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Abstract: Alzheimer’s disease (AD) is a slow neurological disorder that destroys the thought process,
and consciousness, of a human. It directly affects the development of mental ability and neurocog-
nitive functionality. The number of patients with Alzheimer’s disease is increasing day by day,
especially in old aged people, who are above 60 years of age, and, gradually, it becomes cause of their
death. In this research, we discuss the segmentation and classification of the Magnetic resonance
imaging (MRI) of Alzheimer’s disease, through the concept of transfer learning and customizing of
the convolutional neural network (CNN) by specifically using images that are segmented by the Gray
Matter (GM) of the brain. Instead of training and computing the proposed model accuracy from the
start, we used a pre-trained deep learning model as our base model, and, after that, transfer learning
was applied. The accuracy of the proposed model was tested over a different number of epochs, 10,
25, and 50. The overall accuracy of the proposed model was 97.84%.
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1. Introduction

Alzheimer’s disease (AD) is a slow neurological disorder that destroys the thought
process, and consciousness, of a human. It directly affects the development of mental
ability and neurocognitive functionality [1]. AD is more common among older people,
and sometimes it becomes the primary cause of their deaths [2,3]. People who have other
medical problems at later age, such as diabetes, cardio-problems, and hypertension [1], are
at higher risk of developing Alzheimer’s disease. There is no complete treatment for AD
disease. However, early detection of this disease can help in taking preventative action
at an early stage and can improve the symptoms of AD [4]. It is a primary reason for
dementia in the elderly, due to the destruction of neurons related to the human memory [4],
and to questioning, and learning functions [5]. This neurological disorder starts with
slow deterioration and symptoms worsen with each passing day [6]. Memory issues are
generally one of the first symptoms of AD [2], although preliminary symptoms may also
vary from individual to individual [3]. Changes in different factors of thinking, inclusive of
locating the proper words, spatial issues, and impaired judgment, might also become the
early symptoms of AD [7]. The initial stage of mild cognitive impairment (MCI) is an early
signal that a human may be an AD patient [8]. The number of AD patients is increasing
day by day and it is expected that one out of eighty-five humans could be suffering from
Alzheimer’s disease by 2050 [9,10].

The progression of Alzheimer’s disease can be diagnosed using clinical measures,
but it is a very time-consuming process and expert persons are required to detect the
symptoms [11,12]. Early diagnosis is very difficult to assess by an expert person, unless
symptoms become very obvious. Early detection of AD can assist in lowering the risk of
neuron disorder [13,14]. Early diagnosis can ensure that the patient is aware of the need to
take precautionary measures to lower the risk of advancement of the disease from MCI to
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AD [1]. In recent times, different machine learning and deep learning methods have been
proposed for the prediction of the stages of AD through self-regulating analysis of magnetic
resonance imaging (MRI) images, which provide efficient and improved diagnosis results
for AD [14–16]. The major factors, or parameters, that researchers use are the cortical
thickness of the human brain, gray matter (GM) density in the brain, ventricle expansions,
and brain shrivel. Many research studies claim that a correlation exists between grey matter
reduction and certain brain diseases, like Alzheimer’s disease [13]. The hippocampus is
the part of the brain that is affected at the initial stage of Alzheimer’s disease. White matter
(WM), gray matter (GM), and cerebrospinal liquid are the major and most primitive tissues
in human brain images. Out of these three fundamental tissues of the brain, researchers
have discovered that GM shrivel corresponds more with corporeal diminishment in mild
cognitive impairment [17].

Different statistical and machine learning methods, such as Support vector machine
(SVM) [18] are used for automated recognition of Alzheimer’s disease. Lately, deep learning
techniques, such as CNN and sparse auto-encoders, have surpassed the SVM learning
techniques [11]. There are some limitations to using deep learning methods. The training
from scratch of deep learning models requires a lot of computation and a large dataset
of annotated medical images [19,20]. The collection of such a massive amount of medical
images is a bottleneck for researchers. To overcome issues of large dataset requirements
and computational issues associated with complex methods, the transfer learning approach
can be used for different medical imaging modalities. Transfer learning is very useful,
even for cross-domain applications, such as the fact that a model trained on images of
natural things could be used for medical images, like X-rays, CT scans, MRIs, and many
others [21]. The idea behind transfer learning is to utilize a pre-trained model on a new,
small image, dataset of a different nature [22,23]. Transfer learning is an emerging deep
learning technique in which an architecture devised for one task is reused as the initial
point for a second task. The important motive behind transfer learning is the saving of
knowledge attained while resolving a specific dilemma, followed by applying that gained
knowledge to solve different problems.

