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Abstract: Basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma are the
three main types of nonmelanoma skin cancers and their rates of occurrence and mortality have been
steadily rising over the past few decades. For radiologists, it is still difficult to treat patients with
advanced nonmelanoma skin cancer. Nonmelanoma skin cancer patients would benefit greatly from
an improved diagnostic imaging-based risk stratification and staging method that takes into account
patient characteristics. The risk is especially elevated among those who previously received systemic
treatment or phototherapy. Systemic treatments, including biologic therapies and methotrexate
(MTX), are effective in managing immune-mediated diseases; however, they may increase suscep-
tibility to NMSC due to immunosuppression or other factors. Risk stratification and staging tools
are crucial in treatment planning and prognostic evaluation. PET/CT appears more sensitive and
superior to CT and MRI for nodal and distant metastasis as well as in surveillance after surgery. The
patient treatment response improved with advent and utilization of immunotherapy and different
immune-specific criteria are established to standardized evaluation criteria of clinical trials but none
of them have been utilized routinely with immunotherapy. The advent of immunotherapy has also
arisen new critical issues for radiologists, such as atypical response pattern, pseudo-progression, as
well as immune-related adverse events that require early identification to optimize and improve pa-
tient prognosis and management. It is important for radiologists to have knowledge of the radiologic
features site of the tumor, clinical stage, histological subtype, and any high-risk features to assess
immunotherapy treatment response and immune-related adverse events.

Keywords: dermatology; high-frequency ultrasound; MDT; skin cancer; radiotherapy; melanoma;
oncology; ultrasound; computed tomography; magnetic resonance imaging

1. Introduction

Cancer ranks as a major cause of mortality worldwide and consequently an important
barrier to growing life expectancy in every country [1]. Estimated data from the World
Health Organization (WHO) in 2019 represent cancer as the first or second major cause
of death in 112 out of 183 countries before the age of 70s [2]. Skin carcinomas, despite
prevention and early detection, are common malignant tumors globally and incidence rates
have been increasing in recent decades [3]. Skin carcinomas are differentiated into two types:
melanoma skin cancer (MSC) and nonmelanoma skin cancer (NMSC) [4]. The incidence
rate of nonmelanoma is 18–20 times higher compared to melanoma skin cancer [5].

The Global Cancer Statistics 2020 study by Sung et al. [1] reported that the prevalence
of nonmelanoma skin cancer (NMSC) continues to increase in past years and is responsible
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for over one million new cases and 64,000 mortalities every year in the world. The NMSC
includes basal cell cancers, squamous cell cancers, Merkel cell carcinomas, malignant
adnexal tumors, and other rarer skin neoplasms. However, basal cell cancers (BCC) and
squamous cell cancers (SCC) are the most prevalent types of carcinomas which account for
99% of all NMSCs [6].

These carcinomas originate from the skin epidermal cells and have common epidemi-
ological and carcinogenic features as well as have a worse prognosis. Besides having a
high incidence rate, most of the large cancer registries lack NMSC epidemiological data or
exclude NMSC from their records due to significant limitations in establishing the large
number of cases [6,7]. The risk factors associated with increased NMSC incident rate include
high ultraviolet (UV) or sunlight exposure [8], high outdoor activities, ozone depletion [9],
genetic mutation, and immune suppression, as well as correlated with other various factors
such as dose of UV radiation, age, skin phenotype, degree, and chronicity [10,11].

Genomic defects identified either in the germline or somatic mutation are predisposing
causes of developing nonmelanoma skin cancer [12]. Tumor size, depth, and thickness, as
well as anatomic involvement with lymphatic circulation, are predictive in risk stratification,
TNM staging, evaluation of prognosis, and recurrence rate of NMSC after treatment [12–14].

NMSC, locally invasive carcinomas, is growing slowly and ulcerates in body parts.
Early detection improves prognosis by having a range of treatment choices and thus reduces
morbidity and health costs and improves the quality of life. Although metastasis in NMSC
is rare, diagnosis at advanced stages with the involvement of other anatomical parts makes
management of NMSC difficult and worsens the prognosis [15].

High-risk NMSC may invade local anatomic structures, more, about 5% of squamous
cell carcinomas have a high risk of distant metastasis [16–19] and indicate optimal diagnos-
tic imaging, including computed tomography and magnetic resonance imaging. Low-risk
NMSCs at the earliest stage can be managed without diagnostic imaging [19].

