143 NSCLC samples

14 normal lung
samples
Authors

Rousseaux et al. (2013)

Age, y (range)
62.3 (44–84)

Gender (female) 24
Histology

85 LUAD/58 LUSC
Stage

(117) IA/(12) IB
(2) IIA/(7) IIB

(3) IIIA/(2) IIIB
CT emphysema n/a

-
• Transcriptomics Validation (SVM

classification)

Dataset 7
(GSE40419-RNA-Seq)

Samples
87 NSCLC samples

77 non-malignant lung
samples
Authors

Seo et al. (2012)

Age, y (range)
63.8 (38–85)

Gender (female) 34
Histology
87 LUAD

Stage
(31) IA/(24) IB
(5) IIA/(8) IIB

(10) IIIA/(3) IIIB
(4) IV

(2) n/a
CT emphysema n/a

-
• Transcriptomics Validation (SVM

classification)

Abbreviations: GEO, Gene Expression Omnibus; NSCLC, non-small cell lung cancer; No, Number; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; y, years; CT, Computed Tomography; n/a, not available;
GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level Size
Zone Matrix; GLDM, Gray Level Dependence Matrix; NGTDM, Neighboring Gray Tone Difference Matrix; SAM,
Significance Analysis of Microarrays; FDR, False Discovery Rate; SVM, Support Vector Machine; BHI, Biological
Homogeneity Index; BSI, Biological Stability Index.

2.1.1. Radiomics Dataset

The main dataset is dataset GSE28827 [15,17,22,23] (abbreviated Dataset 1), which
contains gene expression microarray data and CT radiomic feature values for 26 patients
with NSCLC. This dataset contains gene expression profiles for 24,371 different genes
mapped to the Entrez Gene terminology. Furthermore, it contains CT scans for each
patient, which are obtained from the publicly available Cancer Imaging Archive (TCIA)
database [24].

Using the opensource Pyradiomics (version 3.0.1) Python package and the 3-D Region
Of Interest (ROI) of the tumor of the scans, 749 radiomics features were extracted from
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24 patients to quantitatively characterize the tumor region. Scans for 2 patients were
excluded because the 3D ROI was smaller than 10 pixels. In order to efficiently process
the images, several filters were used: the Laplacian of Gaussian, Wavelet, Square, Square
Root, Logarithm, Exponential, and Gradient, and radiomics features were calculated for
each filtered and unfiltered image. The features represent quantitative data and were
classified in seven feature classes in compliance with the definitions introduced by the
Imaging Biomarker Standardization Initiative (IBSI) [20]; they are first-order statistics,
shape descriptors, texture classes Gray Level Co-occurrence Matrix (GLCM), Gray Level
Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighboring Gray
Tone Difference Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM) [25].

2.1.2. Transcriptomics Datasets

Since our aim was to methodologically unravel the “radiotranscriptomics” inter-
play, we initially preferred to explore the above question based on the well-established
microarrays transcriptomics data, which have provided researchers with a wealth of bio-
logical information and continue to enhance our understanding of disease etiology and
pathogenesis, and progress in diagnosis and treatment. Six datasets that contain purely
microarray transcriptomics data were used in our analysis. Dataset GSE75037 (abbreviated
Dataset 2) [26] entails only gene expression data for 83 patients with matched malignant
and non-malignant tissue, resulting in 166 samples in total. Dataset GSE76925 (abbreviated
Dataset 3) [27] was included as a control dataset, using only the gene expression data from
40 normal samples in the analysis. Another dataset, GSE18842 (abbreviated Dataset 4) [28],
was used for the validation procedure and includes gene expression data for 44 patients
with matched cancer and normal tissue, resulting in 88 samples in total. Two additional
independent microarray datasets, dataset GSE27262 (abbreviated Dataset 5) [29,30] and
GSE30219 (abbreviated Dataset 6) [31], and one RNA-Seq dataset, dataset GSE40419 (abbre-
viated Dataset 7) [32], were used to enhance the validation procedure. Dataset 5 contains
25 patients with matched cancer and adjacent non-malignant tissue, while Dataset 6 con-
tains 146 malignant samples and 14 normal samples. Dataset 7 provides RNA-Seq gene
expression data for 87 malignant samples and 77 adjacent non-malignant samples.

In our study, seven datasets (Table 1) were used to create an indicative large mul-
ticenter dataset and select highly discriminant genes between control and cancer cases,
beyond the expected measurement variations. Apart from the used data, some additional
adenocarcinoma datasets (including the TCGA dataset (RNA-Seq)) that contain gene ex-
pression data with paired cases (tumor and their corresponding non-tumor samples) were
used for the biological validation via CANCERTOOL during the gene enrichment analysis
(Supplementary Table S1a).

2.2. Radiotranscriptomics Feature Extraction
2.2.1. Meta-Radiomics Signature Extraction

The radiomics features were clustered in groups based on the similar patterns of the
CT imaging features to produce compact groups, reducing the dimensionality of these
features. The main dataset, Dataset 1, which was the only dataset that contained radiomic
features, was used. From the overall analysis, 42 imaging features were excluded due
to their constant value across all samples, with the values of the 707 remaining radiomic
features scaled through standardization to homogenize their range of values.

The iterative K-means algorithm [33] using the squared Euclidean distance metric
was applied to group together similar imaging features in an unsupervised manner, with
200 iterations and 10 random restarts to avoid trapping in a local minimum. The number
of clusters, K, was chosen from testing a wide range from 2 to 100 for fixing the best value
according to the inertia metric, Silhouette score [34], and Davies–Bouldin criterion [35,36]. For
each derived cluster, we further assessed the homogeneity score [15,17,18] by averaging all
pairwise Spearman correlation coefficients within each cluster. We enforced the requirement
that clusters should have a homogeneity score greater than 0.75 in order to consider them
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adequately homogeneous, showing strong correlation as in similar previous studies [15,17].
Each one of the derived clusters that satisfied the dual check of homogeneity, based
on distance and correlation metrics, entangled related features encoded in the compact
form of a “meta-radiomics” feature. The total set of these features formed the meta-
radiomics signature. More specifically, the meta-radiomics feature for each cluster was
represented by the nearest imaging feature to its cluster centroid; if more than one imaging
feature reflected the same minimum distance from the cluster centroid, the choice was
randomly made. Principal Component Analysis (PCA) was applied to the high-dimensional
radiomic features space in order to reduce the dimensions and visualize the clustering
results. The first two principal components of the radiomic features that were members of
some representative clusters and their corresponding meta-radiomic features were used to
visualize the derived clusters.

The clustering was used as a dimensionality reduction technique, as the number
of radiomics features used in the subsequent analysis was reduced into the number of
derived meta-radiomics features that represent homogeneous clusters. However, the
clustering procedure grouped together similar features based on their distribution over
the entire population, rather than on their nature with the formation of the medical image.
For instance, several characteristics of shape might be grouped together with textural
characteristics, demonstrating compactness over their population performance rather than
on their conceptual nature. Thus, the concrete meta-radiomics features signify characteristic
distributions of radiomics features over the population.