In this research, a CNN-based transfer learning technique is used for the classifica-
tion of neuro–medical AD scans into the following four categories: Alzheimer’s disease
(AD), late mild cognitive impairment (LMCI), mild cognitive impairment (MCI), and
normal cognition (NC). The elemental motivation for using transfer learning was to for-
ward the features extracted from natural brain images to AD images, and to investigate
a new approach for the categorization of AD that could be helpful for clinicians in proper
diagnosis and decision-making. In this way, the patient can be guided in taking precau-
tionary measures to lower the risk of MCI progressing to AD. The main objective is to
produce improved results, even when using a small-sized dataset. Transfer learning gives
us the flexibility to drastically reduce training time by reusing pre-trained models for
new data and for obtaining better results without over-fitting. The proposed model uses
a deep learning architecture as a base model where the last few convolutional layers are
retained and then merged with fully connected layers. By applying the transfer learning
approach with retraining of the last two layers, promising results are obtained on multi-
class categorizations, such as AD, LMCI, EMCI, MCI, and NC. This research is primarily
based on two-dimensional Gray matter (GM) images of the human brain, that are extracted
from raw Magnetic resonance images (MRIs), these being more helpful in the detection of
the early stage of AD. As illustrated in Figure 1, the MRI scans of the patients are converted
to 2D slices in the pre-processing step, where the GM slices are focused for the extraction
and training of the proposed model.

The major research contributions are mentioned below:

• A customized convolutional neural network with transfer learning is proposed for the
classification of Alzheimer’s disease.

• A new corpus, consisting of four different types of AD, is developed. Each type
consists of 1254 images.
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• Extraction of 2D GM slices, using “SPM12”, which is very familiar in medical
image pre-processing.

• Higher accuracy, 97.84%, with a lower number of epochs, is achieved for the multi-
class classification of AD.

Figure 1. MRI to 2D GM slice.

The rest of the paper is organized in such a way that Section 2 describes the background
of the techniques used in this research. Section 3 provides a detailed view of the related
work, in which some related techniques of AD classifications are discussed. Section 4
describes the methodology and details of the experimental results. Section 5 elaborates the
discussions, while section 6 contains the conclusion of the research and future directions.

2. Background

Early diagnosis of Alzheimer’s disease can assist in lowering the peculiar disorder of
the neurons. In this research, a model that takes a 2D GM slice as input to classify the stage
of AD is discussed. A brief introduction for each of the basic concepts used in this research
is provided below.

2.1. Convolutional Neural Network

Among many algorithms that enable a machine or a computer to train, perceive and
learn for different medical classification problems, one is the convolutional neural network
(CNN) [11,15,16]. CNN has revolutionized machine learning and artificial intelligence
domains to make them akin to human brains. One of the important features of CNN is
its characteristics of learning the features of images with training. In the human brain,
the neurons are attached to each other in a specific pattern. CNN models are designed in
the same manner. CNN models are multi-layered structures that perform in a group. The
design of CNN comprises the following four kinds of layers [24]:

• Convolution
• Pooling
• Fully Connected
• Softmax

2.2. Transfer Learning

Transfer learning is an emerging deep learning technique in which an architecture
trained for one task is reused as the initial point for a second task. The basic motivation
behind this concept is to reduce training time, and to overcome issues associated with
the need for large training sets. Pre-trained models are used for new problems without
compromising the performance results.

2.3. Gray Metter

Gray matter and white matter are the two major tissues of which the central nervous
system is composed [2,3]. Gray matter is the main part of the brain that is used to process
information sent in the form of signals by the sensory organs of the human body.
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2.4. DenseNet

DenseNet is an efficient variant of a convolutional neural network, in which each
layer has extra inputs from all previous layers and forwards its very own characteristic
maps to all the next layers. Due to concatenation, each layer in the DenseNet obtains
complete and comprehensive knowledge from all previous layers. In this architecture,
each layer obtains extra inputs from all preceding layers and passes on its feature-maps to
all subsequent layers, as illustrated in Figure 2 [25]. Instead of summation, as applies to
ResNet, layers are combined using concatenation. Due to this layer-wise propagation of
knowledge, DenseNet can be thinner and have better computational performance [26].

Figure 2. One Dense Block in DenseNet [26].

