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Abstract: Osteolytic lesions can be seen in both multiple myeloma (MM), and osteolytic bone
metastasis on computed tomography (CT) scans. We sought to assess the feasibility of a CT-based
radiomics model to distinguish MM from metastasis. This study retrospectively included patients
with pre-treatment thoracic or abdominal contrast-enhanced CT from institution 1 (training set:
175 patients with 425 lesions) and institution 2 (external test set: 50 patients with 85 lesions). After
segmenting osteolytic lesions on CT images, 1218 radiomics features were extracted. A random forest
(RF) classifier was used to build the radiomics model with 10-fold cross-validation. Three radiologists
distinguished MM from metastasis using a five-point scale, both with and without the assistance of
RF model results. Diagnostic performance was evaluated using the area under the curve (AUC). The
AUC of the RF model was 0.807 and 0.762 for the training and test set, respectively. The AUC of the
RF model and the radiologists (0.653–0.778) was not significantly different for the test set (p ≥ 0.179).
The AUC of all radiologists was significantly increased (0.833–0.900) when they were assisted by RF
model results (p < 0.001). In conclusion, the CT-based radiomics model can differentiate MM from
osteolytic bone metastasis and improve radiologists’ diagnostic performance.

Keywords: multiple myeloma; neoplasm metastasis; multidetector computed tomography; diagnosis;
algorithm; radiomics

1. Introduction

Metastatic cancer is the most common malignant tumor in bones, followed by mul-
tiple myeloma (MM). Many patients with advanced cancer suffer from bone metastasis.
Bone metastasis is not uncommon as an early manifestation before a primary tumor is
detected. Metastasis can be diagnosed by imaging modalities, including radiography,
computed tomography (CT), magnetic resonance imaging (MRI), bone scan, and fluorine-
18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG
PET/CT) [1,2]. In general, bone metastasis is divided into osteolytic, osteoblastic, and
mixed types. Osteolytic metastasis is the most common form of metastasis, appearing
as purely radiolucent lesions. Osteoblastic metastasis is common in prostate and breast
cancers and is seen as hyperdense lesions on CT images and radiographs due to osteoblastic
activity. The mixed type includes both osteolytic and osteoblastic features. Bone metastases
from the same primary cancer do not always show the same type, and the types can vary
among lesions in a single patient. Moreover, chemotherapy or radiation therapy can alter
the findings [3].
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MM is the second-most common skeletal malignancy after metastasis [4]. MM is
a hematologic malignancy and is included in the disease spectrum of monoclonal gam-
mopathy [5]. MM is diagnosed when myeloma biomarkers are elevated, plasmacytoma
is present, or there is end-organ damage (i.e., CRAB criteria: hypercalcemia, renal insuf-
ficiency, anemia, and bone lesions) [5]. Radiographic imaging plays an important role
in the diagnosis of bone lesions. The International Myeloma Working Group (IMWG)
proposes low-dose whole-body CT as the primary diagnostic imaging modality for MM [6].
Radiography, MRI, and PET/CT can also help diagnose and evaluate treatment response
in MM [5,6]. Common imaging findings in MM include well-defined osteolysis without
periosteal reaction, expansile radiolucent lesions, endosteal scalloping, extramedullary
masses, diffuse osteopenia, and pathologic fractures [7]. Osteolytic bone metastases have
similar imaging findings. While establishing an accurate diagnosis is essential for proper
treatment, it is often challenging to differentiate MM and osteolytic bone metastases.

Our previous research, which attempted to differentiate MM and osteolytic metastases
on contrast-enhanced CT images, found that intratumoral and intertumoral homogeneity
were key image findings for MM [8]. Another study that performed histogram analysis of
diffusion-weighted MRI scans revealed that the apparent diffusion coefficient was more
narrowly distributed for MM than for metastases [9]. In addition, several studies using CT
and MR images confirmed the difference in homogeneity between MM and bone metastases.
Mutlu et al. revealed that osteolytic bone metastases showed more high-density areas and
more significant heterogeneity than MM [10].

