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Abstract: Lung cancer is a leading cause of cancer-related deaths globally. Early detection is crucial
for improving patient survival rates. Deep learning (DL) has shown promise in the medical field,
but its accuracy must be evaluated, particularly in the context of lung cancer classification. In this
study, we conducted uncertainty analysis on various frequently used DL architectures, including
Baresnet, to assess the uncertainties in the classification results. This study focuses on the use of deep
learning for the classification of lung cancer, which is a critical aspect of improving patient survival
rates. The study evaluates the accuracy of various deep learning architectures, including Baresnet,
and incorporates uncertainty quantification to assess the level of uncertainty in the classification
results. The study presents a novel automatic tumor classification system for lung cancer based on
CT images, which achieves a classification accuracy of 97.19% with an uncertainty quantification.
The results demonstrate the potential of deep learning in lung cancer classification and highlight
the importance of uncertainty quantification in improving the accuracy of classification results. This
study’s novelty lies in the incorporation of uncertainty quantification in deep learning for lung cancer
classification, which can lead to more reliable and accurate diagnoses in clinical settings.

Keywords: CT; lung cancer; deep learning; uncertainty quantification

1. Introduction

Lung cancer is a devastating disease that often has a grim prognosis. An early iden-
tification and diagnosis are vital to improving the chances of survival. One cutting-edge
diagnostic tool for lung cancer is CT scan imaging. Deep learning (DL) has recently emerged
as a powerful tool for processing medical images and has demonstrated great promise
in detecting pulmonary nodules. However, the prediction accuracy of neural networks
(NNs) in DL is uncertain, as the inner workings of their hidden layers are often considered
a “black box,” making their predictions difficult to interpret [1]. Machine learning (ML) is
also commonly used in real-world applications, but it also faces the challenge of hidden
layers being considered as black boxes. Despite its potential for a high accuracy, DL is
only sometimes reliable and can sometimes produce incorrect results [2]. It is essential
to incorporate uncertainty into the models to increase the reliability of DL predictions
and reduce the number of false predictions [3]. Additionally, DL models can be prone to
overfitting and erratic behavior on out-of-distribution samples as they lack the reasoning
capability to explain the data [4].

In the field of medical imaging, deep learning techniques such as convolutional neural
networks (CNNs) and deep neural networks (DNNs) are widely used [5]. While CNNs can
perform complex operations, they require a large, labeled dataset and strong processing
power [6]. On the other hand, DNNs are a standard feedforward network but also need
methods to estimate the uncertainty to enhance the reliability [7]. Quantifying uncertainty
in deep learning (DL) is a difficult challenge, but Bayesian neural networks (BNNs) and
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Monte Carlo (MC) are effective methods for uncertainty quantification (UQ) [8]. Medical
experts should be aware of the confidence level of DL models before they are used in
various applications [9]. However, some DL models may produce unclear predictions
because of their inability to handle noisy data or incorrect model inference [10].

Incorporating uncertainty into DL models can enhance their reliability and efficiency
and help medical experts make more informed decisions. For instance, in diagnosing lung
cancer, UQ can be used to identify areas in the images that require a further examination
and avoid incorrect predictions. This is particularly crucial, as incorrect predictions can
result in delayed treatment and decreased survival rates. Moreover, UQ can also be utilized
to develop more robust and generalizable DL models that can adapt to new and unseen
data. This is particularly important in the medical field, where there are often limited
labeled datasets and new data types are constantly emerging [8].

In conclusion, uncertainty quantification in DL for medical imaging plays a crucial
role in ensuring the reliability and efficiency of DL models and can lead to more informed
decisions for medical experts.

Using uncertainty quantification in deep learning models can be crucial in the medical
field, especially in diagnosing lung cancer. By incorporating uncertainty into these models,
they can provide medical experts with a probabilistic interpretation of the predictions,
which can help them understand the reasoning behind the model’s output. Bayesian deep
learning methods, such as Bayesian neural networks (BNNs) and Monte Carlo dropout,
have been shown to perform well in uncertainty quantification and provide more accurate
and reliable results. These methods allow the model to randomly drop out neurons
during the inference process, generating multiple predictions and helping to estimate the
uncertainty in the model’s output. Incorporating uncertainty into deep learning models
for medical imaging applications is crucial for improving the accuracy and reliability of
the predictions. The use of Bayesian deep learning methods can provide medical experts
with a better understanding of the reasoning behind the model’s output and help them
make more informed decisions. Further research in this area can lead to the development
of more robust and generalizable deep-learning models, which can significantly improve
the accuracy of medical diagnoses.

Incorporating both aleatoric and epistemic uncertainty into the classification model
can help improve the predictions’ reliability. The proposed method in this study considers
both types of uncertainty by incorporating MC dropout into the classification model to
estimate epistemic uncertainty and by using a Bayesian NN to estimate aleatoric uncertainty.
The results of this study demonstrate the importance of considering uncertainty in medical
imaging classification tasks as it can lead to the improved accuracy and reliability of the
model’s predictions. It is important to note that the proposed method is only a starting
point for further research in medical imaging classification and uncertainty quantification.
There is still much work to be done to fully understand the impact of uncertainty on the
predictions of deep learning models and to develop more robust and effective methods
for incorporating uncertainty into these models. Nevertheless, this study highlights the
potential of incorporating uncertainty into medical imaging classification tasks and the
importance of continued research in this area.

Aleatoric uncertainty refers to the inherent uncertainty in the data, such as measure-
ment errors or other sources of randomness. Epistemic uncertainty, on the other hand,
refers to the uncertainty that arises from the model’s lack of knowledge about the genuine
underlying relationship between the inputs and outputs. In medical imaging, aleatoric
uncertainty could arise from measurement errors in the CT scan. In contrast, epistemic
uncertainty arises due to the lack of knowledge or information about the data. These
uncertainties can affect the accuracy and reliability of the predictions made by a model. In
medical imaging applications, it is essential to consider and quantify both types of uncer-
tainty to ensure the reliability and robustness of the model’s predictions. Figure 1 provides
a visual representation of the two types of uncertainty and how they impact the model’s
predictions. By incorporating uncertainty quantification techniques such as Bayesian deep
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learning or Monte Carlo dropout, the reliability and robustness of the predictions can be
improved, making the models more useful for medical experts in decision-making.