Imaging is required when the risk of invasion is concerned. Imaging is an indispens-
able tool for the detection of nodal and distant disease and staging of aggressive neoplasms.
Thus, to avoid unnecessary invasive treatment, improving pre-surgical accuracy of lesion
characterization and management of patients with NMSC demands early diagnostic imag-
ing [20] and it is clear that diagnostic imaging has a pivotal role in management of disease.
Though, with the introduction of a multidisciplinary patient management approach, the
role of the radiologist is profoundly changed in patient-focused care and becomes part of
patient management [21–28].

Radiologists have a critical role in detection, screening, staging, and management
of cancer patients with a wide range of radiology modalities or tools, utilized for initial
screening, follow-up by staging, and surveillance of the extent of disease, moreover, in
selection of the cancer treatment regimen, pre-treatment planning consistent with the
tumor-node-metastasis (TNM) system in the oncology patient.

However, some critical issues concerning the radiologist’s role in nonmelanoma skin
cancer management should be analyzed. Firstly, the radiologist’s role in patient manage-
ment, presenting different phases of NMSC, based on staging, surveillance, or follow-up, as
well as assessment of treatment effectiveness and observation of treatment-related adverse
events or complications [29–33].

Secondly, the application of a different diagnostic tool should be used for detection and
risk assessment [34–40]. NMSCs assessment time depends on the patient risk and treatment
type employed. The aim of this review paper is a critical analysis of the radiologist’s role
in nonmelanoma skin cancer (NMSC) patients related to the different patient risk and
disease phases.

2. Diagnostic Imaging and Non-Melanoma Skin Cancer
Staging and Risk Stratification

Lesion characterization, differentiation, and risk stratification are required for future
clinical decision-making, surgical versus nonsurgical lesion management, and for prog-
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nostic evaluation, more, it is employed as a reporting tool in institutional, national, and
international cancer registries that aid in understanding NMSC epidemiology. The stag-
ing and risk stratification of NMSCs is based on their clinical-pathological features that
are defined by National Comprehensive Cancer Network (NCCN) guidelines (2014) to
differentiate low and high-risk carcinomas recurrence and metastasis [41–43].

NCCN guidelines are significant for basal cell carcinoma (BCC) risk stratification,
management, and prognostic information as it often requires staging due to less incidence
of metastasis [42,43]. However, squamous cell carcinomas are malignant and have the
potential for distant metastasis, so the American Joint Committee on Cancers (AJCC)
Cancer Staging Manual 8th edition published in 2017 revised the tumor, nodal, and metas-
tases (TNM) staging of SCC concerning high-risk clinicopathologic features [19,44–46].
A whole-body skin physical examination or care inspection is required to evaluate and
assess NMSC, suspicious lesions, satellites, regional lymph node (LN) in transit (ITM) and
systemic metastases.

Tumor margins and depth of invasion were evaluated based on diagnostic imaging,
but “T” category staging assessment relies on imaging assessment besides recent imaging
advancements in technology [47–50] (Figure 1).
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micro-vasculature 448 on Color Doppler control. 

Many NMSCs could be managed without additional information provided by imag-
ing and are not required in low-risk patients (pT1a). However, in pT1b to pT4b stages, 
additional information is necessary to optimize management, so ultrasound, computed 
tomography (CT) scan, positron emission tomography (PET) studies, as well as magnetic 
resonance imaging (MRI) are optional imaging modalities before operation or sentinel 

Figure 1. (A) A 73-year-old male patient. Right frontal diffuse infiltrative squamous cell carcinoma
444 two slightly hyperchromic hard and hypomobile areas to the underlying floors. (B–D) HF
Ultra-445 sound examination performed with a very high frequency probe (48 Mhz). (B) Right
upper frontal 446 site hypoechoic area of the hypodermis with blurred margins lower. (C) Non-
encapsulated of the 447 following dimensions: Dt 6.9 mm × DL2.4 mm. (D) The lesion shows
intralesional micro-vasculature 448 on Color Doppler control.

Many NMSCs could be managed without additional information provided by imag-
ing and are not required in low-risk patients (pT1a). However, in pT1b to pT4b stages,
additional information is necessary to optimize management, so ultrasound, computed
tomography (CT) scan, positron emission tomography (PET) studies, as well as magnetic
resonance imaging (MRI) are optional imaging modalities before operation or sentinel node
biopsy (SNB). In a very high-risk patient with other anatomic parts involvement, brain
MRI and PET-CT/CT are anticipated modalities [51,52].