3. Related Work

In the paper, [27] a transfer learning approach was introduced by using the two most
famous deep CNN architectures (Inception and VGG16) with the already trained and fine-
tuned weights of ImageNet data. Using a pre-trained model on ImageNet, the researchers
trained the last fully connected layer with a small number of training MRI scans. To
overcome the over-fitting of the small training dataset, image entropy was applied to MRI
images, to extract the most informative portions. An OASIS cross-sectional dataset with
416 subjects was used in an experiment aimed at the binary classification of AD. Five-fold
cross-validation was applied with an 80 percent and 20 percent split between training and
testing in the fully connected layer retraining. To compare the results VGG16 was also
trained from scratch, as well as with transfer learning. Due to the small training set, the
VGG16 trained from scratch performed less well in terms of accuracy, 74.12%, while the
VGG16 with transfer learning provided 92.3% accuracy. Finally, Inception V4 was used
with transfer learning that provided promising results with 96.25% accuracy.

In the paper [28] CNN with LeNet-5 was utilized for the classification of the brain
with AD and the normal brain, by using functional MRI 4D data. In the first step, the 4D
data was transformed into 2D by using the neuroimaging packages Nibabel and OpenCV.
Then, 2D images were labeled as AD vs NC. The LeNet model, based on CNN, was then
used for the binary classification of the images. The results were compared with the famous
support vector machine model and, in contrast to it, the proposed model provided better
results, with 96.86% accuracy.

In the paper [29] a framework with the combination of sparse auto-encoders (SAEs)
and a softmax logistic regression was used, along with autoencoders, to use unlabeled data.
Two data sets, MR and positron emission tomography (PET) from the ADNI database, were
used. The main target of this research was to use SAE for high-level feature selection in
the unsupervised pre-training stage. As a result of two different neuroimaging modalities,
a zero-masking technique was used for the extraction of complimentary details from these
different datasets. Features extracted from SAE, using unsupervised data, were then
manipulated with a softmax regression. The performance of the model was tested on the
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classification of AD. In comparison with other advanced models, like SVM and other deep
learning methods, the proposed model performed very well with 91.4 percent accuracy
just because of its capability to extract features in one setting and its requiring of less
labeled data.

In the paper, [30], a customized 2D-CNN model, with 9 depth-wise separable convolu-
tional and normalization layers, was used, along with Inception V3 and Xception models
for transfer learning. In this research, the classification of AD patients, class imbalance, and
data leakage issues were discussed. The second fully connected layer used the sigmoid
function as an activation function to categorize the data into two classes. An OASIS dataset,
with T1-weighted structural MRI images, was used and the dataset was divided into
3 portions: set 1, set 2, and set 3. Cross-validations with 2-folds, 5-folds, and 9-folds were
applied to the partitioned datasets, respectively. Dataset 1 was used for the prediction
of AD, dataset 2 was used for class imbalance and dataset 3 was used for data leakage
problems. For the AD classification on dataset 1, 45 subjects were used for training and
validation purposes. Stochastic gradient descent (SGD) was used as an optimization algo-
rithm. For loss function, binary cross entropy was used. In comparison with other deep
learning models, the proposed model, which was based on transfer learning, provided
promising results.

In another paper, [31], a deep learning framework with a softmax output layer and
stacked autoencoders are used for the detection of Alzheimer’s disease and its initial stage
MCI. MRI data of 311 patients available on the ADNI database was used. Gray matter
(GM) was extracted from the MRI images, which made the baseline for the detection of
MCI and the CMRGlc patterns using PET. Elastic Net is then used to extract the high-level
features. In individual cross-fold, 90 percent of subjects are used for training and the
rest of the 10 percent for testing. SK-SVM and MK-SVM are considered for comparison
with the proposed model. The model gives 87.76% accuracy in the binary classification of
AD patients.

In another piece of research, [32] AlexNet, a fine-tuned pre-trained CNN, was used
for the binary and multi-class classification of 3D MRI images. The proposed model was
trained on the already pre-processed data in which WM, GM, and CSF were segmented
and, then, the testing of the model was conducted on the unsegmented 3D MRI scans of
the human brain. An OASIS dataset, consisting of 382 subjects, was used for training and
testing. After the training of the proposed model on the segmented dataset, the retrained
convolutional neural network was then used for the validation over the unsegmented 3D
MRI images. For multi-class classification, the proposed model outperformed the binary
classification, with 92.8% accuracy versus 89.6%.