Figure 1. Aleatoric and epistemic uncertainties in the data.

In Figure 1, the orange line visually displays the uncertainty in the training data,
while the blue line represents the uncertainty in the testing data, as seen in the CT scans
of the lungs. This study aims to provide a unique deep learning model called Baresnet
for automatically classifying lung cancer tumors using CT images. Baresnet is a cutting-
edge system that blends the ResNet architecture with three standard models. The orange
line represents aleatoric uncertainty, which arises from the intrinsic unpredictability or
randomness in the data. Factors such as measurement errors, variability in the physical
processes, or small sample sizes can cause this type of uncertainty. It cannot be reduced by
gathering more data or improving the measurement procedures. The blue line represents
the epistemic uncertainty resulting from insufficient knowledge or a lack of data-related
information. This type of uncertainty can be due to various reasons, including a lack of data,
uncertainty in the model parameters, or a poor understanding of the underlying processes.
It can be reduced by increasing knowledge or obtaining better data and is often related
to the accuracy of predictive models or algorithms. By visualizing both uncertainties in a
single figure, it becomes easier to understand the sources of uncertainty in the data and to
evaluate the effectiveness of various models and algorithms in reducing uncertainty.

In the context of lung cancer CT scans, aleatoric uncertainty can be caused by several
factors, such as measurement errors during imaging, variability in the tissue density,
or the limited sample sizes of CT scans. Epistemic uncertainty can result from a lack
of information about the scans or the classification model. For example, suppose the
model used for automated tumor classification is trained on various CT scans. In that
case, it may not perform well on scans with different imaging characteristics, leading to
higher epistemic uncertainty. A lack of understanding of the mechanisms contributing to
tumor development can lead to a higher epistemic uncertainty. Baresnet aims to minimize
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both forms of uncertainty to increase the accuracy and reliability of lung cancer tumor
classification. By merging ResNet with three standard models, we aim to incorporate
stochastic and knowledge-based uncertainty to create more robust predictions. Minimizing
uncertainty can provide medical professionals with more precise and reliable forecasts,
leading to a better diagnosis and treatment decisions for lung cancer.

The purpose of this research is to address the lack of trust in the prediction of current
data mining and image processing procedures for lung cancer detection. By introducing
Baresnet, the researchers aim to achieve a state-of-the-art performance in tumor classi-
fication, improve the precision of the classification, and control feature selection using
Grad-CAM. The proposed model achieved an accuracy of 97.19%, a precision of 91.68%,
a sensitivity of 98.82%, a specificity of 92.56%, and an F1 score of 97.47% for lung cancer
classification.

The key contributions of this work can be summarized as follows:

• Development of a novel method for automated lung cancer detection using CT scans:
this work proposes a new approach for detecting lung cancer in CT scans that utilizes
deep learning and computer vision techniques.

• Utilization of deep neural networks trained with Grad-CAM: the proposed approach
utilizes deep neural networks trained with the Grad-CAM method, which helps to
highlight the regions of the CT scan that contribute the most to the predictions made
by the model.

• Achieving a state-of-the-art performance in tumor classification: the proposed ap-
proach has been shown to achieve a state-of-the-art performance in terms of the
accuracy and precision in tumor classification, outperforming the existing methods in
the field.

• Improving the precision and control over the feature selection with Grad-CAM: by
utilizing the Grad-CAM method, this work also improves the precision of the classifi-
cation and provides a mechanism for controlling feature selection in the model, which
is essential for ensuring the robustness of the results.

The main difference between our paper and the state of the art.
The text discusses the importance of uncertainty quantification (UQ) in deep learning

(DL) for medical imaging. DL techniques, such as CNNs and DNNs, are widely used
in medical imaging, but their hidden layers are often considered a “black box,” making
their predictions difficult to interpret. Incorporating a UQ can improve the reliability
and efficiency of DL models, allowing medical experts to make more informed decisions.
Bayesian neural networks (BNNs) and Monte Carlo (MC) are effective methods for UQ
in DL. By considering uncertainty, DL models can be adapted to new and unseen data,
making them more robust and generalizable.