2.2.2. Transcriptomics Signature Extraction

The gene expression values of cancer samples of Dataset 2 and the gene values of
normal samples of Dataset 3 were used to identify genes of significant differentiation ability
in a set of microarray experiments. The intersection of Dataset 2 and Dataset 3, which
consisted of 16,252 common genes, was used for further analysis. However, due to the
fact that the cancer and normal samples of each gene were derived from two different
datasets, mean-centering normalization was applied as a preprocessing step in both datasets
independently to restrict the “batch effects” [37] (e.g., different staff members, platforms,
and laboratory conditions) and make the two datasets comparable.

Subsequently, Significance Analysis of Microarrays (SAM) in R (via Shiny package,
version 1.7.4) by Tusher et al. [38], with the additional setting of 2-fold change, was used be-
tween the mean-centered values of the 16,252 common genes from Dataset 2 and Dataset 3,
to identify genes that differed significantly between the two sets of microarray experiments.
SAM was performed for the two-class unpaired problem with its “delta” (∆) parameter
being chosen with respect to the criterion of FDR lower than 5%; the induced value of ∆ was
3.94. Regarding the number of permutations, Damle et al. [39] showed that as the number
of permutations increases, the FDR decreases. Accordingly, the number of permutations
was set equal to 1000. In order to strengthen the statistical significance of differential genes
and control the batch effects, the criterion of 2-fold change between cancer and normal
samples of the same dataset, Dataset 2, was also imposed.

The differentially expressed genes were further examined in terms of their statistical
correlation with the radiomic features. Such correlations are considered important for
cancer diagnosis in order to investigate the underlying biology and connection of the
transcriptome and the phenotype. Dataset 1 was the only dataset that contained both
microarray and imaging data for all the patients and it was thus used to investigate sig-
nificant correlations between the CT imaging features and differentially expressed genes.
The 42 radiomic features that had constant values across all samples were excluded from
the analysis and thus the remaining 707 features were used for the correlation analysis.
The significant correlations between the 707 radiomic features and the DEGs were investi-
gated using two statistical methods: the Spearman rank correlation test and the SAM for
quantitative problems.
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The non-parametric Spearman rank correlation test was performed between each
pair of genes and imaging features, as in similar studies [15,40]. Furthermore, an FDR-
controlling statistical approach using the Benjamini–Hochberg procedure across each gene
was applied to correct for multiple comparisons and enhance the statistical significance
of the derived correlations (FDR threshold: 5%). The Spearman rank correlation test is a
rank-based non-parametric method that can handle non-normal data and measures the
monotonic relationship between two variables, identifying the most important correlations.
In the second method, the values of the differentially expressed genes were imported as
input to the SAM and the continuous-valued imaging feature as the response variable,
yielding 707 different SAM tests, with one for each imaging feature. All features were
transformed into ranks and scaled with the standard deviation in order to use the Spearman
rank correlation coefficient as a statistic in SAM’s computations and be consistent with
the first method. The number of permutations was set equal to 1000 and the ∆ value was
chosen in each SAM so that the minimum FDR of 5% was achieved (q-value ≤ 0.05). The
DEGs that preserved significant associations with radiomic features with both statistical
methods formed the transcriptomic signature with the most significant biomarkers for
NSCLC. As a visualization assessment, before being used in further analysis, a heatmap
(heatmap.2 function of gplots package in R, version 3.1.1) was implemented to compare the
expression profiles of the selected genes on the cancerous and normal samples of Dataset 2
that contains matched malignant and non-malignant lung samples.

In order to assess and validate the predictive ability of the selected genes, the Support
Vector Machine (SVM) classifier was performed using multiple kernels (linear, Gaussian,
polynomial) to assess its performance; the linear kernel had the best performance. The
SVM linear classifier was trained on the samples of Dataset 2 and tested on the external
validation Dataset 4. Another validation test for the selected transcriptomic signature was
performed by assessing the compactness of genes in each condition of the new Dataset 4.
More specifically, the Biological Homogeneity Index (BHI) and the Biological Stability Index
(BSI) [41] were calculated in the R programming language as metrics to assess the derived
statistical clusters. The BHI and BSI were calculated in two different formulations on the
clustered samples of Dataset 4, with hierarchical clustering (hclust function of stats package
in R, version 4.1.2) using the expression profiles of the significant genes. In the first test,
the BHI investigated if the selected genes indeed produced two biologically homogeneous
clusters corresponding to the “cancer” and “normal” conditions. In the second formulation,
the BHI was used to assess if the genes of the same biological class were grouped together
in the same statistical cluster. The biological class of the genes is considered to be either
positive or negative, according to the initial differentially expressed genes analysis with
the SAM algorithm. The BSI was calculated to assess the consistency of the statistical
clusters, derived using full and reduced data space, with respect to the biological class of
the clustered samples.

The transcriptomics signature was extracted and validated for its diagnostic potential
using DNA microarray data. Hence, two new DNA microarray datasets (Datasets 5 and 6)
and one RNA-Seq dataset (Dataset 7) were utilized in order to evaluate the ability of the
transcriptomics signature to discriminate between malignant and non-malignant tissue also
on an RNA-Seq dataset. More specifically, the two external datasets with DNA microarray
data (Datasets 5 and 6) were used to train an SVM linear classifier and the dataset with
RNA-Seq data (Dataset 7) was used as the test set. The aim of this classification schema was
to investigate whether the selected genes, which had been derived using their microarray
expression profiles, can predict the type of lung tissue using their expression profiles
extracted by the RNA-Seq technology, using three unseen datasets.

The DEGs of the transcriptomic signature were extracted using datasets of normal
samples and lung adenocarcinoma (LUAD), which is the most common subtype of NSCLC.
The main goal was to identify genes that have differentiation ability between malignant and
non-malignant samples. In the validation stage, the malignant samples were NSCLC cases
derived from patients diagnosed with LUAD, but also with lung squamous cell carcinoma
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(LUSC), which are the two major subtypes of NSCLC. Thus, datasets that contained both
LUAD and LUSC patients were utilized to validate the ability of the selected genes to
differentiate between malignant and non-malignant samples, independent of the NSCLC
subtype. Overall, the selected genes of the transcriptomic signature were well-validated
for their differentiation ability between malignant (NSCLC) and non-malignant samples,
even under the variability within the NSCLC samples stemming from the two different
subtypes of NSCLC.

2.2.3. p-Metaomics Signature Modeling

The modeling of the radiomic features from the transcriptomics data was investigated
using regression analysis. More precisely, we investigated the degree in which the power
of radiomic markers can be modeled and approximated by molecular markers, giving
a means to replace the actual radiomic measurements with approximate (or simulated)
values obtained from regression models built on the basis of genes. Thus, this modeling
methodology provides a tool for the formation of artificial imaging features from precursor
molecular entities.

