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Abstract: Hyperinsulinemia is a condition characterized by excessively high levels of insulin in the
bloodstream. It can exist for many years without any symptomatology. The research presented in this
paper was conducted from 2019 to 2022 in cooperation with a health center in Serbia as a large cross-
sectional observational study of adolescents of both genders using datasets collected from the field.
Previously used analytical approaches of integrated and relevant clinical, hematological, biochemical,
and other variables could not identify potential risk factors for developing hyperinsulinemia. This
paper aims to present several different models using machine learning (ML) algorithms such as naive
Bayes, decision tree, and random forest and compare them with a new methodology constructed
based on artificial neural networks using Taguchi’s orthogonal vector plans (ANN-L), a special
extraction of Latin squares. Furthermore, the experimental part of this study showed that ANN-L
models achieved an accuracy of 99.5% with less than seven iterations performed. Furthermore, the
study provides valuable insights into the share of each risk factor contributing to the occurrence
of hyperinsulinemia in adolescents, which is crucial for more precise and straightforward medical
diagnoses. Preventing the risk of hyperinsulinemia in this age group is crucial for the well-being of
the adolescents and society as a whole.

Keywords: hyperinsulinemia; ANN + orthogonal vector plans; ML algorithms

1. Introduction

The development and influence of risk factors in children and adolescents can have
far-reaching consequences, potentially leading to the manifestation of various chronic
non-communicable diseases in later life. In the initial stage of insulin resistance and hy-
perinsulinemia, there may be few obvious symptoms, and these symptoms may not be
immediately apparent. These symptoms, such as fatigue, hunger, a decrease in concentra-
tion, and nervousness, can only become evident when glucose levels in the blood begin
to increase. Over time, the progression of these conditions may result in an increase in
body weight, hypertension, hyperlipidemia, the development of macrovascular diseases
and neuropathies, and other serious chronic health issues [1–3]. Typical blood glucose
values are from 3.8 to 5.5 mmol/L, and insulin from 2.6 to 24.9 µU/mL [4–6] In the case
of insulin values at 0 min being greater than 15 µU/mL and insulin values after an oral
glucose tolerance test (OGTT) being greater than 75 µU/mL at 120 min, the value of total
insulin is more significant than 300 µU/mL, and hyperinsulinemia is diagnosed [7]. The
growing prevalence of hyperinsulinemia in adolescents is a severe and global problem
of modern times. Adolescence is a period of complete somatic, sexual, psychosocial, and
emotional growth, which takes place from the end of childhood to adulthood [3,6]. During
this period, changes in the field of insulin sensitivity can also be noted. Although the
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mentioned aspects are considered physiological, the influence of certain factors such as
genetic predisposition, obesity, insufficient physical activity, environmental factors, inade-
quate nutrition, stress, and insulinemia values can be pathophysiological [8,9]. Insufficient
verification of known factors despite possessing adequate knowledge thereof may give
rise to potential risk factors associated with the pathophysiological condition under consid-
eration. Particular importance should be given to the early identification of adolescents
at risk of developing hyperinsulinemia [10]. An OGTT with insulinemia is a significant
indicator of glucose metabolism disorders, that is, the ability to regulate blood sugar levels
and insulinemia values of >15 µU/mL after and/or during the 120 min. Additionally, an
OGTT value of >75 µU/mL is considered the threshold for diagnosing the presence of
hyperinsulinemia [11].

In order to enhance efficiency, accuracy, and facilitate early prediction for swift and
accurate medical diagnosis, it is imperative to seek support from artificial intelligence (AI)
tools. The utilization of machine learning (ML) algorithms in this digital age is crucial
for making data-driven predictions. By leveraging a diverse range of AI tools and ML
algorithms, the risk factors causing hyperinsulinemia in adolescents can be rapidly and
effectively detected. However, the traditional statistical approach to risk assessment is often
laborious, as it not only requires a significant amount of time for the various necessary
analyses, but also entails a lengthy process to analyze all the required parameters.

This study, therefore, attempts to contribute to the knowledge base by being the first
that compares the most popular and commonly used ML algorithms with a proposed new
methodology that will use ANN architectures constructed based on Taguchi’s orthogonal
vector plans. Moreover, this paper has two main research goals. The first research goal of
this paper is to examine the presented models using various machine learning algorithms
and artificial neural network architectures based on different Taguchi’s orthogonal vector
plans. Furthermore, we want to determine the most accurate approach to assess the risk
of hyperinsulinemia in adolescents. The second research goal of this paper is to identify
the most significant factors that contribute to the development of hyperinsulinemia in
adolescents. This will involve analyzing the data to determine which variables have the
greatest impact on the risk of hyperinsulinemia in this population.

The rest of the paper is organized as follows: Section 2 gives an overview of the
current research for improving medical diagnostics and of different health-care predictions
using statistical methodologies and ML algorithms. Section 3 describes the new model
ANN-L for hyperinsulinemia diagnostics through the main steps of the robust design of
the experiment, compared with most commonly used ML algorithms. Section 4 presents
obtained results. Section 5 discusses the results. The concluding remarks are given in the
Section 6.

2. Related Work

In this section, we want to discuss relevant, newly published studies that relate to our
research. Moreover, we want to point out the ideas and goals of the authors, tackling the
problem meant to be solved using medical data.

2.1. Naïve Bayes

The effectiveness of medical diagnosis heavily relies on the accuracy of data analysis
and prediction. Previous research [12] has demonstrated that the naive Bayes algorithm is
capable of delivering outstanding results, particularly when rule extraction is performed
using the Pima diabetes dataset as input. The findings indicated that naive Bayes outper-
formed other machine learning (ML) algorithms in terms of accuracy. The results of the
simulations in the study in [13] presented the effectiveness of the classification techniques
in medical diagnostics such as naive Bayes and random forest. The authors in [14] proposed
a strategy called feature correlated naive Bayes (FCNB) to detect positive cases at an early
stage for COVID-19 treatment. Another study [15] stated that it is possible to predict intra
uterine growth restriction during pregnancy with an accuracy of 84% using the naive Bayes
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classifier. In [16], based on the analysis of the 25 pieces of testing data from 105 pieces of
training data, the researchers obtained a 96% accuracy of the naive Bayes classifier.