3. Diagnostic Tools and Non-Melanoma: Staging and Surveillance

High-frequency US (HFUS) utilizing 20 to 100 MHz frequencies [53] could be a pow-
erful tool for an accurate evaluation of the tumoral margins, diameters, and thickness,
and provides information about deeper structures involvement as well as improves the
performance of loco-regional staging [51,54,55] (Figure 2).
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Figure 2. US examination performed with a very high frequency probe (48 Mhz) (A) Upper frontal
skin site with evident post-actinic scar already treated with previous radiotherapy. (B) Round hy-452
hypoechoic area of the hypodermis with non-encapsulated blurred margins (C) The lesion shows
in-453 intralesional micro-vasculature on Color Doppler control.

Accurate preoperative tumor assessment minimizes the extent of surgical defects
and improves the cosmetic prognosis of patients. A retrospective study by Zhu et al. [56]
analyzed HFUS features of actinic keratosis (AK), SCC in situ, and SCC and suggested that
HFUS has good diagnostic accuracy with 85.3–92.3% sensitivity and 73.6–88.0% specificity
based on diagnostic features.

The application of high-frequency US (HFUS) in nonmelanoma skin cancer facilitated
high diagnostic accuracy in NMSC phase staging [57–61]. However, biopsy and histopatho-
logical analysis are gold standards and compulsive for correct staging even if HFUS detects
nodular features to confirm the diagnosis [58,62]. As it lacks functional contrast and has
low image resolution and quality, in addition, HFUS is highly operator-dependent and
requires high expertise [59,63].

A comparative study by Crisan et al. [64] evaluated 18 BCC lesions depth index using
HFUS, correlated ultrasonographic index with histological index, they reported a strong
correlation between them. However, values obtained by using HFUS for tumor depth
are less than values obtained by histological analysis. Another retrospective study by
Wortsman [65] and his colleague reported the limited diagnostic ability of HFUS for the
detection of malignant lesions.

So, HFUS may not measure the appropriate tumor depth precisely identical to histolog-
ical examination and overestimating lesion depth or thickness as high probe compression
shallows the lesion, more, the inflammatory response near the lesion is indistinguishable
from tumor invasion by HFUS [64,66]. Moreover, HFUS demands high expertise with
good SCC, BCC, and actinic keratosis sonographic features knowledge to recognize the
normal structures as well as regional lymph nodes draining the skin [53]. In NMSC, lymph
node involvement is a poor prognostic factor and it is suggested that nodal metastasis (N)
mostly present in SCC and Merkel cell carcinomas are stronger predictors of prognosis than
features present in the primary tumor [67]. Although the sentinel node is the first lymph
node draining the tumor, the role of Sentinel lymph node biopsy and lymphatic imaging is
not clearas it is in melanoma [68].

A retrospective study by Foy et al. [69] including 33 patients with high-risk head and
neck nonmelanoma skin cancer patients suggested that SLNB is relevant in the management
of N0 high-risk NMSC of the head and neck and should be performed in certain cases
which are clinically suspicious or in patients with high-risk pathologic findings, such as
lymphatic invasion.

Early metastasis in the sentinel lymph node (SNL) demonstrates an elongated tumor
due to immune cell aggregation [70], with a low cross-sectional area, and remains unde-
tectable by current diagnostic tools. Such lesions could be evaluated indirectly by doppler
as the metastatic lesions have increased vascularity and show an enhanced vascular sig-
nal [54]. However, doppler ultrasound is not helpful in differentiation of benign lesions
from malignant ones. Ultrasound, in the detection and staging of NMSCs, is more sensitive
and specific than physical evaluation [71–74] and is considered superior in the detection
of lymph nodes metastasis during NMSC surveillance compared to other diagnostic tools
such as CT or PET/CT scan [75,76] (Figure 3).
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Figure 3. US examination. Submandibular metastatic lymph node of squamous cell carcinoma.
(A) The lymph node appears round in shape, without hilum differentiation. (B) Colorimetric en-
hancement on Color Doppler examination.

