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Abstract: Neurodegenerative diseases are a group of conditions that involve the progressive loss
of function of neurons in the brain and spinal cord. These conditions can result in a wide range of
symptoms, such as difficulty with movement, speech, and cognition. The causes of neurodegenerative
diseases are poorly understood, but many factors are believed to contribute to the development
of these conditions. The most important risk factors include ageing, genetics, abnormal medical
conditions, toxins, and environmental exposures. A slow decline in visible cognitive functions
characterises the progression of these diseases. If left unattended or unnoticed, disease progression
can result in serious issues such as the cessation of motor function or even paralysis. Therefore,
early recognition of neurodegenerative diseases is becoming increasingly important in modern
healthcare. Many sophisticated artificial intelligence technologies are incorporated into modern
healthcare systems for the early recognition of these diseases. This research article introduces a
Syndrome-dependent Pattern Recognition Method for the early detection and progression monitoring
of neurodegenerative diseases. The proposed method determines the variance between normal and
abnormal intrinsic neural connectivity data. The observed data is combined with previous and
healthy function examination data to identify the variance. In this combined analysis, deep recurrent
learning is exploited by tuning the analysis layer based on variance suppressed by identifying normal
and abnormal patterns in the combined analysis. This variance from different patterns is recurrently
used to train the learning model for maximising of recognition accuracy. The proposed method
achieves 16.77% high accuracy, 10.55% high precision, and 7.69% high pattern verification. It reduces
the variance and verification time by 12.08% and 12.02%, respectively.

Keywords: neural data; neurodegenerative disease; pattern recognition; recurrent learning

1. Introduction

Neurodegenerative diseases (NDDs) are a disorder resulting from the progressive
loss of function of selective neurons in the nervous system. As a result, one of the most
significant impacts of these diseases is on motor function, which progressively declines [1].
In some cases, the motor function may be affected by paralysis. Therefore, the progres-
sive decline of motor function is one of the major characteristics of neurodegenerative
diseases [1]. NDDs are challenging and complex to understand as they involve determining
the precise causes of these diseases, identifying optimal approaches for early detection, and
developing the most effective treatments. The causes of NDDs are not well understood,
but many factors are believed to contribute to the development of these conditions [2].
Some researchers believe genetics play a major role in developing NDDs [3]. However,
others believe that environmental factors [1], such as exposure to toxins or traumatic brain
injury [4], abnormal medical conditions [5] and ageing [6] contribute to the development
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pf NDDs. Other concerns are the efficacy of different treatment approaches, with some
researchers advocating for more pharmaceutical interventions [7] and others focusing on
lifestyle changes [8] and alternative therapies [9]. Many issues exist related to the diagnos-
tic criteria used to identify these diseases. There are established clinical criteria for many
NDDs, such as Alzheimer’s disease (AD), Amyotrophic Lateral Sclerosis, and Multiple
Sclerosis [10]. Some researchers believe that these criteria are not sensitive enough and may
miss early-stage disease [11]. Ongoing research concerns the best methods for tracking
disease progression and developing effective treatments [12]. There are also questions
regarding the reliability and validity of various diagnostic tools, such as biomarkers and
imaging techniques used to track disease progression.

Identifying and monitoring the progression of NDDs is necessary for healthcare
systems [2]. Early detection and accurate tracking of NDDs can lead to more effective
treatments and improved patient outcomes [11]. It can also help healthcare providers
better understand the disease and develop more effective strategies for managing and
preventing it [11]. Various techniques and methods are used to identify NDDs [13]. Some
of these techniques include brain imaging [14], cerebrospinal fluid analysis [15], genetic
testing [16], and cognitive assessments [15]. Each method has its strengths and weaknesses
and is often used in combination with others to increase the accuracy and reliability of the
diagnosis. Additionally, machine learning (ML) algorithms and artificial intelligence (AI)
models are being developed to aid in the identification and progression monitoring of these
diseases [11,17]. A monitoring system is used to identify the progression of the NDD by
monitoring patients’ conditions and behavioural features. This system detects pathological
conditions and collects data necessary for identifying and progressing NDDs. [18]. This
system includes monitoring a patient’s cognitive and physical abilities [15], as well as
using medical imaging techniques such as magnetic resonance imaging (MRI) or positron
emission tomography scans to detect changes in the brain [14]. In addition, biomarkers
such as levels of certain proteins or other molecules in the blood or cerebrospinal fluid can
be used to indicate the presence or progression of a NDD [15]. A feature space regression
model is employed to identify the disease. This model detects spatial and temporal features,
increasing clinical accuracy in further processes [19]. Additionally, the model reduces the
time and energy consumption in the disease identification process and improves the
performance and effectiveness of prediction and identification [19].