2.2. Decision Tree

The authors in reference [17] presented a cutting-edge prediction model that lever-
ages the synthetic minority oversampling technique, genetic algorithm, and decision tree
(PMSGD) to classify diabetes mellitus in the Pima Indians Diabetes Database (PIDD) dataset.
Another study [18], utilizing fuzzy logic and decision tree algorithms, achieved an accuracy
rate of 88% in diagnosing heart disease. The research conducted in [19] presented two
models, a Probabilistic neural network based on the dynamic decay adjustment and a
random forest decision tree to predict a diagnosis using patients’ natural verbal complaints
as user-generated data. In [20], the authors showed the results obtained by individual
classification algorithms such as decision tree, random forest tree, and extra tree with an
accuracy of 98%, 99%, and 93%, respectively.

2.3. Random Forest

The problem of imbalanced data in the medical field always exists. The study in [21]
presented a misclassification synthetic minority over-sampling technique using a random
forest for data resampling. It is often the case that random forest (RF) is frequently used in
medical imagining and the timely detection of the risk factors that cause cancer or different
abnormalities [22]. Moreover, RF is also used in the creation of AI smart monitoring
systems, as shown in [23,24]. On the other hand, some studies have presented the results of
using RF classifiers for predicting specific contagious and non-contagious diseases [25,26].

2.4. Artificial Neural Networks

One of the main objectives in study [27] was to propose an automated medical deci-
sion support system using the implementation of a convolutional neural network (CNN),
or EfficientNet and 10-fold stratified cross-validation. Another study, [28], presented a
heterogeneous modified artificial neural network (HMANN) for the early detection, seg-
mentation, and diagnosis of chronic renal failure on the Internet of Medical Things (IoMT)
platform. In the study presented in [29], the authors utilized multi-layer perceptron neural
networks (MLP) and convolutional neural networks (CNN) to detect early signs of breast
cell malignancies. Meanwhile, the authors in [30] conducted a comprehensive review of
commonly employed CNNs in medical imaging processing, including AlexNet, GoogleNet,
ResNet, R-CNN, and FCNN.

To the best of the authors’ knowledge, there are no similar studies using ANN architec-
tures based on Taguchi’s orthogonal vector plans to predict a hyperinsulinemia diagnosis.
Moreover, there are no research studies achieving better accuracy than the one obtained in
this study.

3. Methodology

In order to achieve the main research goals, in this section, we will describe the
following ML algorithms: naive Bayes, decision tree, random forest, and new models using
different ANN architectures constructed according to Taguchi’s orthogonal vector plans.

3.1. Naïve Bayes

One of the probabilistic machine learning models that are used for classification tasks is
called naive Bayes classifier. It is considered a simple but powerful algorithm for predictive
modeling. The naive Bayes (NB) algorithm is based on Bayes’ theorem which provides a
way to calculate the probability of a hypothesis given to our prior knowledge [31,32]. In
this case, the training phase is fast because we only need the probability of every class and
the probability of every class given different input (x) values to be calculated. It does not
require coefficients that need to be fitted by optimization procedures. With a given NB
model, it is possible to make predictions for new datasets using the Bayes theorem. The
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naive Bayes machine learning algorithm aims to identify the hypothesis with the maximum
posterior probability (MAP) [33]. To represent this, the following formula is given (1):

P(X|Y = c) =
1√

2πσ2
c
·e
−(x−µc)2

2πσ2
c (1)

It is possible to use the equation above to make predictions with real valued inputs.
Calculating the error in this approach can be considered as the lowest possible test error
rate in classification which is produced by any of the Bayes classifiers. Since, naive Bayes
does not have any hyperparameters to tune, in the presented study, based on probability
results, this classifier predicts the probability or share of each risk factor and total risk that
leads to the development of hyperinsulinemia in adolescent age

3.2. Decision Tree

A decision tree is a type of supervised ML algorithm that can deal with both classi-
fication and regression problems, and is considered as the easiest algorithm to interpret
and understand. The purpose of using decision trees is to create a training model that
can be used to predict the class or value of a target variable by learning simple decision
rules derived from previous (training) data [34,35]. Decision trees start at the tree’s root to
predict class labels for records. Compare the value of the root attribute with the attributes
of the record. Based on the comparison, follow the branch matching that value and jump
to the next node. A decision tree algorithm uses a data structure called a tree to predict
the outcome of a given problem. The decision tree model follows a supervised learning
approach where a pre-processed dataset is utilized to train the algorithm. The tree structure
is built with a top-down strategy, starting from the root node at the top and branching out
to the tree leaves that represent the outcomes. The construction of the tree is accomplished
through the use of a heuristic method known as recursive partitioning, which involves
dividing the problem into smaller sub-problems until a satisfactory solution is found. The
nodes that come after the root node are divided into many nodes [36]. The main concept
is to divide the data space into dense and sparse regions using a decision tree. A binary
tree can be split in two ways: binary or multi way. As long as the data is not sufficiently
homogeneous, the method splits the tree repeatedly. A decision tree that can be utilized to
generate the best-categorized predictions is returned at the conclusion of training. In this
study, the parameters that will be used are:

1. max_depth: setting up the maximum depth in trees;
2. min_samples_split: minimum samples a node must contain to be available for a split;
3. min_samples_leaf: this controls the number of examples a terminal leaf node can have;
4. max_features: the number of features to consider when looking for the best split;
5. min_impurity_decrease: for controlling the amount of impurity, i.e., to define which

splits are available.

3.3. Random Forest

One of the most widely used algorithms, from the supervised machine learning cate-
gory, is definitely random forest. It consists of many decision trees, creating an algorithm
that is trained through bagging or bootstrap aggregating. Bagging is an meta-algorithm
that improves the exactness of machine learning algorithms. Like the name itself says, it
has a large number of individual decision trees that operate as an ensemble [37,38]. Every
decision tree in the random forest spits out a class forecast, and the classification that
receives the most votes becomes the prediction made by the model. The key is the poor
correlation between models. Uncorrelated models have the ability to provide ensemble
forecasts that are more accurate than any of the individual predictions, just like assets with
low correlations combine to build a portfolio that is larger than the sum of its parts. As long
as they do not consistently all make a mistake in the same direction, the trees shield each
other from their individual errors, which accounts for this result. Many trees will be right
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while some may be wrong, allowing the group of trees to travel in the proper direction [39].
Random Forests also offer a wider range of parameters that could be tuned. In this study,
the focus will be on the following parameters:

1. n_estimators: the number of trees in the forest;
2. max_features: the number of features to consider when looking for the best split;
3. max_depth: the maximum depth of a tree;
4. criterion: the function to measure the quality of a split.