The diagnostic imaging follow-up, surveillance, and staging goal are usually corre-
lated to lesion detections, staging phase, treatment response, and relapse rate provided.
The values of all the above are well understood and evident, but all of them should be con-
sidered, concerning patient risk to ionizing radiations or imaging scan costs with different
imaging phases. Compared to ultrasound, imaging scan costs of CT, MRI, and PET/CT
are twofold, although no appropriate data on clinical outcomes exist to excuse higher cost
modalities over patient health; and MRI, CT, and PET/CT are widely utilized modalities
in patient management with metastatic disease for diagnostic and assessing treatment
response [77,78].

Ruiz et al. [79] suggested the increase in the 5-year cancer-free survival rate in 78%
patients who underwent imaging compared to 51% of patients who did not undergo
imaging and reported alter in treatment plan of 33% of high-risk SCC patients with T2b/T3
staging phase, underwent diagnostic imaging scan. Therefore, the study demonstrates
earlier detection, risk stratification, and treatment of advanced conditions, which have
positive outcomes in patient tumor management. CT (79%), PET/CT (21%), and MRI (19%)
were imaging modalities that were frequently used for diagnostic imaging.

In NMSCs, diagnostic imaging is performed in high-risk patients with suspicion of
bony or other soft invasions, such as suspicious perineural invasion, therefore, an MRI
(Figures 4–6) scan is performed to assess the lesion extension and depth in soft tissue;
and positron emission tomography (PET)/CT, 18F-fluorodeoxyglucose (FDG) is helpful
in assessing nodal and distant metastases [78,80]. CT examination is preferred only to
evaluate bone invasion due to its poor soft tissue contrast, which makes it difficult to
evaluate NMSCs lesions and demonstrate non-specific tissue density [81].
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Figure 4. A 65-year-old male patient MRI examination. Lesion interesting the cutaneous and
subcutaneous tissues without involving the bone tissue. (A) T1 weighted imaging and (B) T2
weighted imaging.
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Figure 6. MRI examination of the previous patient. (A) Enhanced MRI imaging: sagittal section. The
lesion shows high intensity reinforcement in the contrastographic study image. (B) Axial section
lymph node. Metastatic lymph node with high intensity reinforcement in the contrastographic
study image.

Compared to CT scans, MRI provides good soft tissue contrast and is a good helping
tool for examination or evaluation of configuration, intra-tumoral homogeneity, signal
intensity, cyst formation, and haemorrhage [82]. The study by Rajesh et al. [83] demon-
strated significantly shorter survival among patients with clinically suspected perineural
invasion with squamous cell carcinoma and basal cell carcinomas, with imaging evidence
of perineural spread.

Flat elevated lesions, multiple skin lesions, superficial depressions, and pedunculated
configuration in SCC, MCC, and adnexal tumous, such as porocarcinoma, are observed in
MRI [84,85]. BCCs and SCCs represent heterogeneously hyperintense signal intensity on
the T2-weighted (T2W) scan, whereas hypointense signal intensity onT1-weighted (T1W)
compared with muscles after the contrast agent injection in the MRI scan [86] (Figure 7).
However, MCCs show homogeneous lesions with slight hyperintense signal intensity on
the T1-weighted (T1W) scan and hyperintense signal intensity on T2-weighted images
compared to muscles after administration of gadolinium contrast agent. Whereas larger
lesions resulting in necrosis appear as a heterogeneous enhancement [87].
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imaging. (B) T2 weighted imaging fat sat. (C) Enhanced MRI imaging. The lesion shows high
intensity reinforcement in the contrast-enhanced study image (C) and bone involvement.

When carcinoma invades muscles and critical body structures, cross-sectional MRI
imaging has a critical role in estimating the extent of disease margins and depth as well as
provides quite accurate clinical information that is helpful regarding type and extent of
surgery required [88,89]. MRI is good but expensive compared to other tools and takes a
longer scan time. In addition, there are only a few research studies that demonstrated MRI
features of SCC, BCC, and MCC [86,87], lack significant data to demonstrate MRI features
of skin carcinomas that limit the use of MRI in this clinical setting and is challenging for
radiologists in patient management with NMSCs.

PET (FDG) adjunct with CT provides functional and structural information and proves
to be a helpful tool in evaluating nodal and distant metastases and unmasking occult
recurrences or micro-metastasis [90]. NMSCs have a high metabolic rate and show high
FDG uptake on PET/CT scan, with an average standardized uptake value (SUV) (7.6) in
advanced stages.