Pattern recognition is one of the techniques used to identify specific patterns associated
with NDD. By analysing patterns in patient data, such as changes in behaviour, cognitive
function, and other physiological factors, healthcare professionals detect the presence and
progression of NDD. ML algorithms and other advanced analytical tools are effectively
used to help with pattern recognition and the identification of NDD [20]. These algorithms
analyse large amounts of data and identify patterns not easily discernible by human
observation. These techniques improve the overall accuracy and efficiency of the diagnosis
process for NDD [20]. The progression pattern recognition method is utilised to detect
NDD by identifying spatial and temporal features of the disease that provide important
information for the detection process. To improve the accuracy of predictive models for
the risk of NDDs, authors in [20] employ a recurrent neural network with long-short
time memory to incorporate temporal information from patients’ medical records into the
models. This method involves analysing how a patient’s medical history changes over
time and identifying patterns or trends that can be used to predict future disease risks.
By incorporating this temporal information, the models can provide more accurate and
personalised patient predictions and improve the diagnosis process’s performance [20].
Sequential pattern mining is used to identify relevant patterns and features associated
with NDDs [21]. Analysing sequential data collected from individuals over time, such
as sensor data, medical records or behavioral data, provides valuable insights into the
underlying dynamics of diseases [22]. Disease progression patterns contain important
features that provide useful information for detection, prediction and diagnosis. Sequential
pattern mining can be used to identify key progressive patterns of behavioural deficits
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in individuals with NDD [23]. Sequential pattern mining helps improve the diagnosis
process’s accuracy by providing supporting evidence for clinical decision-making [24].

ML methods and algorithms are increasingly being used to detect and predict NDDs.
These methods effectively analyse patient data, such as medical imaging, genetic data, clin-
ical records, or behavioural data, to identify patterns or features indicative of an NDD [25].
This analysis can include identifying abnormal protein deposits in the brain, changes in
brain structure or function, or genetic markers associated with a higher risk of developing
NDD [26]. These methods improve the accuracy of pattern recognition, increasing the per-
formance and feasibility of the diagnosis process [25]. These methods have revolutionised
the diagnosis and treatment of these diseases in several ways, such as early detection
and diagnosis, prediction of disease progression, drug discovery, personalised treatment,
monitoring disease progression and treatment effectiveness. Nowadays, deep learning
(DL), a subset of ML that involves artificial neural networks, is also increasingly used in the
detection and prediction of NDDs [27]. DL algorithms analyse large and complex datasets,
such as medical imaging data, to identify subtle patterns or features of these diseases.
Convolutional neural networks are the most commonly used algorithm in DL for pattern
recognition. These algorithms utilise image data to learn patterns and apply classifica-
tion techniques to classify patterns based on types and features [28]. They detect spatial
and temporal features from the database, maximising the feasibility of the recognition
process [29].

Overall, ML methods and algorithms are a promising approach to the detection and
prediction of NDDs, and have the potential to improve the accuracy and speed of diagnosis
and facilitate the development of new treatments and therapies [30]. Early and precise
detection and timely commencement of appropriate therapies, such as medication or
behavioral interventions, are critical for improving patient outcomes and quality of life
in NDDs [31]. This detection requires an intensive analysis of a range of clinical data,
which can be facilitated by data-driven approaches such as ML. This clinical data must be
carefully collected and analysed to identify patterns related to NDD [24]. The progression
and reversal of disease depend on the underlying cause of the disease, as well as the timing
and efficacy of interventions and individual patient characteristics [25,32]. In some cases,
interventions may slow or halt disease progression, while in others, interventions may be
less effective [25]. Therefore, identifying neurodegenerative disorders often requires the
integration of multiple sources of data, including visual and statistical data, as well as input
from physicians and other healthcare providers. By combining these different sources of
information, it is possible to identify the most recent symptoms and track the progression
of the disease through different stages. AI, ML, DL and other data-driven solutions can
potentially transform the diagnosis and treatment of NDD by providing more accurate and
personalised care [33].

Identifying the progression of NDD is crucial as it can lead to severe consequences if
left untreated. Early detection and monitoring of these diseases can help prevent or slow
down the progression of symptoms. Therefore, healthcare systems need to have efficient
and effective methods for identifying the progression of NDD. By incorporating advanced
AI, ML, DL and other data-driven technologies into healthcare systems, early detection
can be improved, and the diagnosis and treatment of the disease can be optimised. This
research paper presents a novel Syndrome-dependent Pattern Recognition Method (SPRM)
for early detection and progression monitoring of NDD, which aims to identify variance
between normal and abnormal intrinsic neural connectivity data by using both previously
collected data and data from healthy function examination, then combine them and apply
deep recurrent learning for analysis of the data. The authors have employed tuning of
the analysis layer, based on variations in the data. to suppress and recurrently use those
variations to train a learning model for maximising recognition accuracy. This proposed
method improves recognition accuracy by suppressing variations in the data. It is a novel
approach in the field of NDDs for early detection and progression monitoring using precise
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identification of physical attributes. Nowadays, these attributes can be easily sensed and
observed through wearable sensors. The main contributions of this article are listed below.