3.4. Experimental Setup—ANN-L(atin) Squares

Artificial neural networks, as powerful artificial intelligence tools, are increasingly
used in medicine. They form a system of nodes or neurons interconnected by connections,
through which data is transmitted. The architecture of any network consists of three
parts: the input layer, the hidden layer, and the output layer. The input layer can have
multiple sizes and inputs through which data is received. There may be one or more
hidden layers, which are used to process data according to a given criterion, depending
on the problem being solved [40]. An output layer can have one or more output values.
The strength of the connection between neurons is called the weight factor. First, it is
necessary to train the neural network and train it for further use. Our proposed model aims
to select the most straightforward neural network architecture, with as few iterations as
possible and minimal training, testing, and validation time. The main idea is to use a robust
experiment design method based on Taguchi’s orthogonal vector plans [40,41]. Taguchi’s
robust experimental design in each orthogonal plane depends on the number of parameters,
the weighting coefficients, and the number of levels of each parameter. There are several
plans for determining the dependence of the output and the input values through FFP
(full factorial plan) when planning as many experiments as possible in which all possible
discrete values of each input factor are combined [42,43]. When we have a large number
of input factors (greater than 6), and at a large number of levels (greater than 5), then the
number of experiments required is LP (L is the number of levels of factor variation, and
P is the factor number), that is, how many times is necessary to test each level for each
parameter. The number of iterations required for a complete factorial analysis is N = LP

(for example, when using three levels with 13 parameters according to a full factorial
design, N = 313 = 1,594,323 experiments need to be performed). Using a Taguchi orthogonal
plan with 13 parameters (weight coefficients) at three levels, only orthogonal array = |27,
13, 3| = 33 = 27 experiments are required. Taguchi’s robust design method reduces the
number of experiments by 99.99830649% (0.9999830649 = 1 − (27/1594323)) [44]. Taguchi’s
orthogonal vector plan takes a selected subset of combinations without repetition so that
all parameters are considered equally. They can also be evaluated independently of each
other. An orthogonal vector plan is observed for each level of a particular parameter. All L
levels of each of the (P-1) other parameters are tested at least once [45,46].

The first selected ANN architecture was with one hidden layer and three nodes,
denoted as ANN-L27, with the corresponding orthogonal plan in Figure 1 and Table 1.

The graphical representation of the ANN-L27 architecture in Figure 1 is constructed
based on the L27 orthogonal plan, with three input values, one hidden layer with
three nodes, and one output. ANN-L27 has a three-level architecture and thirteen
weighting coefficients.

Th second used ANN architecture was with one hidden layer and two nodes, denoted
as ANN-L12, with the corresponding orthogonal plan in Figure 2 and Table 2.

The graphical representation of the ANN-L12 architecture in Figure 2 is constructed
based on the L12 orthogonal plan, with four input values, one hidden layer with two nodes,
and one output. ANN-L12 has a two-level architecture and eleven weighting coefficients.

The third used ANN architecture was with one hidden layer and two nodes, denoted
as ANN-L16, with the corresponding orthogonal plan Figure 3 and Table 3.
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Table 1. ANN-L27 orthogonal vector plan.

ANN-L27 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
ANN2 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2 L2
ANN3 L1 L1 L1 L1 L3 L3 L3 L3 L3 L3 L3 L3 L3
ANN4 L1 L2 L2 L2 L1 L1 L1 L2 L2 L2 L3 L3 L3
ANN5 L1 L2 L2 L2 L2 L2 L2 L3 L3 L3 L1 L1 L1
ANN6 L1 L2 L2 L2 L1 L1 L1 L3 L3 L3 L2 L2 L2
ANN7 L1 L3 L3 L3 L1 L1 L1 L3 L3 L3 L2 L2 L2
ANN8 L1 L3 L3 L3 L2 L2 L2 L1 L1 L1 L3 L3 L3
ANN9 L1 L3 L3 L3 L3 L3 L3 L2 L2 L2 L1 L1 L1
ANN10 L2 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3
ANN11 L2 L1 L2 L3 L2 L3 L1 L2 L3 L1 L2 L3 L1
ANN12 L2 L1 L2 L3 L3 L1 L2 L3 L1 L2 L3 L1 L2
ANN13 L2 L2 L3 L1 L1 L2 L3 L2 L3 L1 L3 L1 L2
ANN14 L2 L2 L3 L1 L2 L3 L1 L3 L1 L2 L1 L2 L3
ANN15 L2 L2 L3 L1 L3 L1 L2 L1 L2 L3 L2 L3 L1
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Table 1. Cont.

ANN-L27 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13

ANN16 L2 L3 L1 L2 L1 L2 L3 L3 L1 L2 L2 L3 L1
ANN17 L2 L3 L1 L2 L2 L3 L1 L1 L2 L3 L3 L1 L2
ANN18 L2 L3 L1 L2 L3 L1 L2 L2 L3 L1 L1 L2 L3
ANN19 L3 L1 L3 L2 L1 L3 L2 L1 L3 L2 L1 L3 L2
ANN20 L3 L1 L3 L2 L2 L1 L3 L2 L1 L3 L2 L1 L3
ANN21 L3 L1 L3 L2 L3 L2 L1 L3 L2 L1 L3 L2 L1
ANN22 L3 L2 L1 L3 L1 L3 L2 L2 L1 L3 L3 L2 L1
ANN23 L3 L2 L1 L3 L2 L1 L3 L3 L2 L1 L1 L3 L2
ANN24 L3 L2 L1 L3 L3 L2 L1 L1 L3 L2 L2 L1 L3
ANN25 L3 L3 L2 L1 L1 L3 L2 L3 L2 L1 L2 L1 L3
ANN26 L3 L3 L2 L1 L2 L1 L3 L1 L3 L2 L3 L2 L1
ANN27 L3 L3 L2 L1 L3 L2 L1 L2 L1 L3 L1 L3 L2

Table 2. ANN-L12 orthogonal vector plan.