PET/CT scan is advised clinically in patients with NMSC to diagnose distant metasta-
sis, has high sensitivity in assessing the primary and recurrent squamous cell carcinomas
with nodal disease, and plays a critical role in lesion management in about 22–28% of
cases [91,92]. BCCs have low metastasis potential, so PET/CT is not recommended for
BCCs. The maximum standardized uptake value (SUV) of recurrence SCC (6.4) is less than
primary SCC without recurrence (13.0) [80], whereas SUV for MCCs ranges from about
4 to 6.5 [85]. A systematic review by Schröer-Günther et al. [93] including 1155 patients
reported PET and PET/CT sensitivity and specificity ranging from 68 to 87% and 92 to
98%, respectively, in patients with stage III and IV malignant melanoma. However, such
systematic review data are lacking for nonmelanoma skin cancer in high-risk patients to
demonstrate PET and PET/CT diagnostic accuracy, sensitivity, and specificity. However,
the sensitivity of FDG-PET is based on the size of the tumoral lesion, its anatomical location,
and rate of FDG standardized uptake value. In short, PET/CT is superior to MRI and CT
in evaluation of nodal metastasis, regional nodes, and distant metastasis but is limited in
low-risk carcinomas and early stages of carcinomas (Figure 8).
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4. Follow-Up and Surveillance: Time

At present, in patients after treatment with nonmelanoma skin cancer, 6- to 12-month
intervals of clinical follow-up are recommended according to NCCN guidelines for de-
tecting recurrent carcinoma and new lesions [94]. However, there is no clear evidence of
time and diagnostic tool application in the follow-up. The surveillance proposal differs
regarding risk assessment of patients after treatment as it does during the first 3 years, every
3 months visit, and 6–12 months in thereafter [95] because the probability of recurrence for
SCC is 95% within 5 years, with 70% of recurrence within the first 2 years. In addition, the
recurrences rate for BCC is greater than 5 years and requires a long-term follow-up [96]. A
meta-analysis by McCusker et al. [97] including 100 patients with metastatic BCC reported
an average 54-month survival period, which greatly varies among patients with regional
metastasis (87 months) and distant metastasis with a 24-month survival period.

Routine imaging surveillance is not recommended in lower-risk patients with small-
sized (thin) lesions. However, in high-risk patients, diagnostic imaging such as ultrasound,
CT, or PET/CT scan is performed for early detection of recurrence and metastasis to
improve the prognosis and patient survival rate [51,52]. Patients with aggressive head and
neck squamous cell carcinomas required close follow-up for early evaluation of recurrent
disease [98]. Postoperatively scarring, fibrosis, and altered local anatomy make it difficult
to detect recurrences in CT and MRI. Thus, PET/CT facilitates and remains useful in the
early detection of recurrent head and neck lesions, local skin recurrence, and distant spread
after surgery [99,100]. Shintani et al. [101] studied the utility of early after surgical resection
and demonstrated that nodes detected in PET/CT were histologically proven positive in
46% and early scans after surgery changes the treatment plan and management in 15% of
patients. However, the efficiency of PET/CT is altered by tumor histology [16].

5. Treatment Assessment of NMSCs in Immunotherapy

Currently, a multidisciplinary approach is applied for the treatment and management
of NMSC, including surgical excision, photodynamic therapy, chemotherapy, and radio-
therapy [102]. BCC and SCC are frequently treated with curative surgery and radiotherapy
and usually appear as localized tumors but MCC is a rare aggressive NMSC, present with
nodal and distant metastasis at advanced stage [102,103].

The treatment of NMSCs is planned according to the patient’s stage of disease, but
a patient with advanced stage disease has a relatively poor prognosis. Furthermore,
patients with locally advanced lesions are not eligible for surgery or radiotherapy, which
highlights the need for new treatment technologies. Different clinical trials demonstrate
immunotherapy and targeted therapy as promising treatments for patients with locally
advanced unresectable NMSCs [104–110].
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The goal of immunotherapy in oncology patients is stimulation of the immune system
involving complex multiple processes, including the utilization of immune checkpoint
blockades (ICB), that permit stronger immune responses and these inhibitors activate the
body’s own T-cells to attack carcinomas [111]. Consequently, a number of immune cells
infiltrate at the tumor sites followed by tumor size reductions, causing an atypical response
pattern in imaging studies, termed pseudo-progression in which an increase in lesion size
or new tumor growth is observed [112,113].