The derived gene expression data (i.e., transcriptomics signature) and the radiomic
features data (i.e., meta-radiomics signature) from the main Dataset 1 were used in a multi-
ple regression analysis with Lasso regularization [42], in order to model the relationship
between the dependent variable, i.e., each meta-radiomics marker, and the independent pre-
dictors, i.e., genes in the transcriptomics signature. Lasso regularization was used to select
important features while reducing the effects of overfitting, as the number of predictors was
larger than the number of observations, with Leave-One-Out Cross Validation (LOOCV) to
minimize the cross-validated Mean Squared Error (MSE). The model’s performance was
assessed with the R-squared metric (also known as the “coefficient of determination”) and
models evaluated with R-squared values above 0.70 were considered to adequately predict
the meta-radiomic features. Each one of the predicted meta-radiomics features that satisfied
this criterion was termed as a “p-metaomics” feature, since it is constructed from linear
combinations of genes of the transcriptomics signature with the identification prefix “p” to
imply that it is a prediction.

Notice that p-metaomics correspond to original radiomic features that correlate with
the transcriptomic signature, and each p-metaomics feature is predicted from its corre-
sponding model built from a subset of genes with non-zero regression coefficients rather
than the entire transcriptomics signature. Additional validity metrics, including the Nor-
malized Root Mean Squared Error (Normalized RMSE), Pearson correlation between the
predicted meta-radiomic feature and the actual one, and the Cross Validated Normalized
RMSE, were used to assess the performance of the predictive models [43].

2.3. p-Metaomics Model Evaluation

The discriminative value of the modeled (or simulated) p-metaomics features, which
span a combined space from the gene expression profiles, was explored by utilizing the
radiotranscriptomics correlations in approximating the radiomics feature space from the
transcriptomic vector space. Dataset 2 contains genes expression profiles from malignant
and adjacent non-malignant samples, but it does not provide information on any form
of imaging features. Thus, artificial model approximations of p-metaomics markers were
produced using the corresponding regression coefficient for each significant gene in the
model. To this end, a heatmap (heatmap.2 function of gplots package in R, version 3.1.1)
with the values of the cancer and non-malignant samples of the derived p-metaomics
signature was implemented to examine the discrimination ability of these simulated fea-
tures in cancer versus control populations. Furthermore, the BHI and BSI metrics were
calculated in R in order to assess the homogeneity of the class separation produced by the
p-metaomics models. Thus, the samples of Dataset 2 were clustered based on the values of
the p-metaomics features, to assess whether they can produce biologically homogeneous
clusters based on the cancer and normal conditions of samples.
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2.4. Enrichment Analysis

A two-step process was performed to infer biological consequences from the derived
gene sets. The first step revealed the enriched terms for each gene set via the WEB-
based GEne SeT AnaLysis Toolkit (WebGestalt) [44], whereas the second step evaluated
the genes of interest in subgroups of subjects (e.g., nontumoral/tumoral tissue, progres-
sion stages, mutation status) in independent well-annotated lung cancer datasets via
CANCERTOOL [45].

WebGestalt is a web tool for functional enrichment analysis, used here to extract shared
characteristics of derived gene sets at various stages of our radiotranscriptomics analysis.
The current version of WebGestalt (2019) was used, and it supports a plethora of functional
categories from well-known public databases, such as the: (i) knowledge databases, includ-
ing the Gene Ontology (GO) database and the Molecular Signatures Database (MSigDB),
that contains information for potential targets of regulation by transcription factors (TFs)
or microRNAs (miRNAs); (ii) gene pathway databases, including KEGG, Panther, and
Wikipathway; (iii) interaction network database BioGRID; and (iv) RNA-Seq database
Firehose-Broad GDAC, which contains NSCLC datasets (lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC) from The Cancer Genome Atlas (TCGA)) [44].
Using over-representation analysis and the statistical correction of Benjamini–Hochberg of
WebGestalt (FDR threshold: 5%), the functional terms of the transcriptomic signature and
the p-metaomics gene sets were examined in different biological contexts. Thus, biologi-
cal processes, pathways, and network modules, as well as regulators of gene expression
transcription factors (TFs) (acting at the transcriptional level) and miRNAs (acting at the
post-transcriptional level), which may be associated with NSCLC, were included. The
entire genome was used as a reference set. In order to provide biological terms with high
information content, the top 10 enriched terms were considered, which in many cases fulfill
the criteria for both low p-values and low adjusted-FDR values.

CANCERTOOL is a web-based interface that provides access to transcriptomics cancer
data selected for rich clinical annotation. Using statistical analysis tools (Student’s t-test or
ANOVA, Kaplan–Meier estimator, and Cox model) on the lung adenocarcinoma datasets
of CANCERTOOL (lung squamous cell carcinoma data were currently not available),
we aimed to compare the relative expression of the derived DEGs of the transcriptomic
signature against: (a) tumor versus healthy tissue, (b) different pathologic feature (i.e.,
stages), (c) molecular characteristics of the tumors (e.g., KRAS and EGFR mutation status),
and (d) disease progression (i.e., disease-free/metastasis-free/overall survival) [45].

3. Results
3.1. Meta-Radiomics Signature

The K-means algorithm produced 95 clusters of co-expressed radiomic features based
on the scores in the Silhouette and Davies–Bouldin criteria. More precisely, this K achieved
a Silhouette score equal to 0.41 and a Davies–Bouldin index equal to 1.01. Furthermore, the
homogeneity score of each of the 95 derived clusters was computed to assess homogeneous
radiomic clusters. Thus, 77 of the 95 clusters satisfied the criterion of a homogeneity score
greater than 0.75, forming the meta-radiomics signature. Each of the 77 homogeneous
clusters (Table S2) consisted of a different number of imaging features, which are globally
represented by a single “meta–radiomics” feature, being closer to the centroid of the cluster.
Thus, this step produced 77 meta–radiomics markers that express groups of co-expressed
imaging features. In total, 600 of the initial 707 imaging features were involved in the
77 homogeneous clusters. In Figure 2, the derived clusters are presented by using the
first two principal components of the radiomics members of each cluster, along with its
corresponding meta–radiomic feature. The different colors and symbols represent the
different groups of co-expressed radiomic features. The names of the radiomics features,
which are members of each cluster, are presented in Table S2.
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3.2. Transcriptomics Signature

The extraction of the transcriptomics signature aims to identify the most discrimi-
nant and representative genes in lung cancer to be identified as transcriptomic markers.
SAM with 2-fold change identified 7014 significant genes with a q-value equal to 0%,
using the gene expression profiles of the cancer samples of Dataset 2 and the normal
samples of Dataset 3 (cancer versus control samples). Strengthening the discrimination
power and controlling the batch effects by testing samples of the same dataset, 2415 of the
7014 genes remained significant according to the 2-fold change within Dataset 2 (can-
cer versus control). Projecting to Dataset 1, 2370 significant genes were identified, with
1540 being positive (i.e., higher values in cancerous than normal samples) and 830 being
negative (i.e., higher values in normal than cancerous samples) significant. Taking the
common transcriptomic features that were found to be statistically correlated with ra-
diomic features in both statistical tests (SAM and Spearman rank correlation test with FDR),
a set of 78 significant biomarkers for NSCLC that consists of differentially expressed
genes, also preserving significant associations with radiomic features, was identified
(Supplementary Table S3). The 78 DEGs included 66 over- and 12 under-expressed genes.