2. Related Studies

Diverse DL methods have dominated the world of medical image processing. Be-
yond automatic radiological functions (e.g.; segmentation, detection, disease grading,
and classification), ML has been applied to various “data enhancement” problems. Data
processing or optimization seeks to improve accuracy, primarily due to the widespread
implementation of DL methods in many fields. BNN and UQ predictions have gained more
interest [11]. BNN approaches reflect uncertainty by putting a probability distribution over
the model parameters and adding up these probabilities to construct a final uncertainty
estimate. In the late 1990s, the state-of-the-art approach to training NN was Brown et al.’s
work [12]. As demonstrated in [13], many parameters are required for predictive modeling,
making these approaches repetitive. It is challenging to incorporate BNN approaches into
contemporary NN [14]. For many decades, MC was the gold standard for inference with
NN, thanks to the work of Hamiltonian MC. In Ref. [15], the Hamiltonian MC did not have
ample tuning possibilities and would be unfeasible for current NNs. A stochastic gradient
Hamiltonian MC (SGHMC) approach was developed, which is a method for estimating the
posterior distribution of the parameters in a Bayesian neural network (BNN) [16]. SGHMC
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is a combination of Hamiltonian Monte Carlo (HMC) and stochastic gradient descent (SGD)
methods. In HMC, the posterior distribution is estimated using Hamiltonian dynamics
and gradient information, while in SGD, gradient information is used to minimize the loss
function. In SGHMC, the gradient information is used to guide the sampling process in
HMC, resulting in more efficient and accurate posterior estimates. SGHMC has been shown
to be effective in BNNs with large and complex models, where the posterior distribution is
highly non-Gaussian [16]. Alternatively, stochastic gradient Langevin dynamics [17] can be
used by first-order dynamics in the stochastic gradient setting. Asymptotically, SGHMC
and stochastic gradient Langevin dynamics sample from the posterior distributions of σw
for each model specification on an infinitely small phase scale. Using a limited sample rate
might make it more challenging to combine approximations with tweaking [18]. Moreover,
accurately estimating the uncertainty of NNs is a significant challenge. However, various
methods have assessed uncertainty, such as predictive entropy, shared knowledge, and
an average estimate of multiple models [19]. BNN helps model uncertainty by providing
a natural context for computations. Furthermore, BNN models offer a straightforward
way to model the degree of uncertainty in a case’s probability that might provide various
possible out-comes. Various approximations have been developed, and multiple methods
can be used, including the Markov chain approximation (MCA) and stochastic gradient
approximations, which is another method for estimating the posterior distribution in
BNNs. MCA approximates the posterior distribution as a Markov chain, with each iteration
of the chain representing a sample from the posterior distribution [20]. MCA can be
used in combination with other methods, such as Monte Carlo methods, to improve the
accuracy of the posterior estimates. MCA is computationally efficient and can be applied to
large and complex models, making it a popular choice for BNNs [21]. The Hamiltonian
approximations in [22] are attributable to multiplicative normalizing flows, stochastic batch
normalization, maximal softmax approximations, and qualified confidence estimations,
including deep ensembles to fit NNs into BNN. In some instances, deterministic networks’
weight parameters are replaced with the prior distribution of the same parameters, and then
the networks’ weights are optimized directly. Although this basic model works reasonably
well, the assumptions are not as good Although this fundamental model functions well,
the underlying assumptions are not as sound for more complex problems. The basic model
assumes, for instance, that the prior distribution over the parameters is a simple Gaussian
distribution, which may not be acceptable for complex, high-dimensional parameter spaces.
Batch normalization is a technique used to improve the training and generalization of
deep neural networks. It was introduced by Sergey Ioffe and Christian Szegedy in their
paper “Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift” in 2015 [23]. The technique works by normalizing the inputs to each layer
of the network, reducing the internal covariate shift. The internal covariate shift refers to
the change in the distribution of the activations within the network during the training
process. Batch normalization helps reduce this shift by normalizing the activations for each
mini batch during training, which can help stabilize the training process and improve the
overall accuracy of the model.

Various techniques have been proposed in medical image classification to detect
tuberculosis (TB) in chest X-rays (CXRs). [24] presents a wavelet transform-based approach
as an alternative to conventional handcrafted feature extraction methods. The authors
gather line profiles from CXRs and apply a one-dimensional discrete wavelet transform to
obtain Daubechies coefficients, which are then used as features for TB identification.

In Ref. [25], an automated method for detecting TB in CXRs using texture patterns is
described. The lung fields are divided into sections and evaluated individually. Multi-scale
filter banks extract different texture features, such as the second, third, and fourth moments.
The k nearest neighbors (K-NN) method is then employed to categorize texture patterns
ranging from average (0) to abnormal (1).
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Ref. [26] proposed using a histogram of oriented gradients (HOG), Gabor, and gist
features for TB diagnosis in CXRs without segmentation. The results showed that the
extracted features outperformed the gray-level co-occurrence matrix (GLCM) textural
features in discriminating between TB and non-TB CXR images. In Ref. [27], a collection
of feature extraction algorithms (e.g.; shape and texture features) were created using a
wrapper-based feature selection approach to distinguish between normal and TB CXR lung
images. The authors obtained an accuracy of 78.3% and an area under the curve of 0.87
for the Montgomery dataset, an accuracy of 95.57%, and an AUC of 0.99 for the Shenzhen
dataset.

In Ref. [28], deep learning-based approaches were employed to classify X-ray im-
ages for TB detection using an ensemble of three pre-trained CNNs (ResNet50, VGG19,
and InceptionV3). The images were preprocessed by horizontal mirroring and applying
histogram equalization or CLAHE.

Ref. [29] utilized an ensemble of finely tuned CNNs to classify medical images from
the subfigure classification dataset of the ImageCLEF 2016 collection. The authors create
a novel feature extractor by fine-tuning the CNN architectures AlexNet and GoogleNet,
combined with SoftMax and one-vs-one multi-class SVM classifiers.

Ref. [30] suggested using lung area symmetry to identify pulmonary problems. Ab-
normal posteroanterior chest radiographs (CXRs) are likely to show changes in the lung
content (textures), size, and shape, which are examined using edge plus texture features
and multi-scale shape features. The classification architecture is a blend of multilayer
perception neural networks (MLP), Bayesian networks, and random forests based on a
voting system. The approach has a detection accuracy of 91.0% and an AUC of 0.96, based
on data collections as seen in Table 1.

Table 1. Performance Metrics for Various Machine Learning Models in Lung Cancer Detection and
Classification.