Pseudo-progression is an atypical immune response observed in 10% of oncology
patients receiving immunotherapy [114–117] and is challenging for radiologists to accu-
rately detect due to the lack of biomarkers to differentiate the pseudo-progression and
hyper-progression [112]. Hyper-progression, opposite to pseudo-progression, means tu-
mor burden or growth is increased 2-fold after immunotherapy and occurs in severe true
progression of lesion burdens [112] (Figures 9–12; Table 1).
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Figure 9. A 78-year-old male patient in treatment with immunotherapy, enhanced CT imaging
(128 slices) performed in July 2021. Pre contrast phase CT (A), Arterial phase (B), Portal phase (C),
Tardive phase (D). In the portal phase (C), vague hypodense areas not visible in the other phases
of the study, fifth hepatic segment. These areas were suspected of liver metastases from squamous
cell carcinoma.

Diagnostics 2023, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 10. MRI examination of the previous patient performed in August 2021—T2 weighted imag-
ing. Axial section (A), Coronal section (B). Hypointense areas in the fifth hepatic segment. 

 
Figure 11. MRI examination of the previous patient performed in August 2021. DWI (A), ADC (B), 
enhanced MRI imaging (C). The lesions show high signal in DWI, low signal in ADC, and intensity 
reinforcement in the contrast-enhanced study image. Suspicious areas are confirmed as metastatic 
lesions. 

 
Figure 12. Enhanced CT imaging (128 slices) of the previous patient performed in March 2022. Non 
enhanced CT (A), Arterial phase (B), Portal phase (C), Tardive phase (D). The metastatic lesions 
were no longer present, pseudo progression. 

  

Figure 10. MRI examination of the previous patient performed in August 2021—T2 weighted imaging.
Axial section (A), Coronal section (B). Hypointense areas in the fifth hepatic segment.
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Figure 11. MRI examination of the previous patient performed in August 2021. DWI (A), ADC (B), enhanced
MRI imaging (C). The lesions show high signal in DWI, low signal in ADC, and intensity reinforcement in the
contrast-enhanced study image. Suspicious areas are confirmed as metastatic lesions.
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Figure 12. Enhanced CT imaging (128 slices) of the previous patient performed in March 2022. Non
enhanced CT (A), Arterial phase (B), Portal phase (C), Tardive phase (D). The metastatic lesions were
no longer present, pseudo progression.

The treatment response criteria used to assess the chemotherapy effectiveness in over-
all reduction of tumor burden, lesion size, appearance of new lesions as disease progression
are included in World Health Organization (WHO) criteria [118–121] and Response Evalua-
tion Criteria in Solid Tumors (RECIST) [122,123]. However, it is notable that these treatment
response criteria guidelines have limitations in patients treated with immunotherapy, as
RECIST does not explain a treatment failure due to hyper-progression [121]. Consequently,
RECIST criteria have been modified with specific immune-related response criteria (irRC)
established, including immune-modified RECIST (imRECIST), to evaluate immunotherapy
treatment response [124,125].
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Table 1. Characteristics of pseudo progression and hyper progression.

Characteristics of Pseudo Progression and Hyper Progression
Pseudo progression Hyper-progression

Pseudo progression is an initial progression in
which the tumor burden or the number of
tumor lesions increase initially and then
decreases over time.

Hyperprogression is a tumor response in
which the existing underlying tumor grows
rapidly after initiating treatment with an
immune checkpoint inhibitor.

Pseudo progression is not true tumour
progression, which has been proven by
histopathological biopsies that found
infiltration and recruitment of various immune
cells, such as T or B lymphocytes, in the tumor.

Tumor samples of people who experienced
hyperprogression were found to have a greater
number of tumor-associated macrophages
(macrophages are cells that are part of the
immune system that are present in the area
surrounding tumors or
“tumor microenvironment”).

The occurrence of pseudoprogression has led
to the development of immune-related
response-evaluation criteria. In this
phenomenon, patients treated with
immunotherapy experience an initial increase
in tumor burden through enlargement of target
lesions and/or development of new lesions,
followed by a subsequent decrease in the
tumor burden qualifying as a partial or
complete response.

Hyper progression involves not only the more
rapid growth of a tumor but a lower survival
rate. In patients developing hyperprogression,
immunotherapy treatment should be stopped
and the patient should be
managed appropriately.