In Figure 3, a heatmap of the selected transcriptomic features is presented in order to
visualize the difference in the expression profiles between the cancer and the non-malignant
samples. The figure illustrates the different values of the gene expression profiles using a
color scale from blue (i.e., higher values) to orange (i.e., lower values). The discrimination
of the two gene groups (positive or negative) is reflected in the heatmap. An adequately
clear separation of cancer and non-malignant samples is observed based on the expression
profiles of the positive and negative significant genes. In the right side of Figure 3, a small
distribution disturbance is shown for some genes of control samples. The control samples
in Dataset 2 had been derived from adjacent non-malignant tissue. Hence, this small devia-
tion for some genes may be attributed to the special histopathological decomposition of
these samples.
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Figure 3. Heatmap for the visualization of the expression profiles of the 78 significant genes using
83 non–malignant and 83 cancer samples from Dataset 2. Scanning from top to bottom, the pos-
itive significant genes are displayed first, followed by the negative significant genes. The cancer
samples in this case are displayed in the left side of the figure and the normal samples in the right
side. Blue color indicates higher values and orange color indicates lower values, as shown in the
“color key” bar.

The transcriptomics signature was validated with the assessment of the predictive
ability of the genes in tissue classification (cancer versus normal tissue), using the external
Dataset 4 as the test set. Since, the new Dataset 4 did not contain 5 of the 78 significant genes,
these 5 genes were excluded from the analysis. The classifier showed great performance,
achieving accuracy of 92.05%, sensitivity of 84.09%, and specificity of almost 100%. The high
performance of the classifier, assessing all the validity metrics, indicated that these 73 genes
have the added potential to predict or classify cancer or normal samples. Furthermore,
the compactness of the genes was assessed using the external Dataset 4. The BHI and BSI
of the first test, after performing clustering of samples based on the gene values, were
equal to 0.856 and 0.833, respectively, indicating that a large proportion of samples with
the same biological label were consistently grouped together into the same statistical class.
In Figure 4, the derived dendrogram of samples is presented, showing the members of the
two statistical clusters produced by hierarchical clustering of the samples. The majority of
the cancerous samples have been grouped together into the blue cluster, while the normal
samples and a small proportion of cancer samples have been grouped together into the
orange cluster. These clustering results are quantitatively expressed by the values of the
BHI and BSI metrics of the first test. Similarly, the outcome of the second formulation
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corresponding to the clustering of genes resulted in BHI and BSI equal to 0.893 and 0.892,
respectively. In Figure 5, the derived dendrogram of genes is presented, showing that
the majority of the positive and negative genes have been grouped together into two
different statistical clusters, respectively. Only one positive and one negative gene have
been misclassified to the opposite cluster, justifying the high values of the metrics. The
high value of BHI in both tests implies that the derived genes also provide the power
to group together tissue samples of the same biological class. The high value of BSI in
both tests confirms the ability of the transcriptomics signature to separate cancer from
normal samples by producing consistent biologically homogeneous clusters. Regarding the
discrimination ability of the 73 genes to classify the lung tissue type based on RNA-Seq
measurements, the classifier that used the three external datasets (Datasets 5, 6, and 7)
showed very good performance, achieving an accuracy of 89.02%, sensitivity of 79.31%,
and specificity of 100%.

Diagnostics 2023, 13, x FOR PEER REVIEW 13 of 28 
 

 

these 73 genes have the added potential to predict or classify cancer or normal samples. 

Furthermore, the compactness of the genes was assessed using the external Dataset 4. The 

BHI and BSI of the first test, after performing clustering of samples based on the gene 

values, were equal to 0.856 and 0.833, respectively, indicating that a large proportion of 

samples with the same biological label were consistently grouped together into the same 

statistical class. In Figure 4, the derived dendrogram of samples is presented, showing the 

members of the two statistical clusters produced by hierarchical clustering of the samples. 

The majority of the cancerous samples have been grouped together into the blue cluster, 

while the normal samples and a small proportion of cancer samples have been grouped 

together into the orange cluster. These clustering results are quantitatively expressed by 

the values of the BHI and BSI metrics of the first test. Similarly, the outcome of the second 

formulation corresponding to the clustering of genes resulted in BHI and BSI equal to 

0.893 and 0.892, respectively. In Figure 5, the derived dendrogram of genes is presented, 

showing that the majority of the positive and negative genes have been grouped together 

into two different statistical clusters, respectively. Only one positive and one negative 

gene have been misclassified to the opposite cluster, justifying the high values of the met-

rics. The high value of BHI in both tests implies that the derived genes also provide the 

power to group together tissue samples of the same biological class. The high value of BSI 

in both tests confirms the ability of the transcriptomics signature to separate cancer from 

normal samples by producing consistent biologically homogeneous clusters. Regarding 

the discrimination ability of the 73 genes to classify the lung tissue type based on RNA-

Seq measurements, the classifier that used the three external datasets (Datasets 5, 6, and 

7) showed very good performance, achieving an accuracy of 89.02%, sensitivity of 79.31%, 

and specificity of 100%. 

 

Figure 4. Dendrogram of 88 samples (Dataset 4) derived by their hierarchical clustering. The blue 

and orange boxes indicate the two produced statistical clusters that contain the largest proportions 

of the cancerous and normal samples, respectively. The condition of each sample is indicated within 

the parentheses. At the bottom, the function, i.e., “hclust”, used in R for the implementation of the 

dendrogram is presented. The “*” in the function indicates the first argument of the function, which 

is a dissimilarity structure that is stored at the variable “data” and it is used for the implementation 

of the dendrogram. The second argument indicates the agglomeration method used. Abbreviations: 

C., cancer; N., normal. 

Figure 4. Dendrogram of 88 samples (Dataset 4) derived by their hierarchical clustering. The blue
and orange boxes indicate the two produced statistical clusters that contain the largest proportions of
the cancerous and normal samples, respectively. The condition of each sample is indicated within
the parentheses. At the bottom, the function, i.e., “hclust”, used in R for the implementation of the
dendrogram is presented. The “*” in the function indicates the first argument of the function, which
is a dissimilarity structure that is stored at the variable “data” and it is used for the implementation
of the dendrogram. The second argument indicates the agglomeration method used. Abbreviations:
C., cancer; N., normal.
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Figure 5. Dendrogram of 73 genes derived by their hierarchical clustering (using Dataset 4). The blue
and orange boxes indicate the two produced statistical clusters that contain the largest proportions
of the negative and positive genes, respectively. The condition of each gene is indicated within the
parentheses. At the bottom, the function, i.e., “hclust”, used in R for the implementation of the
dendrogram is presented. The “*” in the function indicates the first argument of the function, which
is a dissimilarity structure that is stored at the variable “data” and it is used for the implementation
of the dendrogram. The second argument indicates the agglomeration method used. Abbreviations:
neg., negative; pos., positive.