Method Dataset Accuracy Reference

3D CNN unsupervised
learning model LUNA Ineffective (10%

training) Moitra and Mandal (2020) [31]

Supervised CNN predictor Real-time non-SCLC patient
data 71% AUC (Insufficient) Yu et al. (2020) [32]

3D-CNN LIDC-IDRI, LUNA 16, 91.12% Polat and Danaei Mehr (2019) [33]

DenseNet model 201 lung scans 90.85% Fathalla et al. (2022) [34]

Deep Learning Histopathological pictures 96.33% Masud et al. (2021) [35]

CNN-RNN hybrid network
model for EGFR mutation
status evaluation

LIDC-IDRI 94.78% Lin et al. (2022) [36]

Computer-aided diagnosis
support system for lung
nodule diagnosis (3D-DCNN)

LUNA16, ANODE09, 88.21% Wang et al. (2020) [37]

Binary particle swarm
optimization with decision
tree (BPSO-DT) and CNN for
cancer tissue detection

Super Bowl Dataset 2016 76.73% (insufficient) Kasinathan at al. (2022) [38]

Tobacco exposure pattern
(TEP) classification model

Two independent LUAD
datasets

94.65% (training), 91.85%
(validation) Ryu et al. (2021) [39]
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3. Materials and Methods

This section aims to provide a comprehensive overview of a lung cancer diagnosis
method, its underlying techniques and procedures, as well as the recent advancements
and challenges in this field. The primary objective is to evaluate the potential of using
uncertainty quantification (UQ) in the context of medical image analysis, particularly for
the purpose of enhancing the reliability of the diagnostic model.

3.1. Image Dataset

The study focuses on the use of Bayesian deep learning methods, specifically Baresnet,
for the diagnosis of lung cancer. The dataset used in the study was obtained from LIDC-
IDRI, a publicly available database that contains 244,527 images of 1010 cases. The images
were obtained from clinical thoracic CT scans performed by four experienced thoracic
radiologists.

The images were annotated through a two-phase image annotation procedure and
were available in various formats, including scalable vector graphics for screen-reading
devices such as cell phones or tablets and XML for display on a computer or printer. The
images showed extensive thickening of the lung nodules, most of which were concentrated
at 1, 1.25, and 2.5 mm. After pre-processing, the sizes of the pulmonary nodules were
expected to range from 3 mm to 30 mm, with a larger number of benign nodules having a
small diameter and a smaller number of malignant nodules having a larger diameter.

The XML commentary file for each patient made it possible to locate and assess the
degree of malignancy in pulmonary nodules. Four radiologists reviewed the pulmonary
nodules in the XML format and classified the degree of malignancy into five categories:
highly unlikely for cancer, moderately unlikely for cancer, indeterminate likelihood, mod-
erately suspicious for cancer, and highly suspicious of cancer. The first two categories were
classified as non-malignant, while the last two categories were classified as malignant.

Table 2 provides important information about the LIDC-IDRI dataset for lung cancer
detection and diagnosis. Specifically, it outlines the categories used by the four experienced
thoracic radiologists to classify the degree of malignancy in pulmonary nodules, as well as
other key features of the dataset.

Table 2. Characteristics and Features of the LIDC-IDRI Dataset for Lung Cancer Detection and
Diagnosis.

Field Description

Number of cases 1010

Number of images 244,527

Image format Scalable vector graphics (for screen-reading devices such as cell phones or tablets) and XML (for
display on a computer)

Image focus Thickening of lung nodules

Nodule size 3 mm to 30 mm

Annotation Two-phase image annotation procedure by four experienced thoracic radiologists

Categories 5 (highly unlikely for cancer, moderately unlikely for cancer, indeterminate likelihood,
moderately suspicious for cancer, highly suspicious of cancer)

Total images collected 910

Table 2 shows that the degree of malignancy was classified into five categories, ranging
from “highly unlikely for cancer” to “highly suspicious of cancer”. The first two categories
were classified as non-malignant, while the last two categories were classified as malignant.
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3.2. MC Dropweak in Convolutional Neural Networks

In the field of medical image classification, convolutional neural networks (CNNs)
have demonstrated remarkable success. However, a common challenge in training these
models is the risk of overfitting, particularly with imbalanced datasets. To mitigate this
issue, various techniques have been developed, including random sampling and L2 regu-
larization [40]. One such technique is DropOut, introduced by Hinton et al. in 2012, which
is a regularization method that prevents overfitting by randomly dropping out neurons
during the forward pass of each training iteration. This random dropout of neurons has the
effect of making the network more robust and less sensitive to individual neuron weights,
reducing an overfitting risk [41]. The dropped-out neurons are reactivated in the next train-
ing iteration and the process is repeated until the end of training. Another regularization
technique is DropConnect, introduced by Wan et al. in 2013, which operates at the weight
level rather than the neuron level. DropConnect randomly zeroes out individual weights
in the network instead of dropping out entire neurons, reducing their contribution to the
final prediction. The dropped weights can be reactivated in the next training iteration, as
in DropOut [42]. In this study, we employ MC Dropweak, a combination of DropOut and
DropConnect, to address the issue of overfitting. MC Dropweak operates by randomly
dropping out neurons and dropping individual weights, making the network more robust
and reducing the risk of overfitting. Additionally, MC Dropweak resets any weights with
low values to zero, as these are typically associated with noisy inputs and do not contribute
to accurate predictions. The dropped weights and neurons can be reactivated during
training if they are deemed essential to the accuracy of the predictions. MC DropWeak has
been shown to provide better results than either DropOut or DropConnect alone.

Figure 2 shows that the dropout nodes become ineffective. Meanwhile, DropConnect
extends the functionality of DropOut and MC Dropweak combines both by allowing the
nodes to be inactive and activatable as required.

a) b)
c)

Figure 2. Comparison of (a) DropOut; (b) DropConnect and (c) MC Dropweak node activation.

In conclusion, the paper describes different techniques for preventing overfitting in
convolutional neural networks (CNNs) for medical image classification. It introduces
DropOut, a regularization method that randomly drops out neurons during the forward
pass of each training iteration, making the network more robust and less sensitive to
individual neuron weights. DropConnect is another regularization technique that operates
at the weight level by randomly zeroing out individual weights, reducing their contribution
to the final prediction. The text then describes MC DropWeak, which combines DropOut
and DropConnect, and has been shown to provide better results than either method alone
by making the network more robust and reducing the risk of overfitting. The dropped
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weights and neurons can be reactivated during training if deemed essential to the accuracy
of the predictions.