Radiomics analysis allows objective evaluation of tumor heterogeneity and could
provide new information for the differentiation of tumors based on imaging [11–13]. A
recent MRI radiomics study by Xiong et al. reported that a machine-learning model devel-
oped from radiomics features of T1- and T2-weighted images successfully differentiated
MM and osteolytic bone metastases [14]. An investigation of 18F-FDG PET/CT images
found that the radiomics model successfully classified MM and bone metastases with
significantly improved diagnostic performance compared to both human experts and the
conventional PET parameter SUVmax [15]. However, a machine learning model using CT
radiomic features can be more beneficial for differentiating bone metastases and MM, as
many patients undergo thoracic, abdominal, and spinal CT more frequently than spinal
MRI because of easy access.

We hypothesized that a machine learning model using the input of radiomic features
from CT images could differentiate MM lesions and osteolytic bone metastases. Therefore,
the purpose of this study was to evaluate the diagnostic performance of a radiomics model
that differentiates MM lesions and osteolytic bone metastases using CT images.

2. Materials and Methods
2.1. Patients

The institutional review boards of Seoul St. Mary’s Hospital (institution 1) and Yeouido
St. Mary’s Hospital (institution 2), Seoul, Republic of Korea, approved this retrospective
study and waived the need for informed consent. All patients were enrolled from institu-
tions 1 and 2. Eligible individuals included consecutive adult patients (at least 17 years
old) histopathologically diagnosed with either MM or primary cancer. All patients had
undergone contrast-enhanced CT imaging of the chest, abdomen, and spine between 2014
and 2020 prior to cancer-related treatment. All patients had at least one osteolytic bone
tumor without an osteoblastic component. We excluded patients with concurrent MM and
another primary cancer, a history of spine surgery, pathologic fractures, or lesions too small
to be evaluated (maximum diameter less than 1 cm).

A radiologist (S.L., with 3 years of experience in musculoskeletal radiology) and a
one-year resident in training (Y.-J.H.) reviewed the medical records and CT images of the
included patients in unity. They selected up to three lesions per patient by consensus
according to the priority of lesion diameter. When a consensus could not be reached,
another radiologist (S.-Y.L., with 12 years of experience in musculoskeletal radiology) made
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the final decision for lesion selection. In the process of selecting target lesions, the reviewers
were blinded to the clinical information. Patients from institutions 1 and 2 were assigned to
the training set and external test set, respectively (Figure 1).
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2.2. CT Data Acquisition

Contrast-enhanced CT imaging was performed at the two institutions. Several scan-
ners were used at institution 1: a 128-row multidetector CT scanner (Somatom Definition
AS+, Siemens Healthineers, Erlangen, Germany) and 64-channel CT scanners (Somatom
Sensation 64, Siemens Healthineers; Discovery CT750 HD, GE Healthcare, Chicago, IL,
USA), along with iodine contrast media (Iobrix 300, Taejoon Pharm, Seoul, Republic
of Korea). A 256-channel CT scanner (Brilliance iCT, Philips Medical Systems, Eind-
hoven, The Netherlands) and iodine contrast media (Bonorex 350, Central Medical Service,
Seoul, Republic of Korea) were used at institution 2. The CT parameters were as follows:
100–120 kVp tube voltage, 100–200 mAs tube current under automatic modulation, and
3–5 mm section thickness. A filtered-back projection algorithm with B30, B31, or standard
kernels was used for reconstruction.

2.3. Volume of Interest (VOI) Segmentation and Radiomics Feature Extraction

The entire volume of interest (VOI) was manually segmented based on contrast-
enhanced CT images. Segmentation was performed using an open-source program (ITK-
SNAP software, version 3.8.0, http://www.itksnap.org, accessed on 1 December 2020)
(Figure 2) [16]. To correct the variability of voxel size, segmented VOIs were resampled to
isometric voxels of 1 mm × 1 mm × 1 mm [17]. The radiomics features of VOI segmen-
tation were extracted using the PyRadiomics package (https://github.com/Radiomics/
pyradiomics/, accessed on 10 June 2021) [18]. VOI segmentation was performed by one
trained technologist (K.-E.L., with 2 years of experience in medical imaging segmentation).
A radiologist (S.-Y.L.) supervised the segmentation.