3.3. p-Metaomics Signature

The modeling of the p-metaomics markers is based on the linear regression of meta-
radiomics markers from the transcriptomic ones. Thus, 53 of the 77 radiomic models satisfy
the criterion of R-squared greater than 0.70, revealing that 53 meta-radiomic features can
be predicted from genes with an accuracy of 70% or more. The p-metaomics signature
consisted of these 53 p-metaomics markers, which engage 449 original radiomic features.
The subset of genes that predicts each p-metaomics marker differed over the regression
models, but all 73 genes participated in at least one predictive model.

Examining the relationship of the 53 actual meta-radiomics features with their cor-
responding p-metaomics approximations, the normalized RMSE was almost 0 (ranging
from 0.007 to 0.14) and the Pearson correlation coefficient was greater than 0.88, with all the
corresponding p-values of the Pearson correlation coefficients being significantly less than
1%, indicating strong relationships between actual and predicted meta-radiomics features
(Tables S4 and S5). However, after examining the correlations between pairs of the selected
p-metaomics and the genes, 2 of the 53 models were found not to be statistically correlated
with genes. Thus, these two models were excluded from further analysis, resulting in
51 significant p-metaomics markers that form the p-metaomics signature (Table S5), which,
according to the radiomics clustering results, represent 440 radiomic features.

In Figure 6, the results of the multiple linear regression models for some meta-radiomic
features are presented by plotting the actual values against the predicted values of the
radiomic feature. The red line represents the least-squares line for these values to show
the linear relationship between the actual and the predicted values of each feature. The
predicted values (i.e., p-metaomics feature) should be as close as possible to the actual
values. As shown in the first row of Figure 6, the values of the p3 and p23 features
are relatively close to the values of the original radiomic feature, as the majority of the
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points coincide with the line and their regression models achieved R-squared values of
99.7% and 99.9% (Table S5), respectively. In the second row of Figure 6, the p58 and p78
features present linear relationships with the original radiomic features to a lesser extent,
as the points scatter slightly above and below the line and their regression models achieved
R-squared values of 90.0% and 78.1% (Table S5), respectively.
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Figure 6. Plots visualizing the actual values against the predicted values of radiomic features. The
p–metaomics features (i.e., simulated radiomic features from genes) were derived by multiple linear
regression models with Lasso regularization.

The p-metaomics features are simulated radiomic features derived by a linear combina-
tion of genes. For instance, the p-metaomics feature p78 represents the predicted values of
the radiomic feature “wavelet_1_original_glcm_SumEntropy” that was derived with 78.1%
accuracy (Table S5) based on the linear combination of 8 genes, namely, MUC4, PTGER3,
PLEKHA6, CDHR2, PKIG, ZNF423, ZFPM2, and VEPH1. Hence, each of these 8 genes was
multiplied by the corresponding coefficient, which had been calculated from the training of
the regression model. Subsequently, these values were summated to derive the values of the
p-metaomics feature p78 that simulates the “wavelet_1_original_glcm_SumEntropy” fea-
ture. This radiomic feature was biologically justified via the enrichment analysis performed
on the set of these 8 genes.

3.4. Evaluation of the Discrimination Ability of p-Metaomics Models

Similar to the heatmap in Figure 3 for the entire Dataset 2, Figure 7 provides vi-
sualization of level differences between the cancer and control samples for the derived
p-metaomics signature of 51 features. The vertical axis depicts the p-metaomics feature
vector. The dataset itself does not contain any radiomic features, which are only modeled by
transcriptomics as p-metaomics features. The class discrimination is evident, even though
the marker set only reflects simulations of imaging characteristics from linear transforma-
tions of transcriptomic markers. More specifically, the 83 NSCLC samples of Dataset 2 are
displayed in the left side of the figure, while the 83 non-malignant samples are presented
in the right side. The upregulation (blue values) and the downregulation (orange values)
regions of the p-metaomics models between the cancer and the non-malignant samples are
clearly distinguished, showing the discrimination between these two groups of samples
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(cancer versus non-malignant). However, in the right side of the figure, there is a small
portion of non-malignant samples that deviates from the homogeneous distribution of the
rest of the non-malignant samples for some p-metaomics models. The p-metaomics models
are linear regression models, introducing a margin of error in estimation. These samples
present the largest error in the proposed modeling of p-metaomics features. Furthermore,
these samples are the same as those that produced the deviation from the homogeneous
distribution in the heatmap of Figure 3, in which the differentially expressed genes were
used. Thus, Figure 7 also reveals samples that could possibly be further examined for their
histopathological decomposition. The dendrogram on the y-axis reveals the four dominant
groups of p-metaomics features that are over- and under-expressed. The two groups of p-
metaomics features in each category (i.e., over- and under-expressed) indicate the different
degree of their differentiation ability. For instance, the green group of under-expressed p-
metaomic features can more accurately discriminate between malignant and non-malignant
samples than the corresponding orange group, as shown in Figure 7. Furthermore, the
BHI and BSI were equal to 0.752 and 0.821, respectively, indicating that the p-metaomics
models can also separate the cancer from normal samples, producing adequately biological
homogeneous clusters. The values of the BHI and BSI metrics objectively validate the
discrimination ability of the p-metaomics features, which was visually presented in the
heatmap. The p-metaomics models are derived by linear combinations of genes, which
have been rigorously validated for their discrimination ability. Hence, these modeled fea-
tures retain the ability of their transcriptomic substrate to discriminate between malignant
and non-malignant samples, conveying information regarding cancer-related factors.
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3.5. Enrichment Analysis of Radiotranscriptomics Models
3.5.1. Overrepresentation Analysis on DEGs

The top 10 enriched GO biological processes terms include nucleoside triphosphate
metabolic process, digestion, acute inflammatory response, carbohydrate catabolic process,
and response to radiation, as shown in Supplementary Table S6a. KEGG and Panther analy-
sis revealed that those 73 genes were enriched in several cancer-related metabolic pathways,
including glycolysis/gluconeogenesis and pentose phosphate pathway [46]. Wikipathway
analysis showed enrichment in specific signaling pathways, such as ATR/ATM Signaling,
and DNA IR-Double Strand Breaks (DSBs) and cellular response via ATM (Table S6b), the
latter of which reached statistical significance. Network analysis by WebGestalt revealed
four statistically significant enriched co-expression modules in lung adenocarcinoma data
(LUAD-M722, LUAD-M919, LUAD-M375, LUAD-M65) and one protein-interaction module
(BIOGRID-M698) (Table S6c). The identified enriched GO biological processes associated
with these modules correspond to digestive system process, glycosphingolipid metabolic
process, xenobiotic metabolic process, regionalization, and mitochondrial genome main-
tenance, respectively. In addition, several transcription factors’ binding sites were found
enriched, including known sites for Hepatic Nuclear Factor (HNF1) and Androgen Re-
ceptor (AR) that reached a favorable statistical trend (FDR = 0.08). Finally, the top 10
enriched predicted miRNAs that targeted the DEGs, such as miR-143, miR-29A, miR-29B,
and miR-29C, are shown in Table S6d.