ANN-L12 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
ANN2 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2
ANN3 L1 L1 L2 L2 L2 L1 L1 L1 L2 L2 L2
ANN4 L1 L2 L1 L2 L2 L1 L2 L2 L1 L1 L2
ANN5 L1 L2 L2 L1 L2 L2 L1 L2 L1 L2 L1
ANN6 L1 L2 L2 L2 L1 L2 L2 L1 L2 L1 L1
ANN7 L2 L1 L2 L2 L1 L1 L2 L2 L1 L2 L1
ANN8 L2 L1 L2 L1 L2 L2 L2 L1 L1 L1 L2
ANN9 L2 L1 L1 L2 L2 L2 L1 L2 L2 L1 L1
ANN10 L2 L2 L2 L1 L1 L1 L1 L2 L2 L1 L2
ANN11 L2 L2 L1 L2 L1 L2 L1 L1 L1 L2 L2
ANN12 L2 L2 L1 L1 L2 L1 L2 L1 L2 L2 L1
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Figure 3. ANN-L16 architecture—graphical representation.
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Table 3. ANN-L16 orthogonal vector plan.

ANN-L16 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15

ANN1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1
ANN2 L1 L1 L1 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L2
ANN3 L1 L1 L1 L2 L2 L2 L2 L1 L1 L1 L1 L2 L2 L2 L2
ANN4 L1 L1 L1 L1 L2 L2 L2 L2 L2 L2 L2 L1 L1 L1 L1
ANN5 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2
ANN6 L1 L2 L2 L1 L1 L2 L2 L2 L2 L1 L1 L2 L2 L1 L1
ANN7 L1 L2 L2 L2 L2 L1 L1 L1 L1 L2 L2 L2 L2 L1 L1
ANN8 L1 L2 L2 L2 L2 L1 L1 L2 L2 L1 L1 L1 L1 L2 L2
ANN9 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

ANN10 L2 L1 L2 L1 L2 L1 L2 L2 L1 L2 L1 L2 L1 L2 L1
ANN11 L2 L1 L2 L2 L1 L2 L1 L1 L2 L1 L2 L2 L1 L2 L1
ANN12 L2 L1 L2 L2 L1 L2 L1 L2 L1 L2 L1 L1 L2 L1 L2
ANN13 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1 L1 L2 L2 L1
ANN14 L2 L2 L1 L1 L2 L2 L1 L2 L1 L1 L2 L2 L1 L1 L2
ANN15 L2 L2 L1 L2 L1 L1 L2 L1 L2 L2 L1 L2 L1 L1 L2
ANN16 L2 L2 L1 L2 L1 L1 L2 L2 L1 L1 L2 L1 L2 L2 L1

The graphical representation of the ANN-L16 architecture in Figure 3 is constructed
based on the L16 orthogonal plan, with six input values, one hidden layer with two nodes,
and one output. ANN-L16 has a two-level architecture and fifteen weighting coefficients.

Algorithm for robust design of the experimental part:
Step 1: Each of the three architectures used is a simple artificial neural network with

one input layer. In the presented research, the input layer consists of three input risk factors
for ANN-L27, four input risk factors for ANN-L12, and six risk factors for ANN-L16.

Step 2: The values of all investigated factors are represented by different values and
measurement units. Therefore, it is necessary to translate them into coded values. In
this way, all factors are equally represented and have the same influence on the risk of
hyperinsulinemia. All input values are transformed according to the following formula:
The function µD(X): R⇒ [0, 1] translates the actual values of the input values into coded
values from the interval [0, 1], as µD(Yi) = (Xi − Xmin)/(Xmax − Xmin) [40,42]. D represents
the data set on which the research is performed, Xi is the input value, Xmin is the smallest
input value, and Xmax is the maximum input value on the observed data set D.

Step 3: The sigmoid function was used as the activation function of the hidden and
output layers, as shown in Formula (2):

Yi =
1

1 + e−xi
, i =

(
1, n
)

(2)

For example, the activation function used in Formula (3) for the ANN-L27 architecture
is provided [42]:

Y1 =
1

1 + e−(x1W1+x2W4+x3W7)

Y2 =
1

1 + e−(x1W2+x2W5+x3W8)

Y3 =
1

1 + e−(x1W3+x2W6+x3W9)

OA(ANN − L27) =
1

1 + e−(yW10+y2W11+yW12+1·W13)
(3)

In the first architecture of ANN-L27, an orthogonal plan with three levels, L1, L2,
and L3, and initial values of weight factors Wi that take values from the interval [−1, 0, 1]
is used. For each subsequent iteration, the values of the weighting factors are obtained
by halving the interval, with the previous rejection of the highest value of the cost–effect
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function obtained from the first iteration. The second proposed architecture, ANN-L12,
and the third architecture, ANN-L16, are constructed based on an orthogonal plan of two
levels, L1, L2, and the initial value of the weight factor Wi taking values from the interval
[−1, 1]. For each subsequent iteration, new values of the weighting factors are calculated by
halving the interval of the cost-effect function obtained in the first iteration. The cost–effect
function is the total value of the relative error calculated according to the given orthogonal
plan for the specified level.

For example, the value of the cost–effect function for the first listed ANN-L27 architec-
ture is calculated using Formula (4) [42]:

L1W1 = cost1 + cost2 + . . . + cost9
L2W1 = cost10 + cost11 + . . . + cost18
L3W1 = cost19 + cost20 + . . . + cost27

. . .
L1W13 = cost1 + cost5 + . . . + cost26
L2W13 = cost2 + cost6 + . . . + cost27
L3W13 = cost3 + cost4 + . . . + cost25

if cost(i) = ∑MRE(ANN-L27(i))

(4)

Step 4: A decoding method is used in the following way (5), (6):

Yi = (Xmin + µD(Xi))·(Xmax − Xmin) (5)

Risk(i) = OA(ANNi) =
1
n ∑n

i=1 Yi, and i = 27, i = 16, i = 12 (6)

where OA(ANNi) represents the real risk, which is calculated according to ANN-L27,
ANN-L12, and ANN-L16.