In another paper [33], a modified Siamese CNN model, inspired by Oxford Net
(VGG16), was used for the classification of AD stages. The basic idea behind the proposed
model was to use the augmentation technique, with an extra convolutional layer in VGG16.
Augmentation was applied to an OASIS dataset after the pre-processing phase. Two
parallel layers of modified VGG16 worked for the extraction of the most important features.
Batch normalization was applied to increase the learning rate, which gradually decreased,
due to changing the parameter in individual layers of the CNN model. In comparison
with the other state-of-the-art models, the proposed model provided 99.05% accuracy,
and it also reduced the problems of over-fitting and regularization. In [34], a layer-wise
transfer learning approach and tissue segmentation were used for the classification of
AD. The dataset used in this research was collected from the ADNI database. In the pre-
processing step, the skull stripping, and extraction of GM, WM, and CSF were conducted
using SPM12. The VGG-19 network was customized by modifying the last two fully
connected and classification layers. Instead of freezing the trained fully connected layers,
the researchers divided the model into two groups and then they gradually fixed CNN
layers in different blocks. The training of the proposed model was done on both augmented
and non-augmented datasets. In the first group, 8 CNN layers with 3 max-pooling layers
were kept fixed, and in the second group 12 CNN layers along with 4 max-pooling layers
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were kept fixed. In experiments after the augmentation, the classification results of the
proposed model were 98.73%, 83.72%, and 80% on AD vs NC, EMCI vs LMCI, and other
classes, respectively.

In another paper [14], a cross-model technique, using the transfer learning technique,
was used to reduce the over-fitting problem, while the training was done on a small set of
MRI images. The proposed model was trained on the structural MRI data collected from
the ADNI database and then tested on the DTI dataset. The outcome of the model on the
two different cross-modalities was outstanding, with 92 percent accuracy on NC vs AD,
80 percent on NC vs MCI, and 85 percent on MCI vs AD.

In [16], the deep learning models, GoogLeNet and ResNet, were trained from scratch
on structural MRI data sets available on the ADNI database. The main target of this
research was to segment the gray matter (GM) and then train the CNN networks on these
segmented GM images. The addition of the augmentation layer proved to be a useful step
in the classification of the four stages of AD.

In another research [35], a convolutional network, with some extra parameters like
gender, Mental-state exam score, and age, were trained on different datasets. The first data
set was composed of clinically diagnosed Alzheimer’s patients and the second data set
was extracted from the ADNI. The validation of the model was done on three different
datasets, which included Australian Imaging, Biomarker and Lifestyle Flagship Study of
Ageing, and the National Alzheimer’s Coordinating Center. The outcome of the model on
multi-modal datasets was good in comparison to the other CNN models.

In a paper [36], ResNet18 is used for the classification of AD stages. The main pur-
pose of this research was to utilize the Resting-state fMRI data, extracted from the ADNI
database, which is a very useful neuroimaging technology used for the observation of neu-
rodegenerative diseases. The concept of transfer learning was applied to the convolutional
model, which was trained from scratch. The results of the proposed model were extracted
with and without augmentations. They were also compared with other advanced CNN
models. The outcomes of the proposed model showed promising results in the classification
of AD stages.

4. Methodology

In this research, the segmentation of Alzheimer’s MRI images and their multi-class
classification through transfer learning is proposed. For Alzheimer’s detection through
MRI, Convolution Neural Network (CNN) was customized by using the specific GM-
segmented images of the brain. Instead of training the model from scratch, a pre-trained
deep learning model, Densenet-169, was used as a base model. Gradually, transfer learning
was applied to this base model for Alzheimer’s detection. An overview of the proposed
methodology is illustrated in Figure 3 which shows how MRI images were pre-processed
and GM slices extracted. These GM slices were used for training the pre-trained deep
learner and, finally, multi-class classification was performed.

Figure 3. Proposed model workflow.

4.1. DataSet

The dataset [34], used in this research was acquired from the publicly available
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [37]. In 2004, this dataset
was collected to analyze multiple sensitive techniques on various scanned images, like PET
scan, sMRI, MRI and fMRI, etc. To evaluate the initial stages of Alzheimer’s disease [5]
this dataset is considered a benchmark dataset. It contains images of four categories i.e.,
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Alzheimer’s Disease (AD), Non-Cognitive (NC), Late Mild Cognitive Impairment (LMCI),
and Mild Cognitive Impairment (MCI). Each category has 1254 images in total.