2.4. Radiomics Feature Reduction and Selection

Before the machine learning model was developed, radiomics features were selected
in two steps to avoid dimensionality issues. First, we evaluated the reproducibility of VOI
segmentation [19]. One radiologist (S.K., with 1 year of experience in musculoskeletal
radiology) randomly selected 30 lesions from the study cohort, independently completed
VOI segmentation on the CT images, and extracted the radiomics features in the same

http://www.itksnap.org
https://github.com/Radiomics/pyradiomics/
https://github.com/Radiomics/pyradiomics/
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manner as described above. The inter-examiner agreement between 2 radiomics features
extracted from individual segments by the 2 examiners was evaluated using the intraclass
correlation coefficient (ICC) [20]. Radiomics features with ICC > 0.75 were selected for
model construction [21]. Second, redundant radiomics features were reduced by using a
binomial elastic net. The elastic net removed all features that correlated with each other [22].
The number of features to be selected was determined by tuning optimal α and λ values
using 10-fold cross-validation.
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Figure 2. Example of lesion segmentation on axial skeleton.

2.5. Radiomics Model Development

A random forest (RF) classifier algorithm was built using commercially available soft-
ware (mlr package, R statistical software version 3.5.2; R Foundation for Statistical Comput-
ing, Vienna, Austria; available at https://cran.r-project.org/bin/windows/base/old/3.5.2,
accessed on 10 June 2021). The generalization capacity of the model was evaluated by
10-fold cross-validation. The feature importance for all cross-validation experiments was
calculated based on the mean decrease in node impurities from the developed model as
measured by the Gini index. The RF models were developed in two ways: either class
imbalance correction was implemented using the SMOTE algorithm, or class imbalance
correction was not implemented. A random search was conducted using the default param-
eters of the randomForest package (R statistical software version 3.5.2) for hyperparameter
tuning: number of trees in the forest (=ntree): sequential number from 25 to 200 in incre-
ments of 25; the number of variables randomly sampled as candidates at each split (=mtry):
sequential number from 1 to 5 in increments of 1; weights used only in sampling data
to grow each tree: none; minimum size of terminal nodes (=nodesize): 1; the maximum
number of terminal nodes trees in the forest can have (=maxnodes): trees are grown to the
maximum possible; the importance of predictors not assessed.

https://cran.r-project.org/bin/windows/base/old/3.5.2
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2.6. External Validation of Constructed Radiomics Model

The constructed RF models were applied to the external test set. Three independent
radiologists reviewed the external test set to compare the diagnostic performance of the RF
model and the radiologists and evaluate the clinical usefulness. Two radiologists (S.-Y.L.
and S.K., with 12 years and 1 year of experience in musculoskeletal radiology, referred to
as R1 and R2, respectively) and a first-year resident in training (Y.-J.H, R3) reviewed CT
images using two steps. In the first step, to compare the diagnostic performance between
the RF model and the radiologists, they reviewed the CT images without assistance from the
model. The images were reviewed three months after patient recruitment and VOI selection
to avoid recall bias. All radiologists scored each lesion as MM or metastasis using a 5-point
scale (0, definite MM; 1, probable MM; 2, equivocal; 3, probable osteolytic metastasis;
4, definite osteolytic metastasis). In the second step, to evaluate clinical utility, the radi-
ologists reviewed CT images with the assistance of the RF model results. The RF model
used in the second step was the only model without case imbalance correction. CT images
were re-evaluated by the same radiologists two months after the first review to avoid recall
bias. All radiologists were given information about the diagnostic performance of the RF
model (sensitivity, specificity, accuracy, and AUC). The results of the RF model predicting
the likelihood of MM for each case were provided as a probability score. All radiologists
scored each lesion using the above-mentioned 5-point scale. They were blinded to clinical
information in both steps. The overall workflow of the radiomics model development and
validation is displayed in Figure 3.

Diagnostics 2023, 13, 755 5 of 11 
 

 

of 25; the number of variables randomly sampled as candidates at each split (=mtry): se-
quential number from 1 to 5 in increments of 1; weights used only in sampling data to 
grow each tree: none; minimum size of terminal nodes (=nodesize): 1; the maximum num-
ber of terminal nodes trees in the forest can have (=maxnodes): trees are grown to the 
maximum possible; the importance of predictors not assessed. 