1. A pattern recognition method is designed based on disease-specific syndromes to
identify their intensity and provide an appropriate diagnosis.

2. Disease progression is identified in the diagnosis stages to improve the medication
and reduce unnecessary clinical recommendations in order to retain health stability.

3. Data analysis is performed using different metrics to validate the proposed methods’
consistency and performance.

This research paper is structured in five sections, starting with an introduction in
Section 1, which provides background information and sets the context for the research. In
Section 2, the paper presents an overview of related work in the field, discussing previous
methods and studies that have been conducted on the topic. Section 3 presents the proposed
SPRM, describing the method in detail and explaining its key features. Section 4 provides
the results and discussion, demonstrating accuracy, precision, pattern verification, variance,
verification time, analysis of the method’s performance, and discussion of its results. Finally,
in Section 5, the paper concludes by summarising the main findings and contributions of
the research.

2. Related Work

Recently, there has been a growing interest in NDD identification and progression.
Various methods and techniques have been proposed in the literature to improve the
accuracy and efficiency of the diagnosis process. This focus is driven by the need to
improve the diagnosis and treatment of NDD, which can have severe and debilitating
effects on patients if left untreated. Some of the research in this area has focused on using
advanced techniques such as AI, ML, DL and other data-driven models to analyse large
amounts of data and identify patterns and features indicative of disease progression. Other
research has aimed to develop new imaging techniques and biomarkers that can help detect
these diseases early. Some recent research works propose and implement sophisticated
AI, ML, DL and other data-driven models for NDD identification and progression. These
works are explained as follows.

Amyotrophic Lateral Sclerosis is a devastating NDD with no cure, which causes rapid
degeneration of motor neurons and can result in death by respiratory failure. Non-invasive
Ventilation is an effective treatment that can prolong survival and improve quality of life.
Predicting the need for Non-invasive Ventilation is crucial for timely administration and
better patient outcomes. In [34], the authors applied itemset and sequential pattern mining
to identify disease presentation and progression patterns, respectively, and trained the
prognostic models that incorporate static and temporal features. The case study outcomes
showed promising results, with bulbar function, phrenic nerve response amplitude, and
respiratory function identified as significant features. These findings align with clinical
knowledge regarding relevant biomarkers of disease progression towards respiratory
insufficiency. Predicting the long-term progression of AD is also a crucial aspect of disease
management. The literature analysis uncovers that the existing methods have focused on
predicting cognitive scores. Therefore, Zhao et al. [35] proposed a framework that used a
3D multi-information generative adversarial network to predict an individual’s whole brain
appearance at future time-points, along with a 3D DenseNet-based multi-class classification
network to determine the clinical stage of the estimated brain. The results show that the
proposed framework outperforms the existing methods, with a high structural similarity
index between the generated and real MRI images, and the use of focal loss improves
accuracy in determining the clinical stage. The proposed framework has the potential
to provide more information for accurate long-term disease progression prediction and,
ultimately, to improve AD patient management.
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Peng et al. [36] proposed white-matter features from positron-emission tomography-
based progression for mild cognitive impairment to AD. The proposed approach involves
an ML model for detecting disease progression and utilises multivariate logistic regression
to assess the relevant characteristics and features of the detection process. The proposed
model predicts the white matter changes in the brain, reducing the error rate in diagnosis
and identification processes. Johnson et al. [37] developed a multi-modal quantitative
approach (MMQA) for predicting the progression of NDD. The proposed multimodal
identifies key anatomical and metabolic changes that correlate with the progression of
pathological and behavioural deficits in NDDs. By monitoring 144 parameters longi-
tudinally using non-invasive neuroimaging modalities and kinematic gait analysis, the
researchers developed a highly sensitive platform that can be used for preclinical studies.
The results of this study suggest that this approach has the potential to be a powerful tool
for clinicians in the future, providing valuable insights into the progression of NDDs. De
Vos et al. [38] introduced an ML-based method for detecting progressive supranuclear
palsy using random forest and logistic regression algorithms. The proposed method also
distinguished progressive supranuclear palsy from Parkinson’s disease (PD) by classifying
patterns based on specific conditions. An array of wearable sensors was used to create
the dataset for the ML model. The introduced method improves the overall accuracy of
progressive supranuclear palsy detection, increasing the effectiveness and reliability of
the system.