4.2. Data Preprocessing

In preprocessing, a series of steps were applied to the T1 weighted MRI images
extracted from the publicly available database ADNI. For pre-processing, Statistical Para-
metric Mapping 12 (SPM12) was used which is quite often used in practice for medical and
natural images. All the MRI images which were in Neuroimaging Informatics Technology
Initiative (NIfTI) format were pre-processed to identify and extract the Gray Matter (GM)
slices. The proposed model was trained on GM to detect and examine the initial changes in
AD patients. The major steps of pre-processing encompassed segmentation, skull stripping,
spatial normalization, and re-scaling. All the major steps, performed in the pre-processing
of MRI images, are illustrated in Figure 4.

Figure 4. Major Steps of Pre-processing on MRIs.

4.2.1. Skull Stripping

For the morphometric analysis and study of brain MRIs, a preliminary process of
skull stripping was performed, in which the tissues of the brain, i.e., cerebellum and
cortex, were segmented from the surrounding zone consisting of non-brain and skull
area. Among the multiple automated skull stripping approaches [38], the most commonly
used technique, histogram thresholding, was followed by the employment of certain
morphological processes [39]. The morphological procedures included erosion, and were
based on anisotropic filters. The Snake method of contouring was also applied, to remove
the eyes. The gradual process of skull stripping involved background and noise removal,
followed by contour identification of the brain and, finally, refinement of the brain contour.

Head segmentation required noise removal, which was performed with the help of
a threshold level, considering that the maximum noise was generated by Rayleigh proba-
bility distribution. The noise was removed by applying Equation (1):

Rnoise( f ) =
f

σ2 exp(
− f 2

2σ2 ) (1)

where f is the intensity of noise and σ is standard deviation of Rayleigh noise.
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After that, the best-fit Rayleigh curve was subtracted from the histogram volume, as
given in Equation (2):

G( f ) = h( f )− r( f ) (2)

where h( f ) is histogram volume and r( f ) is the best-fit curve. The value for r( f ) was
determined by minimizing error as given in Equation (3):

ετ =
τ−1

∑
f=0

g( f ) +
∞

∑
f=τ

r( f ) (3)

The said procedure produced speckle, which was outside the head region. This error
was removed by using morphological operations in a 5× 5 kernel.

The initial brain mask was generated in three steps. The first one was the smoothing
of the brain and attenuation of non-brain regions for which anisotropic diffusion, given in
Equation (4), was used in a nonlinear way:

∂

∂t
M(x, t) = O.(C(x, t)OM(x, t)) (4)

where M is MRI, x represents its coordinates, t is the iteration step and C(x, t) is the function
for diffusion, given in Equation (5).

Next, the MRI volume was defused with the help of automatic thresholding, and
a diffusion function, given in Equation (5), was used to produce a binary mask:

C(x, t) = exp(−( |OM(x, t)|√
2 f

)2) (5)

where f was constant for diffusion, which was set as 128.
Finally, non-brain regions were removed by using spatial and morphological infor-

mation obtained from the head mask. All the holes within the mask region were filled by
applying binary erosion with kernel size 10 × 10. As a result, the kernel separated the eyes
from the brain. After erosion, all the regions where the centroid was outside the bounding
box were eliminated, which was decided after applying heuristics. After erosion, binary
dilation was applied with the same size as the kernel that was used for erosion. This helped
in recovering the darkest pixels which were eliminated from the edge of the brain, due to
threshold.

Two sample images before and after skull stripping are given in Figure 5 for axial and
sagittal planes.

4.2.2. Segmentation

Segmentation is one of the major steps of pre-processing. For the diagnosis of certain
brain disorders, segmenting brain tissues in Gray Matter (GM), White Matter (WM) and
Cerebrospinal Fluid (CSF) makes the diagnosis process efficient.

The human brain MRI needs to be segmented into three main parts i.e., WM, GM,
and CSF [40]. MRIs are mainly generated with the help of T1 and T2 weighted scan
sequences. The main differences between the two are in Repetition Time (TR) and Time to
Echo (TE), which is shorter for T1 and longer for T2. The contrast and brightness of MRIs
are determined by T1 and T2, which affect the intensity levels of GM, WM, and SCF. For
segmenting brain MRIs in GM, WM and SCF intensity probability distribution (IPD) was
used, along with bias regularization, which was set to an extremely small regularization
value i.e., 0.0001. Cutoff of 60 mm was used as Full Width at Half Maximum (FWHM),
which was considered the width of a line structure at half of its highest amplitude. Figure 6
illustrates the results of segmenting an original brain MRI into GM, WM and SCF.
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Figure 5. MRIs of Axial and Sagittal planes before and after skull striping.