2.6. External Validation of Constructed Radiomics Model 
The constructed RF models were applied to the external test set. Three independent 

radiologists reviewed the external test set to compare the diagnostic performance of the 
RF model and the radiologists and evaluate the clinical usefulness. Two radiologists (S.-
Y.L. and S.K., with 12 years and 1 year of experience in musculoskeletal radiology, re-
ferred to as R1 and R2, respectively) and a first-year resident in training (Y.-J.H, R3) re-
viewed CT images using two steps. In the first step, to compare the diagnostic perfor-
mance between the RF model and the radiologists, they reviewed the CT images without 
assistance from the model. The images were reviewed three months after patient recruit-
ment and VOI selection to avoid recall bias. All radiologists scored each lesion as MM or 
metastasis using a 5-point scale (0, definite MM; 1, probable MM; 2, equivocal; 3, probable 
osteolytic metastasis; 4, definite osteolytic metastasis). In the second step, to evaluate clin-
ical utility, the radiologists reviewed CT images with the assistance of the RF model re-
sults. The RF model used in the second step was the only model without case imbalance 
correction. CT images were re-evaluated by the same radiologists two months after the 
first review to avoid recall bias. All radiologists were given information about the diag-
nostic performance of the RF model (sensitivity, specificity, accuracy, and AUC). The re-
sults of the RF model predicting the likelihood of MM for each case were provided as a 
probability score. All radiologists scored each lesion using the above-mentioned 5-point 
scale. They were blinded to clinical information in both steps. The overall workflow of the 
radiomics model development and validation is displayed in Figure 3. 

 
Figure 3. Radiomics pipeline of this study. 

2.7. Statistical Analysis 
The metric for the RF model’s performance was the area under the curve (AUC) for 

the training and external test sets. Confidence intervals from 2000 bootstrapped samples 

Figure 3. Radiomics pipeline of this study.

2.7. Statistical Analysis

The metric for the RF model’s performance was the area under the curve (AUC) for the
training and external test sets. Confidence intervals from 2000 bootstrapped samples were
acquired for AUC. To calculate the sensitivity, specificity, and accuracy, a score of 0–2 points
was assigned as MM, and a score of 3–4 points was assigned as metastasis. The AUC of the
RF model was compared with the values of the three radiologists using DeLong’s test [23].
The sensitivity, specificity, and accuracy of the RF model, using a threshold calculated from
Youden’s index [24], and the radiologists were compared using McNemar’s test. The AUC
values of the first and second steps of the review were compared for each radiologist using
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DeLong’s test [23], while the sensitivity, specificity, and accuracy were compared using
McNemar’s test.

Model development and statistical analysis, as well as feature reduction, were per-
formed by an experienced statistician (J.L.) using commercially available software (MedCalc
Statistical Software version 19.2.1, MedCalc Software Ltd., Ostend, Belgium; or R statistical
software version 3.5.2).

3. Results
3.1. Patient Characteristics

A total of 175 patients (MM, n = 49) were included in the training set, while 50 patients
(MM, n = 15) were included in the external test set. In total, there were 425 lesions (MM,
n = 108) in the training set and 85 lesions (MM, n = 25) in the external test set. The most
common primary malignancy of patients with osteolytic metastases was lung cancer,
followed by breast cancer. Table 1 shows detailed patient demographics.

Table 1. Patient characteristics.

Training Set External Test Set

Characteristics MM Osteolytic Metastases MM Osteolytic Metastases

Number of patients 49 126 15 35

Number of lesions 108 317 25 60

Age
(mean ± SD; years) 60.7 ± 12.4 62.8 ± 13.1 74.8 ± 13.8 64.3 ± 11.4

Sex (M:F) 26:23 82:44 8:7 21:14

Primary origin
(numbers of patients) n/a

Breast cancer (15)
Cervical cancer (3)

Cholangiocarcinoma (4)
Colorectal cancer (5)

Endometrial cancer (1)
Gallbladder cancer (2)

Hepatocellular carcinoma (17)
Lung cancer (50)

Melanoma (1)
Neuroendocrine tumor (2)

Ovarian cancer (1)
Pancreatic cancer (1)
Prostate cancer (3)

Renal cell carcinoma (10)
Stomach cancer (5)
Thyroid cancer (3)

Undifferentiated spindle cell
sarcoma (1)

Urothelial cell carcinoma (1)

n/a

Breast cancer (4)
Colorectal cancer (1)

Endometrial cancer (1)
Gallbladder cancer (1)

Hepatocellular carcinoma (2)
Lung cancer (9)

MM, multiple myeloma.