3.3. Bayesian Neural Networks

The Bayesian classifier is a probabilistic method of classification that calculates the
threshold parameters systematically through computation, as opposed to relying on a
heuristically determined rule. It categorizes a pixel, x, as belonging to the sputum region if
the probability of it being background (p(bg|x)) is lower than the probability of it being
sputum (p(sp|x)). While traditional deep learning (DL) techniques have shown success in
various real-world problems, they lack the ability to provide a measure of their predictions’
reliability. To address this issue, we utilized a Bayesian neural network (BNN) in our
study. BNNs are models that incorporate probabilistic reasoning and represent random
variables as independently and identically distributed inputs and one-hot encoded categor-
ical outputs. BNNs can also identify uncertainties in classification problems and generate
probabilistic predictions by computing complex mathematical computations. There are
two types of uncertainty, aleatoric and epistemic, and the BNN model is formulated by
considering the posterior distribution p(X, Y) through the prior distribution, likelihood, and
posterior steps, such as building an alpha-level Bayesian belief network (BBN) model. The
posterior distribution provides information about the uncertain quantities in the Bayesian
analysis as seen in Equation (1).

p
(

x̂, X, Y
)
=
∫

P
(

x̂, w
)

P
(

X, Yˆ
)

dw (1)

The equation in question models the joint probability distribution of three variables:
“xˆ “, “X”, and “Yˆ”. It represents the probability of observing these variables simultane-
ously, taking into account the relationship between them and a fourth variable “w”. The
joint probability distribution is calculated as an integral over all the possible values of “w”.
The integrand, P(xˆ,w)P(X,Yˆ), is the product of two probability distributions. The first,
P(xˆ,w), represents the joint probability of observing the variables “xˆ” and “w”, while the
second, P(X,Yˆ), represents the joint probability of observing the variables “X” and “Yˆ”.
The result of the integration is the joint probability distribution of all three variables “xˆ”,
“X”, and “Yˆ”, considering the relationship between these variables and the variable “w”.
This relationship between the variables can be interpreted as a form of uncertainty present
in the system, which is represented by the variable “w”. The mutual information present
in p(xˆ,X,Y) is taken into account in the calculation of the joint probability distribution. It
is important to note that averaging the predictions from an ensemble of neural networks
based on the posterior distribution results in the same outcome as the distribution p(w|X,
Y). In other words, using an ensemble of neural networks allows us to incorporate the
uncertainty present in the system and improve the accuracy of our predictions. This serves
as a measure of bias-corrected epistemic uncertainty, reflecting the heterogeneity in the
weight configurations predicted by the NNs, which depend on the estimated posteriors.
This approach extracts an approximation of the finite bias from the population through
entropy leave-one-out estimators, leading to a significant reduction in bias. The leave-
one-out estimator is a resampling method used to evaluate the performance of a model
by iteratively leaving out one sample and training the model on the remaining data. The
prediction for the left-out sample is then compared with the actual value to compute the
error. This process is repeated for each sample in the dataset and the errors are aggregated
to obtain a measure of the model’s performance. In the context of Bayesian neural networks,
the leave-one-out estimator can be used to estimate the finite bias present in the population
by removing one sample at a time and computing the entropy of the predicted probabilities.
This provides an approximation of the population’s bias, which can be used to reduce the
overall bias in the predictions made by the NNs.
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3.4. Proposed Baresnet Model

This study aims to address the challenge of overfitting in medical image classifica-
tion by utilizing transfer learning on a small dataset of CT scans. Specifically, the study
fine-tunes a pre-trained ResNet-based Baresnet model, which includes a fully connected
layer on top of the base ResNet layer and MC DropWeak for model uncertainty estimation.
The study uses a combination of the Naïve Bayes classifier and ResNet to create Baresnet.
The Naïve Bayes classifier is a straightforward probabilistic classifier that performs well
with categorical variables, while ResNet is a deep learning neural network architecture for
“Residual Networks.” The key innovation behind ResNet is the use of residual connections,
which allow information to bypass multiple layers in the network and prevent vanishing
gradients. The study also highlights the importance of the learning rate, a critical hyper-
parameter that determines the speed and convergence of the model. The environment for
training these models typically involves a computing system with a GPU for acceleration
and a large dataset of medical images, along with corresponding labels, for training and
testing purposes.

The environment for training these models would typically involve a computing
system with a GPU for acceleration and a large dataset of medical images, along with
corresponding labels, for training and testing purposes. The learning rate is a crucial
hyperparameter that determines the speed and convergence of the model. It is often
set through trial and error and can significantly impact the model’s performance. To
prevent overfitting, the study split the CT scan dataset into training (80%), testing (10%),
and validation (10%) sets and performed real-time data augmentation. The images were
rescaled to 256 × 256 pixels and standardized using the mean and standard deviation of
the dataset. The study used the Adam optimizer with a learning rate of 1 × 10−5 and a
factor of 0.2 and set the batch size to 16. The experiment was run for 750 epochs, and the
validation accuracy was assessed after each epoch.

MC DropWeak was applied during training and Baresnet conducted Monte Carlo
(MC) sampling by feeding the input image MC samples of 10, 25, and 50. MC DropWeak
was added to the outputs of the FCL, allowing the model to dynamically change the drop
probability per weight. The performance activation formula was expressed as follows in
Equation (2).

∑ f
M(((M,�, W), x)) ≈ f

(
∑ f

M, ((M,�, W), x)
)

(2)

The equation is related to the Monte Carlo method. The Monte Carlo method is a
statistical method that uses random sampling to estimate a function’s value or solve a
problem. In the context of the equation provided, the matrices “M” and “W” are used to
generate multiple random realizations of some underlying process, and the function “f ” is
used to map these realizations to some output. The equation then approximates the output
of “f ” by taking the sum of the product of the matrices “M” and “W” for each realization
and applying the function “f ” to the result. The approximation in the equation is based on
the law of large numbers, which states that the average of a large number of independent
random variables converges to their expected value. The approximation assumes that the
sum of the product of the matrices “M” and “W” for each realization represents a large
number of independent random variables and that the result of the sum is close to their
expected value.