According to the enrichment analysis of the 73 DEGs in NSCLC, the DNA IR-Double
Strand Breaks (DSBs) and cellular response via ATM was the most important finding. In
our study, the genes involved in this pathway were PARP1, FANCD2, RAD9A, and NABP2,
which operate via the ataxia-telangiectasia mutated (ATM) gene. Although DSBs occur
normally during DNA replication, meiosis, and immune system development, they are the
most hazardous lesions arising in the genome of eukaryotic organisms, and their efficient
repair is crucial in maintaining genomic integrity, cellular viability, and the prevention of
tumorigenesis. The ATM gene is critical in maintaining genomic integrity and plays a key
role in the cellular DNA damage response. In response to DNA double-strand breaks, ATM
phosphorylates downstream proteins involved in cell-cycle checkpoint arrest, DNA repair,
and apoptosis [47].

3.5.2. Biological Interpretation of Radiomics via the p-Metaomics Models

In order to establish a causal relationship between radiomics (phenotype) and gene
expression (intermediate between genotype and phenotype), the regression models of
radiomics based on transcriptomics were exploited to characterize the GO biological
processes, pathways, network modules, and TF- and miRNA-targets, using the online
tool WebGestalt. The most significant associations of radiomics markers with functional
biological terms, as revealed by the gene sets in the p-metaomics models, are summa-
rized in Figure 8. According to overrepresentation analysis, we observed that the gene
sets of 25 p-metaomics models included statistically significant enriched terms
(FDR ≤ 0.05) and the gene sets of 11 p-metaomics included relatively significant enriched
terms (0.05 < FDR ≤ 0.1) (Table S7).

Since the gene sets of regression models stem from the same 73 gene signature,
we would expect to find similar enriched terms as above, with some degree of varia-
tion in their ranking. Indeed, we found several same enriched terms that remained sig-
nificant (e.g., LUAD-M919, LUAD-M722, transcription factors’ binding sites for HNF1,
miR-143) or reached a slightly lower significance level (e.g., DNA IR-Double Strand Breaks
and cellular response via ATM), but mainly a higher significance level in one or more p-
metaomics models (e.g., GO:0007586; LUAD-M856, LUSC-M272, BIOGRID-M392, MIR-29A,
MIR-29B, MIR-29C) (Figure 8). Furthermore, additional enriched terms emerged in several
p-metaomics models, such as LUAD-M259, LUAD-M379, LUAD-730, and BIOGRID-M170.
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Focusing on the 36 most significant p-metaomics models (FDR ≤ 0.1) (as illustrated
in Figure 8 and Table S7), several observations were made. Each gene set is governed
either by one or a unique mixture of biological processes and/or TFs/miRNAs. More
specifically, 23 p-metaomics models harbor more than one significant functional term
from the same or a different functional category. Furthermore, several gene sets of
p-metaomics models are related to specific biological processes, such as the p78, p64, p3,
and p11 features associated with the mitochondrial genome maintenance (BIOGRID-M170),
the bicarbonate transport (LUAD-M856), the regulation of hormone levels (LUAD-M379),
and the miR-143, respectively. However, many gene sets of cluster centroids are enriched
by closely related processes, such as the enriched O-glycan processing, glucosamine-
containing compound catabolic process, and glycosylation in the p55-, p64-, and p16-
metaomics models, respectively. Moreover, some gene sets of cluster centroids are enriched
by closely related modules or predictive TF motifs that are linked to unique processes or
TFs. For instance, the three protein-interaction modules (BIOGRID-M392, BIOGRID-M698,
BIOGRID-M170) are associated with mitochondrial genome maintenance and the TF mo-
tifs V$HNF1_C/V$HNF1_Q6 and V$GR_Q6/V$GR_Q6_01 are annotated to hepatocyte
nuclear factor 1 homeobox A and glucocorticoid receptor, respectively.

The enrichment analysis in the cluster members of some p-metaomics models (Table S8)
showed that the clustered markers are mainly governed by the same functional categories
as their cluster centroids. For instance, the significant co-expression module LUAD-M722
associated with the digestive system process and the enriched co-expression module LUSC-
M272 related to O-glycan processing are shared in eight of eleven cluster members of the
p16-group (Table S8). In particular, the p58 cluster centroid, which represents the flatness
shape radiomic feature, and the entire p58-cluster, which have shape-related members,
engage exactly the same gene sets, implying that they are dominated by the same biological
processes. This should be reasonably expected due to the inherent properties of the radiomic
shape features.

Based on the above analysis, 13 disease-specific (12 LUAD, 1 LUSC) mRNA co-
expression network modules were associated with enriched biological processes, such
as the digestive system process, glycosphingolipid metabolic process, xenobiotic metabolic
process, transcription initiation from RNA polymerase II promoter, and bicarbonate trans-
port (Figures 8 and S1). The inequality in LUSC versus LUAD modules probably reflects
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the inequality of our samples, as the majority are LUAD samples. Similarly, three protein-
interaction modules were associated with the highly enriched process of mitochondrial
genome maintenance. Furthermore, other biological processes and pathways, including
O-glycan processing, glucosamine-containing compound catabolic process, glycosylation,
regulation of hormone levels, melanocyte differentiation, muscle tissue morphogenesis,
and DNA IR-DSBs and cellular response via ATM, were also ranked among the top 10
enriched terms identified by WebGestalt analysis (Figures 8, S1 and S2). Most of these
processes have been implicated to a greater or lesser extent in lung cancer pathogenesis
and metastasis [48–59].

Xenobiotic metabolism is of importance in tumors since biotransformation via the drug-
metabolizing enzymes can result in either their activation or detoxification [60]. The lung,
as a target organ for the toxicity of the inhaled compounds that are foreign to human
life (xenobiotics), has a significant capability of biotransforming them to reduce potential
toxicity [61]. Transcription plays a crucial role in a variety of cellular processes ranging
from survival, cell growth, and differentiation. Malignant transformation is highly related
to enhanced transcription of oncogenes, anti-apoptotic factors, and other transcription
factors in cancer cells. Thereby, RNA polymerase II transcription is required to support the
high demand of the transcripts, which is necessary for the maintenance of rapid growth
and apoptosis resistance [51,62]. Glycosylation is an important enzymatic process that
produces glycosidic linkages of saccharides to other saccharides, lipids, or proteins. It
is involved in different aspects of cancer development, including cell–cell interactions,
cell adhesion, malignant transformation, and metastasis [63,64]. Digestive process is a
complex and important process of turning the food into nutrients, which the body uses for
energy, growth, and cell repair. The digestive process was the most statistically significant
enriched GO process identified in the gene sets of p-metaomics models, which is consistent
with recent evidence on the emergence of tumor plasticity that mirrors the developmen-
tal history of organs [58]. This framework may also explain the presence of the other
developmental-associated processes in our p-metaomics models, such as muscle tissue
morphogenesis, positive regulation of axonogenesis, and melanocyte differentiation and
regionalization. The latter was also found enriched in hypermethylated genes of NSCLC
samples supporting in part a dedifferentiation cellular process in cancer [65]. Mitochondrial
genome maintenance is understood as the mitochondrial DNA (mtDNA) replication and
repair. To perform their functions, mitochondria carry their own genome; along with
multiprotein machineries dedicated to maintaining the fidelity of genome replication, they
promote transcription to spot and repair any DNA defects in retaining a low mutation
rate in each cell generation. MtDNA, compared to nuclear DNA, possesses inadequate
repair mechanisms and a high susceptibility to mutations, justifying its contribution to the
development of cancer [66,67].