Figure 6. (a) Original (b) Grey Matter (GM (c) White Matter (WM) (d) Cerebrospinal Fluid.

4.2.3. Normalization

Spatial normalization is a process of mapping images containing gray matter to the
same reference space. In this research, Voxel-based morphometry [41] was employed
for spatial normalization. In Neuroanatomy, Voxel-based morphometry measures the
dissimilarity between local tissue clusters of the brain and several other brain images.
The differences are calculated via a voxel-wise comparison between the two brain images
and the images are mapped to a reference brain space. For this purpose, the Montreal
Neurological Institute (MNI) space was used to identify the boundaries around the brain.

4.2.4. Rescaling

After the segmentation of raw MRI images, 256 × 240 shaped data samples were
extracted. All these images were then re-scaled to 224× 224, that were, finally,. used
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to train, test, and evaluate the proposed model. The re-scaling adjusted numbers for
comparing values even if they were out of scope. Furthermore, it reduced the number of
trainable parameters of deep learners and they trained faster.

4.2.5. Smoothing

After rescaling, MRIs were smoothed by applying a 3D Gaussian kernel with voxel
size (2 2 2). Each voxel was updated by the weighted mean value, attained from the adjacent
voxels. The weight was decided based on the Gaussian shape that surrounded the voxel.
The variance or width of the Gaussian curve determined how much smoothing was applied.
With higher variance, more neighboring values were considered in calculating the mean
value, which was expressed as FWHM. Figure 7 illustrates the Gaussian Kernel.

Figure 7. Gaussian Smoothing Kernel.

4.2.6. Augmentation

The last step of data pre-processing was augmentation which was adopted to avoid
over-fitting. For generating augmented MRIs, five augmentation techniques, i.e., rescaling,
rotation, zooming, horizontal flip, and vertical flip, were applied. In re-scaling, images
were re-scaled to a range between 0 and 1 by multiplying each cell with 1

255 . The MRIs
were rotated at 30◦ in an anti-clockwise manner. All the MRIs were also zoomed in with
a ratio of 0.2. Finally, vertical and horizontal flips were applied and, in this way, five
images in total were generated from one pre-processed MRI. Figure 8 illustrates the results
of augmentation.

Figure 8. Effects of augmentation on MRI.

4.3. Architecture

After pre-processing, the pre-possessed images were provided to the proposed Con-
volutional Neural Network, shown in Figure 9. The proposed CNN model consisted of
a 7 × 7 convolution layers, 3 × 3 max-pooling layers, four dense blocks with a different
number of convolution layers (6, 12, 32, 32) in respective blocks, three transitional layers,
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and a fully connected classification layer. Three major components, i.e., the convolution
layer, dense blocks, and transition layers, were used to extract the features from the pre-
processed MRIs. The convolution layer with a kernel matrix of size 7 × 7 and a stride value
set as 2, was used for the extraction of macro-features [42]. These extracted macro-level
features were then forwarded to dense blocks, where more features were extracted. Each
dense block contained 1 × 1 convolutions, which were used to reduce the number of input
feature maps, followed by 3 × 3 convolution layers. In each dense block, the extracted
features were passed to all the next layers. Between the dense blocks, there were transition
layers, along with the activation functions, like batch normalization and ReLu, etc. The
transition layer contained 1 × 1 convolution and a 2 × 2 max pooling layer with a stride
value set as 2. Once the transition layer reduced the dimensions of the features, they
were forwarded to the fully connected classification layer where Softmax was used for
the classification. Initially, all the initial blocks of layers were kept frozen and the last two
blocks were retrained.

Figure 9. Proposed Model Architecture.

The details of all hyperparameters are listed in Table 1.

Table 1. Hyperparameters of the proposed model.

HYPERPARAMETERS

Activation Function ReLU
Epochs 50

Batch Size 128
Optimizer Adam

Loss Function Categorical Cross Entropy
Drop out 0.4

The concept of dense connectivity used in this research is represented in Equation (6):

cl = Hl [(c0, c1, c2, . . . . . . cl−1)] (6)

where Hl is the non-linear transformation of Lth layer and [c0, c1, c2, c3....] are the feature
maps forwarded by all the previous layers to the Lth layer.