Step 5: For each iteration in this study, the output values are calculated according to
formulas of the metrics presented below (7), (8):

MRE =
1
n ∑n

i=1|ActE f f ort− EstE f f ort| (7)

MMRE = mean(MRE) (8)

For each research part in each iteration, gradient descent (GA) is followed with the
condition of GA < 0.01, calculated as (9):

GA = MREi1 −MREi2 < 0.01 (9)

where i(1, n) − n is the number of the architecture ANN.
The difference of minimum values for each iteration in each ANN architecture is

denoted by delta(i) = δ, and is calculated as follows (10), (11):

δi = (OA(ANNk −OA(ANNk−1)))Fm (10)

i f δi > δ(i+1) then ANNi is converging with MMREi (11)

i—number of ANN, k—number of iterations, m—number of risk factors.
Hereby, in our research with different ANN architectures, we set the convergence-

stopping criterion (number of iterations) to GA < 0.01. In the training phase of the selected
ANN architecture according to Taguchi’s orthogonal plan, in each subsequent iteration,
a reduction in MRE of less than 1% is achieved, which in our experiment represents the
“stopping criterion” [40,42].

Step 6: Examining the impact of the input values on the change in risk factor values:
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1. The effect of the first input factor (BMI) and its value is calculated as:

δ1 = mean(OA(ANNk))−mean(OA(ANNk−1))F1
i f (OA(ANNk))F1, mean(OA(ANNk−1))F1

then X1 = 0; X1 = BMI.
(12)

2. The effect of the second input factor (Cholesterol) and its value is calculated as:

δ2 = mean(OA(ANNk))−mean(OA(ANNk−1))F
i f (OA(ANNk))F2, mean(OA(ANNk−1))F2

then X2 = 0; X2 = Cholesterol.
(13)

3. The effect of the third input factor (Physical activity) and its value is calculated as:

δ3 = mean(OA(ANNk))−mean(OA(ANNk−1))F
i f (OA(ANNk))F3, mean(OA(ANNk−1))F3

then X3 = 0; X3 = Physical activity.
(14)

4. The effect of the fourth input factor (Family history) and its value is calculated as:

δ4 = mean(OA(ANNk))−mean(OA(ANNk−1))F4
i f (OA(ANNk))F4, mean(OA(ANNk−1))F4

then X4 = 0; X4 = Family history.
(15)

Step 7: Calculating the values of Pearson’s and Spearman’s correlation
coefficients [43,44,46].

3.5. Dataset Description

The research population consisted of adolescents of both genders, aged 12 to 17 years
from the territory of the Kolubara district, who came for a regular, systematic examination
at the Valjevo Health Center, as a reference health institution in this field, in the period from
September 2019 to September 2022, and in whom elevated glycemic values were verified.
Respondents were included in the study with their voluntary informed consent, that is, the
consent of their parents, taken after familiarization with the study orally and in writing,
as well as after signing the form for informed consent of the respondents. This research
was approved by the Ethics Committee of Valjevo Health Center (latest/renewed decision
DZ-01-2646 dated 9 August 2021). Sampling and then a grouping of patients was con-
ducted based on authoritative guidelines for defining the presence of hyperinsulinemia in
adolescents [47] whom the pediatrician instructed to perform an OGTT during a systematic
school examination due to elevated glycemic values. The experimental group of patients
consisted of adolescents who, during the implementation of the OGTT, had an insulinemia
value of >15 µU/mL after and/or during the 120 min of the OGTT of >75 µU/mL. The
control group consisted of adolescents who, during the OGTT, had insulinemia values of
≤15 µU/mL at the end, i.e., ≤75 µU/mL during the 120 min. The first experimental group
comprised 112 male and female adolescents, and the second control group comprised
224 male and female adolescents. Independent and confounding variables were collected
using relevant standardized questionnaires in this field that were free to use, such as the
Child Health Questionnaire (CHQ) [48]— the world standardized questionnaire for the
assessment of physical and psychosocial well-being; the International Physical Activity
Questionnaires (IPAQ) [49]—a standardized physical activity assessment questionnaire;
Association for Sports and Sports Medicine, Ministry of Youth and Sports of the Republic
of Serbia, Youth/Adolescent food questionnaire (YAQ) [50]—a standardized questionnaire
for high school students, which collects information about habits in nutrition; Behavioral
Risk Factor Surveillance System survey (BRFSS) [51]—a standardized survey on the risk
assessment of chronic non-communicable diseases, which contains information on health
status, chronic conditions, alcohol consumption and similar; Family history questionnaire



Diagnostics 2023, 13, 798 11 of 20

(FHQ) [52]—a family history questionnaire; and Short form health survey-6 (SF-36) [53]—a
standardized questionnaire for assessing the quality of life of adolescents. Primary data
such as demographic characteristics of the respondent, including the gender, age of the
patient, and socio-economic conditions of the respondent, the environment from which he
comes (urban, suburban or rural), the number of household members, study conditions,
and place of residence and living conditions (with parents, tenant, relatives, others) were
collected in the first phase of the research when coming for a systematic examination of
adolescents, and before filling out the other questionnaires. An overview of the sample size
according to gender, age and Kolubara district is given in Table 4.

Table 4. Structure of the dataset used.

Sample Structure

Experimental Group Control Group

Gender Number Percentage(%) Number Percentage(%)

male 108 48.2 228 50.9
female 116 51.8 220 49.1
Total 224 100.0 448 100.0

Age Number Percentage(%) Number Percentage(%)

12–14 108 48.2 228 50.9
14–17 116 51.8 220 49.1
Total 224 100.0 448 100.0

Region Number Percentage(%) Number Percentage(%)

Kolubara district 224 100.0 448 100.0

3.6. Statistical Analysis

According to the obtained analysis it can be concluded that increased obesity, that is,
the value of the body mass index, is significantly higher in the experimental group com-
pared to the control group, which is a significant indicator of the cause of hyperinsulinemia
in adolescents with hyperglycemia. The average BMI in the experimental group is 27.1
with a deviation of ±4.3, while in the control group, it is within the limits of typical values
and is 22.7 with a deviation of ±1.2. Table 5 shows the average glucose and insulin values
of all respondents for the mentioned groups. The specified values were monitored at 0, 30,
60, 90, and 120 min. Then, the mean values with deviations for the respondents of each
group were calculated. Based on the results obtained from the mentioned measurements
and according to Formula (16), the insulin resistance index HOMA-IR values were calcu-
lated [53]. Based on the analysis with the student t-test, the values obtained are statistically
significant between the experimental groups, which once again confirms the correctness
of the division into given groups based on the OGTT test. From all of the above, it can
be concluded that the insulin resistance index, HOMA-IR, is a reliable predictor of the
diagnosis of hyperinsulinemia in the adolescent population.