It is worth mentioning that the DNA IR-DSBs and cellular response via ATM, one
of the most important findings according to 73 DEGs, demonstrated a strong statistical
association with the highly coherent group of the p58-metaomics model. This association
is induced by two genes involved in this pathway, namely, FANCD2 and NABP2 (hSSB1).
FANCD2 is implicated in the Fanconi anemia pathway, to orchestrate the maintenance of
genome integrity and prevention from diseases including cancer. Currently different forms
of FANCD2 are reported to have an oncogenic or tumor suppressive role [68]. NABP2
protein is a guardian of genome stability and is a prognostic factor in NSCLC, according to
a recent study [69,70].

In addition, the TFs’ target analysis by WebGestalt revealed four enriched predicted
TFs, namely, HNF1A, ALX1, AR, and GR, and their target genes in seven p-metaomics
gene sets (Figures 8 and S2). HNF1A, ALX1, AR, and GR play certain roles in lung
cancer development and progression, and/or they have been associated with the overall
survival [71–75]. Similarly, the miRNAs’ target analysis by WebGestalt revealed four
enriched predicted miRNAs, namely, miR-143, miR-17-3P, miR-380-3P, and miR-29A, miR-
29B, miR-29C, and their target genes in five p-metaomics gene sets (Figures 8 and S2),
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which have been reported to play tumor-suppressive, oncogenic, or regulatory roles in
cancer including lung cancer [76–79].

3.5.3. Evaluation of Significant Genes in Independent Lung Cancer Datasets

A further comparison with previously published work (curated transcriptomics
lung adenocarcinoma datasets) that was conducted via CANCERTOOL revealed the
high abundance of overlapping genes, and is presented as supplementary information
(Tables S9 and S10). More precisely, all 73 DEGs were found differentially expressed
in tumor versus healthy tissue, except 3 (Table S9). The most significant was SPINK1
(9.949 × 10−35), which is in accordance with the study of Girard et al. [26]. Furthermore,
54 DEGs were found to be implicated in various progression stages of lung adenocarcinoma,
while 41 and 46 DEGs were found to be different according to the EGFR or KRAS mutation
status of the tumor, respectively (Table S10). Finally, 52, 45, and 8 DEGs were related to
overall, disease-free, or metastasis-free survival, respectively (Table S10).

These findings not only emphasize the importance of the derived DEGs, but also
support and justify their integration into p-metaomics models of lung cancer. The mixture of
biological processes by the combination of transcriptomic markers inflicted by p-metaomics
models reveal specific thematic patterns that may form hidden interconnections worthy of
further experimental evaluation in diagnosis, prognosis, treatment, and survival analysis,
via the examination of cost-effective and non-invasive imaging protocols. To this end,
the value of such a joint exploration should be further evaluated in larger independent
radiotranscriptomics datasets.

4. Discussion

This study provides a methodological approach to investigate radiotranscriptomics
associations based on the concrete assumption that the phenotype of cancer is strongly
dictated by its associated genetic origin. It has been widely considered that transcriptomic
markers can achieve a certain degree of cancer predictability [3,80]. Complementing this set,
radiomics markers can also provide predictive power, encoding certain tissue deformation
patterns, leading to better and more precise diagnosis and treatment of cancer patients [4].
It is reasonable to assume, as in recent studies including ours, that the information encom-
passed by the late tissue deformation captured by imaging modalities might be largely
explained by early genomic deregulations, as such alterations are caused by the genetic
origin [3]. Thus, the information content of radiomics can be modeled as a homomorphic
mapping guided by the transcriptomic basis. Since the cause (genomics) is expected to
leave its footprint on the responsive effect (radiomics), a similar association is hidden in
the markers measured by the corresponding modalities. Thus, the p-metaomics models ob-
tained from transcriptomics regression to fit the radiomics markers could reveal the hidden
biological substrate encoded in the anatomic imaging features, biologically justifying the
use of radiomic markers.

The joint signature with measured radiomics and transcriptomics markers can be
interpreted as complementing information from the two biological scales. Benefiting from
the modeling of the transcriptomic markers from readily available radiomics markers in
clinical practice, several studies have tried to elucidate associations between radiomics
features and gene signatures for effective diagnosis and prognosis [81–83]. In our study,
the modeling of “cheap” radiomics features with “expensive” transcriptomic markers was
explored. The utility of such an approach is 2-fold. First, the joint signature entails pure
transcriptomics markers and radiomics models, which form linear combinations of the
former. Thus, it expands the original transcriptomics space with a more complex space
spanned from linearly transformed dimensions, in a way similar to the transformed Prin-
cipal Component Analysis (PCA) dimensions. However, the difference is that, instead of
using the statistically significant dimensions in the distribution of data, the new space is
formed by the dimensions that best characterize the radiomics features, preserving their
anatomic content and structure. The second main utility of modeling is to give biological
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reasoning to the somewhat arbitrary concatenation of mass radiomic features. The transcrip-
tomic modeling of such features reveals the coupling with certain transcriptomic markers,
which can be readily associated with significant biological processes based on enrichment
analysis. In this form, this modeling paves the ground for the biological justification of
several arbitrarily introduced radiomics markers.