3.2. Radiomics Feature Selection and Model Development

A total of 1218 radiomics features were extracted, 380 of which were excluded be-
cause they were not reproducible; thus, 838 features were finally selected. The elastic
net selected 71 radiomics features as input for RF model generation, with optimal pa-
rameters (λ = 0.01851 and α = 0.512). Table 2 shows the top 10 features according to
importance. The AUC values (with a 95% confidence interval) of the radiomics model were
0.807 (0.759–0.854) without case imbalance correction and 0.821 (0.775–0.868) with case
imbalance correction.

3.3. Diagnostic Performance of Radiomics Model on External Test Set

The AUC values of the radiomics models were 0.842 (0.752–0.932) and 0.762 (0.648–0.876)
with and without data imbalance correction, respectively (Table 3). Conversely, using a cut-
off of 0.24 for probability, the sensitivity, specificity, and accuracy values were 0.60 (0.39–0.79),
0.82 (0.75–0.94), and 0.75 (0.58–0.96), respectively. During the first step of the review, the
sensitivity, specificity, accuracy, and AUC values of radiologists varied according to ex-
perience. The specificity of the radiomics model was significantly superior to that of the
three radiologists (p ≤ 0.016). The sensitivity of the radiomics model was inferior to that of
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the three radiologists, although statistical significance was found for only one radiologist
(p = 0.022). The AUC of the radiomics model was not significantly different from that of
all radiologists (p ≥ 0.179) (Figure 4). During the second step of the review, the specificity
was significantly increased for two radiologists (p = 0.004 for R2, p = 0.001 for R3), and
the sensitivity was increased for all three radiologists but without statistical significance
(p ≥ 0.500) compared to the first step. The AUC values of the second step were significantly
superior to those of the first step for all three radiologists (p < 0.001) (Figure 5 and Table 4).

Table 2. Top 10 radiomics features in terms of importance for differentiation between MM and
osteolytic metastasis.

Radiomics Features Importance

wavelet.LLL_gldm_DependenceNonUniformityNormalized 5.643140

wavelet.HLL_firstorder_Maximum 4.512872

wavelet.LLL_gldm_DependenceVariance 4.321726

wavelet.LHL_gldm_LargeDependenceEmphasis 3.974077

original_glcm_SumEntropy 3.792728

wavelet.LHL_glszm_SmallAreaEmphasis 3.693439

wavelet.LLL_firstorder_10Percentile 3.663920

original_gldm_DependenceVariance 3.499032

wavelet.LHH_firstorder_Kurtosis 3.353556

original_glcm_Imc2 3.305649

Table 3. Diagnostic performance of radiomics model.

Diagnostic
Performance (AUC)

Radiomics Model without
Class Imbalance Correction

Radiomics Model with
Class Imbalance Correction

Training set 0.807 (0.759–0.854) 0.821 (0.775–0.868)

External test set 0.762 (0.648–0.876) 0.842 (0.752–0.932)
AUC, area under the receiver operating characteristic curve. Numbers within parentheses are 95% confidence
interval ranges.
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Table 4. Comparison of diagnostic performance of radiomics model and radiologists.

Diagnostic Performance Sensitivity Specificity Accuracy AUC

Radiomics model (A) † 60.0% (15/25) 81.7% (49/60) 75.3% (64/85) 0.762
(0.648–0.876)

First review (B)

R1 84.0% (21/25) 58.3% (35/60) 65.9% (56/85) 0.781
(0.681–0.881)

R2 92.0% (23/25) 38.3% (23/60) 54.1% (46/85) 0.778
(0.677–0.880)

R3 88.0% (22/25) 31.7% (19/60) 48.2% (41/85) 0.653
(0.545–0.762)

Second review (C)

R1 92.0% (23/25) 68.3% (41/60) 75.3% (64/85) 0.900
(0.815–0.954)

R2 96.0% (24/25) 53.3% (32/60) 65.9% (56/85) 0.876
(0.786–0.937)

R3 92.0% (23/25) 53.3% (32/60) 64.7% (55/85) 0.833
(0.736–0.905)

Comparison of
B and C (p-values)

R1 0.500 0.109 0.039 * <0.001 *

R2 1.000 0.004 * 0.002 * <0.001 *

R3 1.000 0.001 * 0.001 * <0.001 *
AUC, area under the receiver operating characteristic curve. Sensitivity, specificity, and accuracy were compared
using McNemar’s test. AUCs were compared using DeLong’s test. † Threshold probability was 0.24 and calculated
from Youden’s index. * p < 0.05.