The M-bit binary string is mapped to the truth table representation of the function.
The p-bit mask encodes the connection information drawn from a Bernoulli distribution
with probability p. The weight between the jth neuron in layer l-1 and the ith neuron in layer
l is represented by W(l)

ij . The drop probability of the weight associated with W(l)
ij being set

to 0 is represented by ρ
(I)
ij . The proposed Baresnet model is depicted in Figure 3, displaying

the architecture of the model.
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Figure 3. Proposed Baresnet model architecture: A study on uncertainty quantification in lung cancer
diagnosis.

The Bernoulli distribution is a fundamental concept in probability theory that has
widespread applications in various fields, including statistics, machine learning, and data
science. In its simplest form, the Bernoulli distribution models the probability of success
and failure in a binary event, where success is represented by a value of 1 and failure is
represented by a value of 0. The Bernoulli distribution is defined by a single parameter, p,
which represents the probability of success. The probability of failure is simple (1 − p).

The study demonstrates the effectiveness of transfer learning and MC DropWeak
in addressing the challenge of overfitting in medical image classification. The study
also highlights the importance of hyperparameters, such as the learning rate and the
use of real-time data augmentation to prevent overfitting. The study provides insights
into the use of ResNet and Baresnet architectures for medical image classification and
their applications in the automated classification of lung cancer tumors using CT images.
DropOut, DropConnect, and MC DropWeak are regularization techniques used to mitigate
overfitting in CNNs. In medical image classification, MC DropWeak has been shown to
provide better results than either DropOut or DropConnect alone. ResNet and Baresnet
are deep learning architectures used in medical image classification, particularly for the
automated classification of lung cancer tumors using CT images. The SoftMax layer
generated the classmark probability distribution.

Figure 3 depicts the architectural configuration of a neural network, which consists
of two components: Baresnet Block 1 and Baresnet Block 2. Baresnet Block 1 is directly
connected to MC Dropweak, while Baresnet Block 2 is connected to UQ. The MC Dropweak
technique is applied to the first block, as only one block is required to implement MC
Dropweak. On the other hand, the second block is placed directly into the model, without
undergoing any pre-processing step. Furthermore, Block 2 is subjected only to the DropOut
regularization technique.

Uncertainty Quantification

Uncertainty quantification (UQ) [43] is an important aspect of machine learning (ML)
applications, particularly in medical imaging. In the field of lung cancer, the use of UQ
in combination with ML models can provide valuable information about the degree of
certainty in diagnosis and treatment decisions.
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In ML, it is common to distinguish between two types of uncertainty: epistemic
and aleatoric. Epistemic uncertainty refers to the uncertainty in the model parameters,
which can be reduced with more training data. Aleatoric uncertainty, also known as
data uncertainty, captures the observation noise and cannot be reduced with more data
collection, but may be reduced with a more accurate sensor output. CT scans, commonly
used in the diagnosis of lung cancer, have an epistemic degree of uncertainty that can be
characterized using alternative probability distributions for discrete random variables and
probability density functions for continuous variables.

Data used in ML models are often small, incomplete, noisy, and multimodal, leading
to a high degree of uncertainty in predictions made without proper UQ analysis. To achieve
reliable results in DL, it is important to use the most robust and varied databases available,
and to use UQ to understand the limitations of the model and the data used. The DL
models used in lung cancer diagnosis and treatment, such as Baresnet, are structured
to achieve specific performance targets, and the teaching process is replicated with new
learning conditions to optimize the performance.

In conclusion, UQ is essential in ML applications in lung cancer, providing valuable
information about the degree of certainty in diagnosis and treatment decisions. By charac-
terizing and quantifying uncertainty in the data and the models used, we can improve the
reliability and accuracy of ML-based predictions in lung cancer.

In the context of lung cancer, CT scans are commonly used for diagnosis and can have
significant amounts of uncertainty associated with them. This uncertainty can stem from
both the data itself and the models used to analyze the data. For instance, the CT scans
may be noisy or of a low resolution, and the models used may not be well-calibrated or
may not have seen similar data during training.

By incorporating UQ techniques, we can account for both aleatoric and epistemic
uncertainty in the CT scans and models. For example, probabilistic models can be used to
represent aleatoric uncertainty by capturing the inherent noise in the observations. Mean-
while, Bayesian models can be used to represent epistemic uncertainty by characterizing
our uncertainty about the model parameters.

Additionally, UQ can also play a crucial role in model selection and validation. By
quantifying uncertainty in the model predictions, we can better understand the reliability
of different models and choose the one that is best suited for the task at hand. This can also
help us identify cases where additional data or improved models are needed to achieve
accurate predictions.

Overall, the use of UQ in ML applications for lung cancer can help improve the
accuracy and reliability of diagnosis and treatment decisions. By taking uncertainty into
account, we can develop more robust and trustworthy ML-based tools for lung cancer
diagnosis and treatment.

4. Experimental Results

In this study, we applied various methods to quantify the uncertainty in the predictive
models used for lung cancer diagnosis and treatment decisions. These methods included the
use of a predictive uncertainty estimator which measured the average standard deviation
of the class probabilities for each class. However, this approach was not sufficient as it did
not capture the full extent of uncertainty in the classification. To overcome this limitation,
we introduced Bayesian methods for the estimation of uncertainty, using MC Dropweak
during both the training and testing steps.