HOMA− IR =
Glucose(0min)·Insuline(0min)

22.5
(16)

In Table 6, the values were also analyzed according to the gender of the respondents
within each group to determine their differences. The Kruskal–Wallis H test shows statisti-
cally significant differences in blood count values, leukocytes, erythrocytes, hemoglobin,
and hematocrit. After that, there are statistically significant differences in the respondents
of the first and control groups regarding platelets, lymphocytes, and sedimentation; CRP
values are elevated. The respondents were instructed to complete the OGTT test based
on elevated glucose. The Kruskal–Wallis H test shows highly significant differences in
the values of total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides, which
indicates the obesity of the respondents, which, in addition to the development and occur-



Diagnostics 2023, 13, 798 12 of 20

rence of hyperinsulinemia, can also lead to the development of many other non-infectious
chronic diseases. The values of urea, creatinine, total proteins, total bilirubin, AST(SGOT)
and ALT(SGPT), and sodium, potassium, and chloride are outside the reference values
with statistically significant differences between the groups.

Table 5. Values of OGTT and HOMA-IR.

OGTT Experimental Group Control Group Student t Test p

Glucose in 0 min
(mmol/L) 7.2 ± 1.1 6.3 ± 0.9 2.026 0.026 *

Glucose in 30 min
(mmol/L) 13.5 ± 1.3 11.3 ± 1.4 2.844 0.006 *

Glucose in 60 min
(mmol/L) 10.7 ± 1.4 9.3 ± 1.2 5.124 0.000 *

Glucose in 90 min
(mmol/L) 9.4 ± 1.3 8.2 ± 1.3 2.895 0.008 *

Glucose in 120 min
(mmol/L) 8.1 ± 0.7 7.3 ± 0.9 2.387 0.017 *

Insuline in 0 min
(µIU/mL) 20.3 ± 3.6 17.8 ± 2.4 7.264 0.000 *

Insuline in 30 min
(µIU/mL) 162.5 ± 6.1 151.2 ± 7.1 118.371 0.000 *

Insuline in 60 min
(µIU/mL) 125.7 ± 4.5 117.3 ± 5.2 84.625 0.000 *

Insuline in 90 min
(µIU/mL) 98.3 ± 2.2 83.5 ± 3.7 81.814 0.000 *

Insuline in 120 min
(µIU/mL) 83.5 ± 3.4 65.3 ± 2.4 6.078 0.000 *

HOMA-IR 6.5 ± 2.4 5.2 ± 1.7 4.680 0.000 *
* Statistical significance.

Based on all the listed values of the hematological and biochemical parameters and the
OGTT test values, the following factors can be identified, as given in Table 7. Furthermore,
in Figure 4, the correlation coefficients between the most influential risk factors from
experimental and control groups are given.

Table 6. Values of hematological and biochemical parameters measured in both groups.

Gender
Experimental Group Control Group Kruskal–Wallis

H
p

Male Female Male Female

Leukocytes
WBC 14.3 ± 2.7 16.8 ± 3.5 11.5 ± 2.4 12.7 ± 3.3 13.322 0.001 *

Erythrocytes
RBC 3.5 ± 1.5 3.7 ± 2.1 4.2 ± 2.5 4.5 ± 2.6 10.956 0.004 *

Hemoglobin
Hgb 156 ± 5 145 ± 7 138 ± 5 142 ± 4 5.735 0.017 *

Hematocrit
Htc 0.626 ± 0.6 0.548 ± 0.9 0.533 ± 0.5 0.427 ± 0.7 4.725 0.030 *

MCV 98.4 ± 10.3 92.5 ± 11.7 89.1 ± 12.2 94.2 ± 9.4 0.997 0.318
MCH 36.7 ± 3.3 34.5 ± 4.5 33.2 ± 2.1 33.5 ± 3.6 2.735 0.098
MCHC 358.9 ± 17.6 345.2 ± 18.9 344.1 ± 12.3 338.7 ± 15.7 0.525 0.769
RDW 17.2 ± 2.7 16.7 ± 3.1 16.3 ± 2.8 15.9 ± 3.6 1.925 0.165
Platelets
PLT 324.2 ± 67.2 345.6 ± 84.4 318.9 ± 58.3 338.2 ± 62.4 12.023 0.003 *

Segmented 54 ± 6.8 57 ± 7.9 52 ± 6.2 55 ± 7.5 0.752 0.386
MID 9.8 ± 1.5 10.2 ± 2.4 8.7 ± 1.4 9.3 ± 1.9 0.851 0.356
Lymphocytes 32.3 ± 3.3 31.7 ± 3.8 31.5 ± 3.1 33.6 ± 3.5 3.847 0.043 *
Sedimentation 17.8 ± 2.2 18.2 ± 2.5 15.4 ± 1.8 14.8 ± 2.4 4.205 0.036 *
CRP 18.3 ± 5.3 21.5 ± 6.7 16.3 ± 4.2 14.7 ± 77.9 149.599 0.000 *
Glucose 7.6 ± 1.6 8.4 ± 2.6 6.7 ± 1.3 7.3 ± 1.8 4.829 0.024 *
Cholesterol 7.11 ± 4.2 8.27 ± 5.4 5.93 ± 3.6 6.08 ± 4.4 87.774 0.000 *
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Table 6. Cont.