Specific immune-related response criteria (irRC) based on the WHO immune-specific
criteria, featuring the possibility to continue the treatment after first radiologic progression
documented with 5 mm least lesion size and need confirmatory imaging at least four weeks
after progression evidence, furthermore, new tumor appearance is incorporated into the
sum of total tumor burden and is not taken as disease progression [123,125]. However,
increased estimation inconsistency occurs due to bi-dimensional assessment of target
lesions in regards to unidimensional assessment of RECIST, and is the main limitation
of these new criteria, as well these criteria could render difficulties in comparison in the
majority of immunotherapy trials utilizing RECIST, and in progress at that time [124].

Therefore, immune-related RECIST (irRECIST), with a new feature as an increase of
20% in the total measurable tumor burden from nadir with a minimum of 5 mm and new
lesion appearance, has been started as an immune-related Progression Disease (irPD) [126].
As per irRC and irPD criteria, disease progression (DP) is suggested after 4 weeks after
imaging of the first evident progression, demonstrating new unequivocal progression (UEP)
compared to prior assessment or another new lesion appearance [126].

A consensus guideline was promoted by the RECIST working group along with im-
munotherapy subcommittees to standardize data reading between different trials assessing
immunotherapy and established a modification of RECIST1.1 (2009), immune RECIST (iRE-
CIST) [123]. The iRECIST is the standard guideline criteria for immunotherapy trials includ-
ing immune complete response (iCR), immune-stable Disease (iSD), immune-progression
rate (iPR), and unconfirmed progression disease (iUPD) or confirmed progression dis-
ease (iCPD). The main advantages iRECIST provide are unconfirmed progression disease
should be confirmed with a repeated imaging assessment for least 4–8 weeks from uncon-
firmed progression disease several times until confirmed progression disease by follow up
scan [123]. With regard to new lesions that were detected and stated as iUPD, if the patient
is stable, asymptomatic, and continues on immunotherapy. Later on, iUPD follow-up, if
another new lesion is detected, targeted or non-targeted lesion size increase than 5 mm, the
patient will be categorized in iCPD [124] (Table 2).
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Table 2. Table of definitions.

Table of Definitions

iCR Immune control response is the disappearance of all
lesions, measured or unmeasured, and no new lesions.

iSD Immune stable disease is referred as cancer that is
neither decreasing nor increasing in extent or severity.

iPr unconfirmed progression disease

iUPD increase of non-target lesions or appearance of new
lesion called iUPD

iCPD
Development of another new lesion, increased size of
the target or non-target lesions, and/or unequivocal
progression of existing non-target lesions.

FDG PET/CT is often performed at baseline to evaluate overall tumor burden after
2–3 cycles in an immunotherapy response assessment [111], based on the change in size and
FDG uptake (SUV), we could evaluate immunotherapy treatment response and residual
metabolic activity. Mostly, immune-related criteria lack prospective justification as they are
based on small cohorts. Although, the above immune-related criteria (ir) are standardized
but useful only for evaluation between clinical trials with immunotherapy, and are not
utilized or applicable in a routine treatment response assessment. Thus, risk stratification
based on immunotherapy response requires future studies to validate treatment response
assessment criteria [127].

6. Imaging of Immune—Related Adverse Events

Although immunotherapy improved NMSCs management outcomes, however, such
treatments have also initiated an immune related adverse event (Table 3), by reactivating the
immune system and development of toxicities profiles, involving different organ systems
from head to toe [128,129], but the skin–lung gastrointestinal tract are more prone to
these events.

Table 3. Immune-related adverse events—irAEs.

irAEs
Favourable Neutral Unfavourable

Developing an irAE Pruritus High grade irAEs
Certain irAEs: skin(vitiligo),

endocrine, hepatic, gut
hypophysitis, and colitis

Taking short term steroids
for irAEs

Pre-existing autoimmune
disease, i.e., earlier and high

prevalence of irAEs

Pre-existing psoriasis
Radiotherapy after treatment

Steroid use for cancer
related symptoms

Steroid-sparing therapy Mucosal melanoma
Combined with radiotherapy Low PD L1 expression