Additionally, we studied two methods for measuring uncertainty in classification
tasks: a tractable, dynamic model of mutual information (MI) and a bias-corrected model
of MI. MI is a well-known measure of uncertainty that tests the difference between a
prediction and the posterior distribution of a model’s parameters. We used the entropy of
the predictive distribution as an uncertainty metric to compare the results of our approach
with those of other competitors.
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Moreover, the optimization process not only helps to improve the accuracy of the
predictions but also provides valuable information about the confidence in the predictions.
This information is crucial in the context of medical applications as it can help to guide
diagnosis and treatment decisions. In conclusion, incorporating UQ in the training process
of the Baresnet model for lung cancer detection allows for a better representation of the
inherent uncertainty in the data and the models, resulting in an improved reliability and
accuracy of ML-based predictions.

Overall, the uncertainty estimation of the Baresnet model’s predictions is the sum of
two terms: the true mean of the system and the uncertainty caused by the uncertainty in the
process and the error in the model itself. This highlights the importance of incorporating
UQ in ML applications for lung cancer, as it provides valuable information about the degree
of certainty in diagnosis and treatment decisions and helps to improve the reliability and
accuracy of ML-based predictions, as seen in Equation (3).

Ha(y1, . . . yn | x1, . . . xn) = Eq(w|θ)[H(y1, . . . yn | x1, . . . xn, w)] (3)

Equation (3) seeks to optimize the mean reciprocal knowledge between the prediction
made by the model and its posterior distribution. Essentially, it represents the amount of
information gained about the model’s parameters by observing the model’s predictions
for a given sample. The mutual information (MI) between the model’s output (y) and
its parameters (w) is calculated using the model’s epistemic uncertainty. The first term
of the equation represents the entropy of the model’s predictions, which is critical when
the predictions are inaccurate. The second term estimates the comparison between the
entropy of the model’s predictions and the estimated posterior, taking into consideration
the model’s parameters. This term, however, is unreliable in reflecting the model’s ability
to account for the uncertainty associated with predictions made based on the estimated
posteriors and weight configurations.

Figure 4 illustrates the distribution of the potential values, which is influenced by the
sample size and demonstrates significant levels of bias.

Figure 4. Comparison of Baresnet model’s predictive uncertainty with and without MC Dropweak.

As illustrated in Table 3, the Baresnet model demonstrated impressive results in
its performance metrics. The average sensitivity was recorded at 91.32%, the precision
was 87.38%, the accuracy was 90.44%, the specificity was 89.59%, and the F1-score was
87.88%. The best results were achieved through k-fold validation, where the highest scores
were obtained in the sensitivity (98.82%), precision (91.68%), accuracy (97.19%), specificity
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(92.56%), and F1-score (97.47%). The data in Table 3 highlights the effectiveness of the
Baresnet model in accurately classifying lung CT scans.

Table 3. Evaluation of Baresnet model performance metrics.

Fold Sensitivity Precision Accuracy Specificity F1-Score

K-fold_1 90.47 88.43 88.78 89.57 91.15

K-fold_2 84.56 89.29 88.57 87.49 89.92

K-fold_3 95.28 90.15 91.41 85.88 84.56

K-fold_4 98.82 91.68 97.19 92.56 97.47

K-fold_5 82.13 80.46 91.78 85.98 85.16

K-fold_6 94.38 89.44 96.55 89.47 98.28

K-fold_7 89.97 82.89 87.38 94.86 82.74

K-fold_8 89.75 85.69 86.94 90.67 80.34

K-fold_9 96.56 88.47 85.36 89.85 81.38

Average 91.32 87.38 90.44 89.59 87.88

To incorporate uncertainty quantification (UQ) in the Baresnet model, we employed
MC Dropout and a Bayesian neural network (BNN). The results of the model’s loss and
accuracy are visualized in Figure 5. This step was crucial to complete the classification
research, as reporting predicted uncertainty estimations is important in this domain.

Figure 5. Performance evaluation of the proposed model: accuracy and loss values.
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In Figure 5, the performance of the proposed model is demonstrated through the
presentation of its accuracy and loss values. The blue curve represents the loss values,
while the orange curve displays the accuracy of the model. The analysis was conducted on
all CT images, and the predictions were sorted based on their corresponding PH values.
PH values, also known as the probability of hit, are commonly used in the field of signal
processing and machine learning to evaluate the accuracy of binary classifier models. The
PH value represents the proportion of positive predictions (hits) that are correct among all
the positive predictions made by the model.

In the context of the study presented in Figures 5 and 6, PH values were used to
sort the predictions made by the model on the CT images. By analyzing the predictions
based on their associated PH values, the researchers were able to evaluate the model’s
performance and calculate the accuracy threshold. The ROC curve in Figure 6 provides
a visual representation of the model’s ability to distinguish between positive and neg-
ative predictions, and the AUC value quantifies the overall accuracy of the model in a
single numerical value. It is important to note that PH values can be used in conjunction
with other performance metrics, such as the sensitivity, precision, and F1-score, to gain a
comprehensive understanding of a model’s accuracy and performance.

Figure 6. Grad-CAM visualization of model predictions on CT images.

The predictions were then evaluated for their uncertainty levels, and the accuracy
threshold was calculated for values of 0.3 and 0.5.

Figure 6 provides further insight into the performance of the proposed model through
the depiction of the receiver operating characteristic (ROC) curve. The area under the curve
(AUC) value is 97.19, indicating a strong correlation between the level of uncertainty in
the model’s predictions and its accuracy. This result highlights the effectiveness of the
proposed model in accurately classifying lung CT scans.
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In Figure 6, three visualizations are presented to further demonstrate the performance
of the proposed model. Figure 6a showcases the original CT image used in the analysis.
Figure 6b provides a representation of the Grad-CAM map, which was generated using
Monte Carlo Dropweak. Grad-CAM is a technique used to visualize the regions of the
image that contribute most to the model’s predictions. The Grad-CAM map highlights
the regions of the image that have the highest impact on the model’s decisions. Finally,
Figure 6c displays the high-resolution attentional regions generated using Baresnet and
Monte Carlo Dropweak. These regions provide a detailed view of the model’s focus
and attention when making predictions and allow researchers to better understand the
reasoning behind the model’s decisions. Together, these visualizations provide a valuable
insight into the inner workings of the proposed model and how it processes and analyzes
CT images to make predictions.