Gender
Experimental Group Control Group Kruskal–Wallis

H
p

Male Female Male Female

HDL
Cholesterol 0.723 ± 0.5 0.845 ± 0.7 0.994 ± 0.6 0.805 ± 0.6 73.497 0.000 *

LDL
Cholesterol 3.58 ± 1.2 3.92 ± 1.7 3.23 ± 1.3 3.31 ± 1.5 55.961 0.000 *

Triglycerides 3.71 ± 2.8 4.26 ± 3.4 2.87 ± 2.6 2.99 ± 3.3 23.980 0.000 *
Urea 10.4 ± 3.2 12.5 ± 4.3 8.3 ± 2.5 9.7 ± 3.6 5.024 0.018 *
Creatinine 112.6 ± 11.5 115.8 ± 14.3 108.6 ± 9.6 114.7 ± 10.0 4.527 0.027 *
Proteins
total 94.3 ± 3.5 102.7 ± 4.4 85.7 ± 3.2 89.2 ± 3.3 8.323 0.007 *

Bilirubin total 19.8 ± 4.3 23.7 ± 5.2 18.3 ± 3.8 19.5 ± 4.1 6.024 0.016 *
AST(SGOT) 35.6 ± 3.2 38.4 ± 3.9 33.8 ± 2.8 35.4 ± 3.1 4.418 0.023 *
ALT(SGPT) 39.6 ± 4.5 44.7 ± 5.7 35.2 ± 3.6 37.9 ± 4.2 6.134 0.019 *
Sodium 152 ± 14.2 165 ± 16.3 148 ± 11.5 159 ± 13.8 4.324 0.031 *
Potassium 5.3 ± 1.4 5.9 ± 1.9 5.1 ± 1.2 5.7 ± 1.3 5.235 0.024 *
Chlorides 111 ± 9 114 ± 13 105 ± 9 109 ± 11 7.456 0.012 *

* Statistical significance.

Table 7. Analysis of parameters that indicate the existence of hyperinsulinemia.

Parameters
Experimental Group

Mean ± SD
N(%)

Control Group
Mean ± SD

N(%)

ANOVA
Kruskal–Wallis

χ2Test
p

Body height 160.6 ± 13.2 157.6 ± 12.5 2.841 0.032 *
Body weight 69.8 ± 11.4 56.4 ± 8.2 3.269 0.005 *
BMI 27.1 ± 4.3 22.7 ± 1.2 3.841 0.003 *
Cholesterol 87 (77.7) 129 (57.6) 8.645 0.000 *
Poor physical activity 78 (69.6) 136 (60.7) 2.0158 0.021 *
Poor nutrition 65 (58.0) 102 (45.6) 3.040 0.020 *
Family history 55 (49.1) 93 (41.5) 4.335 0.027 *
Psychoactive substances 43 (38.4) 78 (34.8) 2.013 0.031 *
Socioeconomic and
demographic
characteristics

27 (24.1) 51 (22.8) 1.492 0.221

Self-assessment of one’s
own health condition 55 (49.1) 123 (54.9) 3.812 0.018 *

* Statistical significance.
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4. Results

In this section, we present and discuss the results of the parameter tuning with grid
search and cross-validation assessment on the predictive performance of the models. The
first part presents the results obtained by factorial analysis. In the second part, we show the
results obtained from three ML algorithms. The third part is devoted to results obtained by
the new ANN-L model. Finally, the last part gives a comparison of acquired results.
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4.1. Factorial Analysis

Factor analysis is a statistical method that aims to group a large number of similar
variables around one or more of those variables that best describe a given characteristic or
a particular influence, a factor. First, a factorial exploratory analysis was used to separate
the two most influential factors: BMI with a 35.8% and cholesterol with a 15.3% share in
the total risk for hyperinsulinemia. Then, similarly, using confirmatory factor analysis, four
more significant factors were singled out, namely poor physical activity at 14.1%, poor
nutrition at 12.0%, family history at 9.0%, and the consumption of psychoactive substances
at 7.1%. Other factors observed have a 6.7% share in the risk of hyperinsulinemia with
elevated glycemia.

4.2. Naïve Bayes, Decision Tree, and Random Forest

The state-of-the-art machine learning algorithms were used to identify risk factors
in the overall risk of hyperinsulinemia. The results obtained using the first, the naive
Bayes machine learning algorithm, showed the following prediction percentages: BMI with
32.7%, cholesterol with 16.7%, poor physical activity with 14.8%, poor nutrition with 11.3%,
family history with 9.0%, consumption of psychoactive substances with 8.8% and other
factors with a share of 6.7% of the total risk. The second, the decision tree machine learning
algorithm showed the following prediction percentages: BMI with 32.8%, cholesterol with
16.6%, poor physical activity with 14.6%, poor nutrition with 11.6%, family history with
10.2%, consumption of psychoactive substances with 7.4% and other factors with a share
of 6.8% of the total risk. The third algorithm used, the random forest machine learning
algorithm showed the following prediction percentages: BMI with 33.5%,cholesterol with
16.9%, poor physical activity with 13.6%, poor nutrition with 11.2%, family history with
9.1%, consumption of psychoactive substances with 9.0% and other factors with a share of
6.7% of the total risk (Figure 5).
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The graphical representation from Figure 5 showcases the proportionate contribution
of each risk factor to the incidence of hyperinsulinemia, as determined by the models
employed.

4.3. ANN Based on Taguchi’s Orthogonal Vector Plans (ANN-L)

The findings obtained from the proposed ANN-L model will be presented in detail.
In the first experiment, the ANN-L27 architecture was constructed based on Taguchi’s
orthogonal vector plan L27. The three input variables used in our example are the three
most influential risk factors: BMI, cholesterol, and poor physical activity. These three risk
factors had 22.6% of the total risk, and the error that occurred was less than 1%, which
was the condition for stopping the number of iterations (GA < 0.01). It was necessary to
perform less than six iterations to complete this experiment. In the second experiment, the
ANN-L12 architecture was constructed based on Taguchi’s orthogonal vector plan L12. The
four input variables used in our example are the four most influential risk factors: BMI,
cholesterol, poor physical activity, and poor nutrition. These four risk factors had 26.8%
of the total risk, and the error that occurred was less than 1%, which was the condition
for stopping the number of iterations (GA < 0.01). In the third experiment, the ANN-L16
architecture was constructed based on Taguchi’s orthogonal vector plan L16. The six input
variables used in our example are the six most influential risk factors: BMI, cholesterol,
poor physical activity, poor nutrition, family history, and psychoactive substances. These
six risk factors had 33.4% of the total risk, and the error that occurred was less than 1%,
which was the condition for stopping the number of iterations (GA < 0.01). The correlation
between the estimated and actual values for all three architectures: ANN-L27, ANN-L12
and ANN-L16 is given in Figure 6. The correlation coefficients have a higher value, which
is another indicator of the precision and reliability of the artificial neural networks used in
the experimental part. We conclude that the ANN- L16 architecture has the highest values
of all correlation coefficients and the smallest number of iterations for which it meets the
GA criterion (error less than 1%), with only five iterations required (Figure 7).
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4.4. Comparative Analysis of the Models