4. Discussion

Radiomics analysis was shown to have the potential to differentiate MM and osteolytic
bone metastases on contrast-enhanced CT images. We found that the diagnostic perfor-
mance of a radiomics-based machine-learning model was as good as that of an experienced
radiologist. Furthermore, adding radiomics analysis increased the specificity for inexperi-
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enced radiologists. Finally, our study demonstrates that adding radiomics-based analysis
increased the diagnostic performance of all three participating radiologists. This may be
because metastases are more heterogeneous than MM on images. However, the radiologists’
accuracy in the current study was lower than that in the previous study (48.2–65.9% vs.
71.8–74.7%) for conventional CT readings [8]. The reason for the decreased accuracy in the
current study is that we lacked an evaluation of intertumoral homogeneity, as only single
lesions were assessed.

Radiomics is a quantitative analysis technique for medical imaging that has been
actively studied in recent years. Studies have been published on detecting and distin-
guishing bone lesions using CT-based radiomics analysis, and most of them are based on
tumors [25–27]. A CT–radiomics model that can distinguish bone metastases from normal
bone marrow was recently published [25]. They used automated lesion segmentation after
manually locating lesions to collect sufficient data. On the contrary, we manually segmented
lesions [26,27], which requires more time and effort but is more accurate. CT–radiomics
models that differentiate malignant and benign bone tumors, atypical cartilaginous tu-
mors, and chondrosarcomas were also developed recently [26,27]. This is the first study to
investigate the feasibility of a CT–radiomics machine learning model for differentiating
MM and metastases. A recent investigation of 18F-FDG PET/CT images reported two
classification models using CT and PET features as inputs. Similar to our study, the AUC
of a multivariate logistic regression model using radiomics features from CT images was
comparable to that of human experts (0.897 vs. 0.840, p = 0.229). Conversely, the AUC
values in our study were inferior to those in a study employing PET/CT, possibly because
we only included cases of osteolytic metastasis. In general, MM has no osteoblast activity,
so osteoblastic or bone metastasis with mixed density can be effectively distinguished
from MM.

Interestingly, the radiomics model and the three radiologists showed conflicting sen-
sitivity and specificity. Metastases can appear in various forms, and there are no specific
imaging findings. Since MM is associated with specific imaging findings, an osteolytic
lesion will be diagnosed as MM in the presence of these features. However, it is difficult
to exclude MM in cases without these specific findings. This is where a radiomics model
would be useful. With nonspecific osteolytic lesions, the finding of metastasis in the ra-
diomics model would allow a confident diagnosis. Though it likely cannot replace biopsy,
the presented radiomics model can help to differentiate MM and osteolytic bone metastases.

The training set included about twice as many metastatic lesions as MM. This data
imbalance probably resulted in a model biased toward one class. Models in which the
data imbalance was modified showed better diagnostic performance in both training and
external validation sets than unmodified models. However, artificially balanced data may
not represent the true population and could potentially eliminate useful information about
the data itself. It could also result in overfitting of the model.

Our study has a few limitations. There may have been selection bias because the study
data were collected retrospectively, and only the largest lesions were included for analysis.
The evaluation of radiomics features was conducted only with a single software program.
We only used an RF method without testing other classifiers. The data of this study partially
overlap those of our previous study [8]. Data for this study were collected retrospectively
from different CT scanners at different clinical institutions. CT parameters, including
radiation dose and reconstruction kernel, may affect radiomic features [28]. However, the
CT parameters in this study showed small differences between scanners because all images
were collected with widely used protocols. In addition, resampling to isometric voxels
corrected the variability related to section thickness [17].

The radiomics model showed equivalent diagnostic performance to that of radiologists.
The model can improve the work of inexperienced radiologists in differentiating MM on
CT scans in patients with osteolytic bone tumors. In conclusion, CT–radiomics analysis can
enable the differentiation of MM and bone metastases.
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