The growth rate at the Lth layer, which revealed how much information was added by
the previous layers, was calculated via Equation (7):

gl = [g0 + g× (l − 1)] (7)
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where the hyper parameter g is the growth rate.
Convolutional layers were used to apply the filter on the input images to extract the

feature maps. Once the feature maps were extracted by applying different filters, they were
passed through the ReLU activation function. To obtain the non-linear input to the unit
Ml

ij, all the previous layers’ benefaction were summed up, as described in Equation (8):

Ml
ij =

m−1

∑
a=0

m−1

∑
b=0

µabYl−1
(i+a)(j+b) (8)

To reduce the dimensionality of the extracted feature maps, the max pooling layer
was used. Considering the dimensions of feature maps as [mh, mw, mc], representing
height, width, and channels of the feature maps, the dimensions were reduced by applying
Equation (9) and resultant feature maps were achieved.

maxp =
(mh − f + 1)

s
× (mw − f + 1)

s
×mc (9)

where f represents the size of the filter and s represents the strides.
In the dense layers, a neuron received the input from all the neurons of its preced-

ing layer to perform the matrix multiplication. The standard equation for the matrix
multiplication in the dense layer is shown in Equation (10):

N.λ =



n11 n12 ..... n1y p1
n21 n22 ..... n2n p2

...
...

...
...

...
...

...
...

...
...

...
...

nx1 nx2 ..... nxy py


(10)

where the N represents matrix dimensions of x× y and another matrix P with dimensions
1× y and λ is the matrix of the trained parameters of the previous layer.

The λ, representing the matrix of the trained parameters of the previous layer, was
updated by using the back-propagation in the training phase. The back-propagation was
used to adjust the weights wk associated with a layer k over the learning rate η, as shown
in Equation (11):

wk = wk − η × dwk (11)

where dw is the partial derivatives of the loss function.
The partial derivative dw of the loss function of w was acquired by employing

Equation (12).:

dwk =
∂L

∂wk =
1
n

dZk A[k−1]T (12)

where Zk is the activation function and Ak is the non-linear activation function at layer
k [43].

Figure 10 illustrates all the trainable and untrainable parameters of the proposed
model, DenseNet, along with the output shape at each layer.
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Figure 10. Output size and model parameters at each layer of the proposed DenseNet.

4.4. Experimental Setup and Training

For the performance evaluation for Alzheimer’s classification, four transfer learning-
based models were trained with the same architecture, as illustrated in Figure 9. The first
model was trained without using the feature of transfer learning and was provided with
the images without augmentation. The second one was again trained without the feature
of transfer learning but was provided with augmented MRIs. The next two models were
used with the feature of transfer learning and were trained on only original MRIs and
augmented MRIs, respectively.

Gray matter (GM) images, as shown in Figure 11, were provided to the models for
training. Three views of these MRIs, i.e., axial, coronal, and sagittal, were considered for
training the models and, in total, 1254 images from each category, i.e., AD, NC, MCI, and
LMCI, were used. In two steps, the data were divided into training, validation, and testing
sets. In the first step, 20% of the data were split and separated for testing. The remain-
ing 80% of the data were further divided into training and validation sets, as explained
in Figure 12.

Figure 11. Gray matter images for proposed model.
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Figure 12. Framework of the proposed methodology.

During the training of the model, the number of epochs was gradually increased to
verify the training accuracy and validation loss. The gradual increase in training accuracy
and reduction in training loss with a different number of epochs is illustrated in Table 2.

Table 2. Training accuracy and validation loss for transfer learning-based model, trained on
augmented MRIs.

Epochs 10 Epochs 25 Epochs 50

Loss 6.89% 3.18% 2.16%
Accuracy 93.11% 96.82% 97.84%

5. Results

The four deep learning-based models were tested over the 20% data from the ADNI
dataset. To check the performance of the proposed models, multiple measures, i.e., sensitiv-
ity, Equation (13), specificity, Equation (14), and accuracy, Equation (15), were used. All of
these measures were elaborated in terms of True Positive (TP), False Positive (FP), False
Negative (FN), and False Positive (FP) in their respective equations.

Sensitivity =
TP

TP + FN
(13)

Specificity =
TN

TN + FP
(14)

Accuracy =
TN + TP

TP + TN + FP + FN
(15)

The class-wise outcomes of these measures are depicted in Table 3, while the confusion
matrix of the four classes for the best achieved accuracy is given in Tables 4 and 5. We can
see that the proposed model performed well in the classification of all categories, especially
in the case of AD vs NC, MCI, and LMCI, with higher accuracy of 99.68%, sensitivity of
99.65%, and specificity of 99.69%.

Table 3. Confusion Matrix.

Predicted

Actual

MCI AD NCI LMCI

MCI 248 1 1 0
AD 1 247 1 1
NCI 2 1 247 0

LMCI 0 1 0 249
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Table 4. Class-wise performance comparison of proposed model.