In this section, we will present the results of the various models utilized in this study
and conduct a thorough comparison to identify the most reliable and practical model for
implementation. From Table 8, it can be concluded that the factor with the largest share
of the total risk is BMI, with the fact that in the factorial analysis, it is 35.8%, and in the
naive Bayes algorithm, it shows the lowest value of 32.7%. The share of all factors is ranked
equally. Additionally, we can conclude, e.g., that the factor with the smallest share of
the total risk is in the interval of 7.2% with factorial analysis. In comparison, its highest
value is 9.0% with the random forest algorithm. Figure 8 is a graphical representation of
the influencing factors for the occurrence of hyperinsulinemia in adolescents. Moreover,
we can conclude when hyperinsulinemia is presented in the experimental and control
group. Furthermore, it can be concluded that the best MMRE is acquired with the new,
proposed ANN-L model (0.5%), which means that model accuracy is 99.5%. The second
best result was achieved with the random forest algorithm (0.8%), which provides a model
accuracy of 99.2%. The naive Bayes algorithm had a slightly worse model accuracy of
99.1%, while decision tree and factorial analysis showed model errors of 1.1% and 1.3%,
which contributes to a model accuracy of 98.9% and 98.7%, respectively (Table 8).

Table 8. The percentage share of each risk factor in the used models.

Risk Factors Factorial
Analysis ANN-L Naïve Bayes Decision Tree Random

Forest

BMI 35.8 33.4 32.7 32.8 33.5

High Cholesterol 15.3 16.6 16.7 16.6 16.9

Poor physical activity 14.1 14.5 14.8 14.6 13.6

Poor Nutrition 12.0 11.8 11.3 11.6 11.2

Family history 9.0 8.9 9.0 10.2 9.1

Psychoactive substances 7.2 8.0 8.8 7.4 9.0

Other factors 6.7 6.8 6.7 6.8 6.7

MMRE 1.3% 0.5% 0.9% 1.1% 0.8%
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5. Discussion

Metabolic syndromes, such as insulin resistance and hyperinsulinemia, most often
results in type 2 diabetes mellitus, or cause the development of various cardiovascular
diseases, dyslipidemia, and other serious non-contagious diseases. One of the components
of severe chronic diseases, hyperinsulinemia, is the most common criterion for developing
type 2diabetes mellitus, according to the International Diabetes Federation [53].

In order to achieve the first primary objective of the study, which is to identify the
most influential factors for the occurrence of hyperinsulinemia in adolescents, the following
conclusions can be drawn: The minimization of the estimation error (MMRE) to 0.5% was
achieved using the newly proposed ANN-L models. This demonstrates a high accuracy
of 99.5%. Among the selected ANN-L models, if three risk factors are considered, the
total risk of receiving a hyperinsulinemia diagnosis using ANN-L27 is 22.6%. On the
other hand, if four risk factors are considered using ANN-L12, the total risk of receiving a
hyperinsulinemia diagnosis is 26.8%. Meanwhile, if six risk factors are considered using
ANN-L16, the total risk of receiving a hyperinsulinemia diagnosis is 33.4%. Additionally,
the number of iterations performed for ANN-L27 was six, while for ANN-L12 and ANN-
L16 it was five, which resulted in a high convergence rate and faster evaluation. Faster
evaluation in medical diagnostics is of great importance as it leads to more straightforward
and precise results. Finally, the ANN-L16 model achieved the lowest error rate of 0.5%
with the lowest number of iterations performed.

The second main goal of this study aimed to determine which of the presented models
using different machine learning algorithms and artificial neural network architectures
based on different Taguchi’s orthogonal vector plans would be the most accurate in deter-
mining the risk of hyperinsulinemia in adolescents. The results of the study indicated that
the three most common factors contributing to the risk of hyperinsulinemia in adolescents
are increased body mass index (35.8%), increased cholesterol levels (15.2%), and poor
physical activity (14.1%). The remaining factors, including poor nutrition, family history,
and consumption of psychoactive substances, also have a significant impact on the risk of
hyperinsulinemia. The study showed that these six factors were the most influential in the
development of hyperinsulinemia in adolescents, while other demographic and socioeco-
nomic conditions had a smaller impact. All models used in this study demonstrated that
these six factors are crucial in determining the risk of hyperinsulinemia in adolescents.

6. Conclusions

Given that the prevalence of hyperinsulinemia in adolescents, both in the world and
in our country, is growing rapidly, the results of this study can be of exceptional scientific
and practical importance to pediatricians. Furthermore, they can help in this field by
creating a strategy for applying preventive and timely corrective measures to prevent
the occurrence of the mentioned pathophysiological entity, that is, the development of
potential complications (primarily type 2 diabetes mellitus and cardiovascular diseases)
in later adult life. The results of this research can significantly contribute to a better
knowledge and understanding of risk factors that can significantly affect the occurrence of
hyperinsulinemia with elevated glycemia in adolescents, especially for those adolescents
who have increased obesity, bad eating habits, insufficient physical activity, the existence
of a positive family history, and the consumption of psychoactive drugs substances. The
innovativeness of the proposed approach is reflected in the fact that, unlike other models
that use machine learning algorithms, here it is possible to create a prediction model
that is based on ANNs created based on Taguchi’s orthogonal vector plans in such a
way as to achieve the lowest MMRE value in all phases of the study. Additionally, the
aim was to create the most straightforward architecture, with the smallest number of
hidden layers of the feed-forward artificial neural network and the smallest number of
iterations, which additionally reduced the estimation time, which indeed enables timely
and fast diagnosis, which is extremely important in medical sciences. The early detection
of adolescent individuals who are prone to developing hyperinsulinemia is crucial for
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ensuring their future well-being and the overall health of society. The proposed models
serve as a reliable tool for identifying the risk factors associated with hyperinsulinemia and
other health issues that may negatively impact the individual’s well-being. By providing
accurate and timely information, these models have the potential to play a critical role in
preventing the development of hyperinsulinemia and mitigating its associated health risks.
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