The transcriptomic signature, which was used to build the regression models of
radiomics, was thoroughly examined for its significance in NSCLC, validating its ability to
also differentiate between the malignant and control samples in several external datasets.
Hence, a set of highly discriminative genes in NSCLC was thoroughly selected and used
to produce the radiotranscriptomic models. The transcriptomics signature consists of
73 genes which are compared with the gene signatures/gene sets obtained from the used
Datasets 2 and 4. This comparison showed an overlap of five genes (ETV4 (tumor non-
malignant signature), STK32A, SPINK1, GOLT1A, KRT6A (adenocarcinomas—squamous
cell carcinomas signature)) in the first case, and an overlap in one (KRT15) of the three
most prominent genes in the second case. The differences in the derived gene signature are
related to the different methodology followed by these studies and our study to answer
different research questions and scope. In many cases, a comparison with our study
was not possible. For example, a comparison with signature/gene set of Dataset 3 was
not considered useful because of the inclusion of only normal lung samples from this
dataset. Moreover, the reported significant genes in the independent datasets could not be
compared with our study, since these studies follow different research directions. More
specifically, Dataset 5 was utilized by Wei et al. [29] to explore solely the statistically
significant differences in PRMT5 between the lung tissue paired (LUAD and adjacent
normal) samples, Dataset 6 was used by Rousseaux et al. [31] to detect aberrant expressions
of testis-specific/placenta-specific (TS/PS) genes in lung tumor samples, and Dataset 7 was
used by Seo et al. [32] to identify somatic point mutations and transcriptional variants in
lung adenocarcinoma. Lastly, a direct comparison with the basic radiotranscriptomic study
of Nair et al. [15] was not possible due to the following main differences: (i) our signatures
were extracted from microarray transcriptomic profiles of both patient samples and their
non-malignant counterparts or control samples, and not only patient samples; (ii) our study
focused on CT-extracted radiomic features, while Nair et al. [15] used the FDG PET/CT
radiomics features.

The enrichment analysis on the significant genes involved in each p-metaomic model
yields relevant biological support to the corresponding radiomics features. Each model
with its biological origin concerns not only the central feature (p-metaomics) but also a
variety of radiomic features in the same cluster, expressing the same distribution over
the studied population. Through the coupling of genes in the p-metaomic models, our
analysis highlights the significance of (a) FANCD2, NABP2 (hSSB1), and SPINK1 genes;
(b) xenobiotic metabolism, bicarbonate transport, transcription, glycosylation, digestion,
and developmental-related processes, as well as nuclear and mitochondrial DNA repair
processes; and (c) TFs, such as HNF1, ALX1, AR, and GR, and (d) miR-143, miR-17-3P,
miR-380-3P, and miR-29 family in NSCLC. Based on these observations, the p-metaomics
models integrate quantitative radiomic features with thematic expression patterns, linking
an important biological prospect to lung tumor characteristics. The presence of more than
one thematic pattern in several p-metaomics models may reflect a multitude of alterations
from a single biological or genomic etiology and forms a basis for further assumptions and
experimental studies. Furthermore, the formation of p-metaomics models can motivate
the design of novel imaging protocols that can specifically target radiotranscriptomic
signatures [84]. The identified TFs and miRNAs and their target genes should also be
further experimentally evaluated for their roles in the development and progression of
NSCLC disease, considering that miRNAs and TFs’ targeting pathways provide potential
candidates for therapeutic intervention. Similar observations regarding GO processes
have been reported on the utilization of gene sets for the characterization of radiomic
features through gene masking in NSCLC [85]. Smedley et al. [85] identified five of
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the aforementioned GO processes, namely, the developmental-related, post-translational
and DNA repair-related, transport- and catabolism-related, hormone-related, and muscle-
related GO processes, to predict radiomic features.

The histopathological features in the form of semantic features specified by the clinician
could be associated with and related to the transcriptomic substructure of the tumor in
NSCLC. Although this was not a primary research direction for this study, based on the
results presented by Yip et al. [86], many of the radiomics clusters in this study, which can
be regressed from the transcriptomics signature, can be associated with semantic features
such as spiculation, contour, and texture. Furthermore, the mitochondrial dynamics and
sphingolipid metabolic reprogramming, which are reflected in the p-78, p-83, and p-85
metaomics models, can indirectly relate to semantic textures [87,88].

This is a pilot study, which presents a methodological framework for the investiga-
tion of radiotranscriptomics correlations to reveal the underlying biological connection.
However, this study has several limitations. A certain limitation is the small sample size of
the simultaneously available microarray transcriptomics and imaging data, since only one
dataset of a relatively small number of patients with both types of characteristic features
was used. The absence of publicly available radiomics data combined with transcriptomics
data restricts the capacity to investigate and further validate the significance of radiomic
features as imaging-based biomarkers. The delivery of publicly available datasets with both
radiomics and gene expression data for the same subjects is essential to facilitate research
on radiotranscriptomics towards the development of robust models in cancer diagnosis
and prognosis. Furthermore, the lack of imaging data from several clinical centers reduces
the variability of the used data and does not reflect the heterogeneity of the patients with
NSCLC among different centers. Additionally, there is not a standardization protocol for
the extraction of the radiomic features, restricting the robustness and the reproducibility of
radiomic features and making it difficult to compare the results with other studies.

Future research on the counterpart regression direction, investigating the modeling of
the gene expression profiles from the easily and non-invasively captured radiomics mea-
surements, will be performed. The tedious procedures of measuring mRNA through gene
expression profiles could be avoided, when the radiomic features become robust biomark-
ers of the disease. Moreover, the analysis conducted via CANCERTOOL showed that a
considerable number of DEGs play a role in overall survival, disease-free, or metastasis-free
survival (Table S10). Since the p-metaomics features are derived by combinations of these
DEGs and maintain the information of their transcriptomic substrate, the p-metaomics
features may be correlated with survival. Hence, the correlation of the p-metaomics features
with survival and other clinical variables will be investigated in a future study to further
examine the clinical utility of these features. Furthermore, the collaboration with expert
clinicians, who have the ability to perform the delineation of the tumor in the PET/CT
examinations and extract SUV metrics, will be achieved in a future radiotranscriptomic
study to incorporate this crucial examination into the study framework. Finally, expanding
our formulation, more advanced models may be incorporated for inflicting the associations
among radiomics and molecular markers, as it is dictated by the complexity of biological
interactions in the diagnosis or prognosis pipeline.

5. Conclusions

This study proposes a methodological framework for the investigation of the asso-
ciations between the radiomics and the transcriptomics in NSCLC to provide biological
meaning of the radiomics features based on their modeling with a set of carefully selected
transcriptomics markers. The genetic environment, as a cause of biological abnormalities
related to the disease environment, would also dictate the phenotypic outcome reflected
by the anatomic aberrations in radiological images. The proposed pipeline focuses on
the identification of radiomic and transcriptomic markers, which are considered to be the
most representative for lung cancer, resulting in a substantial reduction in the number of
markers. The genes of the transcriptomics signature were thoroughly selected for their
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significant statistical correlation with radiomic features and their ability to discriminate
malignant from non-malignant lung tissue, assisting in the diagnosis of the existence of
lung cancer. The central radiomics features were simulated using regression models of
these genes in order to enhance the relationship between the generative genomics data and
the phenotypic outcome of the radiomics data. The discrimination ability of the simulated
radiomics data (i.e., p-metaomics features) between malignant and non-malignant samples
was also confirmed, showing their predictive power. Through the enrichment analysis of
the genomic substrate of the p-metaomics features, a biological interpretation and support
of the conceptual meaning of the radiomics were provided, revealing biological processes
and pathways. The derived p-metaomics models provide a comprehensive approach for
mapping the radiomic features with the biological information in NSCLC, and possibly
in other cancer types, and can be expanded to answer multiple clinical problems related
to cancer.
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