Image Classes Specificity Sensitivity Accuracy

MCI vs. AD, NC and
LMCI 99.89 98.42 99.52

LMCI vs. AD, NC and
MCI 97.76 99.36 98.16

NC vs. AD, MCI and
LMCI 99.78 94.32 98.33

AD vs. NC, MCI and
LMCI 99.69 99.65 99.68

Table 5. Accuracy achieved by the four models with and without Augmentation and Transfer Learning.

Transfer Learning Augmented Data Accuracy

No No 81.58%
No Yes 86.04%
Yes No 93.30%
Yes Yes 97.84%

6. Discussions

Numerous studies have been conducted recently on early diagnosis of Alzheimer’s
disease by utilizing deep learning techniques, especially CNN. Most of the diagnosing
systems are developed by training deep learning models from scratch and with a huge
dataset that is trained over a large number of epochs. This study proposed a transfer
learning assisted fine-tuning approach for the detection of four stages of Alzheimer’s
disease. The designed model was evaluated by using prepossessed GM sliced images with
a different number of epochs. The performance of the proposed was evaluated based on
three measures, which were sensitivity, accuracy, and specificity. All of these three measures
play a huge role in the correct classification of healthy versus ill persons. Gray matter (GM)
is the main fundamental part of the human brain which processes information sent in the
form of signals by different sensory organs of the body. GM is more helpful in the early
diagnosis of AD. This research focused on the segregation of AD patients from healthy
people. The proposed model was gradually trained and tested with a different number of
epochs. Initially, the model was trained and tested over 10 epochs, with 93.11% accuracy.
In the next phase, the number of epochs increased from 10 to 25, and then in the next phase
the epochs increased from 25 to 50, with an overall accuracy of 97.84%, which elaborated
the effectiveness of the proposed study (Figure 13).

Table 6 depicts the comparison with the base article [32] and the other studies that
have contributed to the early diagnosis of Alzheimer’s disease. However, the proposed
model performs outstandingly with 97.84% accuracy in the multi-class classification of AD
with a very less number of epochs.

Early detection of Alzheimer’s disease, using MRIs, can be challenging, due to the
presence of different artifacts. like noisy background, low contrast and partial volume [45].
To overcome these issues, more recent technologies, like Functional magnetic resonance
imaging (fMRI), can be used in the future for the early detection of AD.
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Figure 13. Average Class Accuracy of the four Models.

Table 6. Comparison of the proposed model with existing models.

Model Year Accuracy

Inception V4 [27] 2017 96.25%
AlexNet [32] 2019 92.80%

GoogLeNet [44] 2022 96.39%
ResNet-18 [15] 2021 96.88%

Proposed Model 97.84%

7. Conclusions

Alzheimer’s disease is a slow neurological disorder that destroys the thought processes,
and consciousness, of a human and, mostly, the aptness to perform straightforward tasks.
Many deep learning models have been proposed to detect and classify the stages of AD.
Gary matter is the main fundamental part of the human brain that is mainly affected by
Alzheimer’s disease and it plays a major role in the gradual destruction of neurons. In
this research, a deep learning model, Dense-Net, with transfer learning, was applied to the
MRI dataset. The main objective of this research was to classify the stages of Alzheimer’s
disease, based on the extracted gray matter (GM), the main fundamental part of the human
brain. MRI scans were segmented into 3 parts, GM, WM, and CSF, using the SPM12 for
pre-processing. The 2D GM slices were used as input for the training and testing of the
model. A pre-trained DenseNet model, with retraining of the last two blocks, was applied
over the segmented GM slices. The proposed model provided promising results, with
97.84% accuracy in the multi-class classification of AD.

There were certain pros and cons of the proposed technique. DenseNet is well-reputed,
due to its applications in medical imaging [46]. The analysis of medical images by DenseNet
is remarkable, as it acquires a comprehensive and complete knowledge of image details
from all previous layers. In addition to that, the propagation which takes place layer-
wise can be made thinner to make it computationally economical without compromising
accuracy, due to the fact that the final prediction depends on features obtained from all
layers. As the proposed methodology was based on transfer learning, so the significant
limitation of this approach was negative transfer, due to which, for initial training, the
target and initial problems were supposed to be adequately homogeneous.

Still, considering the outstanding performance of the proposed model with respect
to other CNN models, in the future, this model could be applied for the detection and
classification of lungs, and other diseases.
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