Common Terminology Criteria for Adverse Events (CTCAE v5.0) are utilized to
categorized ir-AEs as well as permits to compare toxicities in clinical trials related to
immunotherapy [130]. A systematic review by Arnaud-Coffin et al. [131] reported the
ir-AEs developed in patients treated with anti-PD-(L)1 inhibitors, anti-CTLA-4 inhibitors,
combination immune checkpoints inhibition at a rate of 74%, 89%, and 90%, respectively.
Different organs are prone to different types of immunotherapies, such as patients treated
with anti–PD-1/PDL-1 therapy who may have pneumonitis and thyroid disorders, whereas
patients treated with anti-CTLA-4 antibodies may have hypophysitis and colitis as ir-
AEs [132]. Such adverse events could be detected prior to onset of symptoms by diagnostic
imaging and early detection permits optimal management [133]. Therefore, radiologists
must be aware of radiological features of such adverse events to evidence properly. X-ray
may be a baseline tool for evaluation of these ir-AEs but theCT scan is more sensitive in
detection of these events and differentiating different subtypes [134].
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The ir-AEs knowledge is still in the embryonic stage and in the clinical setting, the
process of ir-AEs is considered due to induction of autoimmune [135] and thus increasing
the demand of radiologists to have background information related to imaging features of
ir-AEs for appropriate management of patients within a multidisciplinary approach [136].

Future research studies are required to increase knowledge related to ir-AEs in health-
care professionals, including radiologists, in addition to understanding specific toxicities
during immunotherapy, molecular mechanisms of ir-AEs, recognizing risk factors to im-
prove safety profiles, developing an appropriate diagnostic tool, and defining optimal
management and monitoring strategies for specific types of irAEs.

7. Conclusions

The management of patients with nonmelanoma skin cancer in an advanced stage
of disease remains challenging for radiologists. It is important to develop optimized risk
stratification and a staging tool with diagnostic imaging for nonmelanoma skin cancer
patients in relation to the type of patient, and enhanced knowledge. The patient treatment
response improved with utilization of immunotherapy, however, new critical issues have
arisen for radiologists, such as the atypical response pattern, pseudo-progression, as well
as immune-related adverse events that require early identification for optimized and
improved patient prognosis and management.
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Abbreviations

AJCC American Joint Committee on Cancers
AK actinic keratosis
BCC Basal cell carcinoma
CPD confirmed progression disease
iCR immune complete response
CTCAE Common Terminology Criteria for Adverse Events
DP disease progression
HFUS High-frequency US
ICB immune checkpoint blockades
irAEs immune-related adverse events
ITM in transit
LN lymph node
MCC Merkel cell carcinomas
MSC melanoma skin cancer
NCCN National Comprehensive Cancer Network
NMSC Non-melanoma skin cancer
PR progression rate
RC response criteria
RECIST Response Evaluation Criteria in Solid Tumours
SCC squamous cell cancers
SD stable disease
SLNB sentinel lymph node biopsy
SNB sentinel node biopsy
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SNL sentinel lymph node
SUV standardized uptake value
TNM tumour-node-metastasis
UEP unequivocal progression
UPD unconfirmed progression disease

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. World Health Organization. Global Health Estimates: Leading Causes of Death. Available online: https://www.who.int/data/
gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 15 January 2023).

3. Urban, K.; Mehrmal, S.; Uppal, P.; Giesey, R.L.; Delost, G.R. The global burden of skin cancer: A longitudinal analysis from the
Global Burden of Disease Study, 1990–2017. JAAD Int. 2021, 2, 98–108. [CrossRef] [PubMed]

4. Khazaei, Z.; Ghorat, F.; Jarrahi, A.; Adineh, H.; Sohrabivafa, M.; Goodarzi, E.J.W.C.R.J. Global incidence and mortality of skin
cancer by histological subtype and its relationship with the human development index (HDI); an ecology study in 2018. World
Cancer Res. J. 2019, 6, e13.

5. Eide, M.J.; Krajenta, R.; Johnson, D.; Long, J.J.; Jacobsen, G.; Asgari, M.M.; Lim, H.W.; Johnson, C.C. Identification of Patients
with Nonmelanoma Skin Cancer Using Health Maintenance Organization Claims Data. Am. J. Epidemiol. 2010, 171, 123–128.
[CrossRef]

6. Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Tendencias epidemiológicas en cáncer de piel. Dermatol. Pract.
Concept. 2017, 7, 1–6.
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50. Soyer Güldoğan, E.; Ergun, O.; Taşkın Türkmenoğlu, T.; Yılmaz, K.B.; Akdağ, T.; Özbal Güneş, S.; Durmaz, H.A.; Hekimoğlu,
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