Figure 7 displays the performance of the Baresnet model in the form of a receiver
operating characteristic (ROC) curve, widely used to assess the effectiveness of classification
models. The high accuracy of the model is evident from the curve, which shows an area
under the curve (AUC) of 97.19. This implies that as the model’s true positive rate increases,
so does the accuracy of its predictions.

Figure 7. Baresnet model ROC curve and accuracy rates.

Moreover, Figure 7 also visualizes the level of uncertainty in the model’s predictions
using a heat map. The darker colors on the map correspond to higher uncertainty levels,
indicating that the model faced difficulty arriving at a consensus on the predicted label for
samples located in regions of high color intensity. This indicates that the model experienced
high predictive uncertainty in such instances.
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Distribution of Uncertainty Estimates

As displayed in Figure 8, the distribution of the AUC appears to be multimodal,
meaning that there are multiple peaks or modes present. These modes are seen to be close
to 0.24 units, which indicates that the distribution is not uniform.

Figure 8. Distribution of estimated aleatoric uncertainty.

Multimodality in the distribution of AUC is often the result of incorrect classifications.
This can arise from the presence of irreducible homoscedastic and heteroscedastic noise in
the data, which refers to random fluctuations in the measurement that cannot be reduced
through repeated measurements. This type of noise can lead to inaccuracies in the model’s
predictions, causing the distribution of the AUC to be multimodal. As a result, it is
important to identify and address the sources of such noise to improve the performance
and accuracy of the model.

Figure 8 provides a clear representation of the distribution of the estimated aleatoric
uncertainty in the predictions made by the Baresnet model. The regularity of the epistemic
uncertainty distribution and the concentration of correct predictions at the lower end of
the uncertainty scale suggest that the model is performing well in terms of uncertainty
estimation.

Table 4 provides a comparison of the results obtained by various state-of-the-art
methods applied to several datasets. The results are presented in terms of sensitivity and
precision (or AUC). The first column of the table lists the authors of the studies, and the
second column lists the datasets used in each study. The third column of the table lists the
methods used to analyze the data, including 3D DL, V-Net architecture, VGG16, ResNet50,
CNN, Gaussian blur, Otsu thresholding, watershed transform, 2D CNN, RCNN, deep
belief network, Boltzmann machine, extreme learning machine, and deep transfer. The
fourth column lists the sensitivity and precision (or AUC) results obtained by each method.

The results show that Baresnet with the MC Dropweak method achieved a sensitivity
of 98.8 percent, surpassing other typical ML techniques, such as 2D CNN and RCNN, CNN,
deep belief network, Boltzmann machine, extreme learning machine, and deep transfer,
which demonstrated lower sensitivity results ranging from 82.2 to 97.9 percent. The results
also indicate that Baresnet with the MC Dropweak method is more effective than other
typical ML techniques and outperforms the other state-of-the-art methods, including those
that use V-Net architecture, VGG16, ResNet50, Gaussian blur, and Otsu thresholding.
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Table 4. Comparison to the state of the art with 4K-ESA.

References Datasets Method Result (%)

Bhattacharyya et al. (2022) [44] LUNA 16 3D DL, V-Net architecture Sensitivity: 96.5

Al-Shabi et al. (2019) [45] ACDC LUNGH VGG16, ResNet50, CNN Sensitivity: 97.9
Specificity: 93

Chaturvedi et al. (2021) [46] LUNA-16 Deep Learning dice coefficient: 88.89%

Gwenzi et al. (2021) [47] UCI Gaussian blur, Otsu
thresholding

Sensitivity: 87
Specificity: 97

Yu et al. (2021) [48] LUNA16 3D and 2D CNN Precision: 87
Specificity: 99.1

Shen et al. (2022) [49] LoDoFanB NeRP AUC: 0.89

Pan et al. (2019) [50] LIDC-IDRI CNN, deep belief network,
Boltzmann machine

Sensitivity: 82.2
AUC: 81.8

Huang et al. (2020) [51] LIDC-IDRI CNN, extreme learning
machine and deep transfer

Sensitivity: 91.6
Specificity: 86.5

4K-ESA NCA Baresnet Sensitivity: 98.8
Specificity: 97.1

5. Conclusions and Future Work

In this study, a modified version of Baresnet was used for the detection of lung
cancer in CT scan images. The model was designed to provide two forms of quantifiable
uncertainties, which were aleatoric uncertainty and epistemic uncertainty. The results
revealed a strong correlation between the model uncertainty and prediction accuracy,
indicating the significance of incorporating uncertainty quantification techniques.

Comparing Baresnet with other existing studies and popular deep learning methods,
we found that Baresnet outperformed other techniques, especially when uncertainty quan-
tification was incorporated. Our study highlighted the potential of the novel Baresnet
architecture with uncertainty quantification techniques in improving the accuracy and
diversity of the data samples for lung cancer detection.

It is important to note that the use of traditional uncertainty estimation techniques is
limited in accurately estimating uncertainty in lung segmentation, and our study demon-
strates the advantages of using Baresnet with uncertainty quantification techniques in
improving the reliability and trustworthiness of the predictions. As a limitation, it should
be noted that in this study, we only tested our modified Baresnet model with one dataset
for lung cancer classification. Although we have demonstrated promising results, the
performance of the model on other datasets may vary. Future studies could investigate the
generalizability of the model with different datasets and further validate the effectiveness
of the uncertainty quantification techniques.

In conclusion, this study demonstrates the potential of Baresnet with uncertainty
quantification techniques in improving the accuracy of lung cancer detection. Future
work will explore other model architectures to further improve the quality of epistemic
uncertainty estimates. The findings of this study have significant implications for the
clinical use of deep learning in lung cancer detection and can contribute to better patient
outcomes.
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