Kmetzsch et al. [39] proposed a new framework for computing a disease progres-
sion score from cross-sectional multimodal data. A supervised multimodal variational
autoencoder was used to infer a meaningful latent space, where latent representations
were placed along a disease trajectory, and orthogonal projections computed a score onto
this path. The framework was evaluated with multiple synthetic and real datasets, and
results demonstrated better performance than state-of-the-art approaches. The proposed
framework can objectively measure disease progression with potential applications in
clinical trials. Zhao et al. [40] designed a multimodal gait recognition for NDDs (MGR-ND).
The proposed novel hybrid model learnt gait differences between three NDDs, PD severity
levels, and healthy individuals. The model fused and aggregated data from multiple
sensors and applied a spatial feature extractor and a new correlative memory neural net-
work architecture to capture temporal information. A multi-switch discriminator was then
used to associate observations with individual state estimations. The proposed framework
outperformed several state-of-the-art techniques in classification accuracy. Alorf et al. [41]
presented a new approach to the multi-label classification of AD’s stages using resting-state
functional MRI and deep learning. The proposed model extracted the brain’s functional
connectivity networks from resting-state functional MRI data and utilised Stacked Sparse
Autoencoder and Brain Connectivity Graph Convolutional Network deep learning ap-
proaches to solve the multi-class classification problem. The proposed models achieved
an average accuracy of 77.13% and 84.03% for multi-label classification using Stacked
Sparse Autoencoders and Brain Connectivity Based Convolutional Networks, respectively.
The study also identified significant brain regions of interest by analysing the network’s
learned weights.

Dentamaro et al. [42] developed a method for discriminating NDD patterns by
analysing human gait with 2D cameras. The proposed method used the kinematic the-
ory of rapid human movements and other spatiotemporal features to model the human
gait movement pattern. The results demonstrated the effectiveness of this approach in
describing neurodegenerative patterns, achieving 99.1% accuracy when used in conjunc-
tion with state-of-the-art pose estimation and feature extraction techniques. In [43], an
AI and wavelet coherence (AI-WC) based model was proposed. This model comprised a
convolutional neural network and wavelet coherence spectrogram of gait synchronisation
to classify NDDs based on gait force signals. The algorithm was evaluated using an existing
online database, and the results showed that the proposed method effectively differentiates
gait patterns between healthy control and NDD patients, with an overall sensitivity of
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94.34%, specificity of 96.98%, the accuracy of 96.37%, and AUC value of 0.97 using 5-fold
cross-validation. The proposed algorithm has the potential to aid physicians with screening
for NDDs for early diagnosis, efficient treatment planning, and monitoring of disease
progression. Lei et al. [44] implemented an adaptive feature learning framework using
multiple templates for the early diagnosis of NDDs. The proposed method was validated
on AD and PD databases and outperformed the state-of-the-art methods. Different features
were extracted and fused, and a feature selection was applied with an adaptively chosen
sparse degree. In addition, linear discriminative analysis and locally preserving projections
were integrated to construct a least square regression model. The proposed method demon-
strated that accurate feature learning facilitates the identification of highly relevant brain
regions with significant contributions to the prediction of disease progression.

Bi et al. [45] established a knowledge base to systematically understand the hetero-
geneity of the risk factors associated with different NDDs, which they refer to as pan-NDDs.
This knowledge base aims to facilitate personalised and knowledge-guided diagnosis,
prevention, and prediction of NDDs. The authors outlined the knowledge base’s structure
and content, including information on the epidemiology, genetics, environmental and
lifestyle factors, clinical and neuropathological features, and treatment options for NDDs.
The potential applications of the knowledge base are also discussed, including its use
in clinical decision-making, drug development, and public health policies. Overall, the
knowledge base is intended to provide a valuable resource for researchers, clinicians, and
patients in the field of NDDs. Beyrami et al. [46] proposed a new approach based on
statistical and entropic features of vertical ground reaction forces of gait and sparse coding
classification techniques. The study explored the effect of individual differences on the
proposed and standard ML methods, emphasising the severity and duration of diseases
and the right and left foot parameters. The study results indicated that, using left or right
foot features, the proposed algorithm could identify all NDDs at early and advanced stages.
Van Veen et al. [47] used F-fluorodeoxyglucose positron emission tomography and Princi-
pal Component Analysis to identify disease-related brain patterns in neurodegenerative
disorders. Nevertheless, they found that Principal Component Analysis has limitations
in discriminating between different conditions. To overcome this, Generalized Matrix
Learning Vector Quantization was applied to F-fluorodeoxyglucose positron emission
tomography scans of healthy controls and patients with AD, PD, and Dementia with Lewy
Bodies. The study demonstrated that Generalised Matrix Learning Vector Quantization is a
more advanced ML algorithm that can provide a solution to discriminate between different
neurodegenerative conditions.

The literature analysis shows that recent research in neurodegenerative disease iden-
tification and progression has focused on developing sophisticated AI and ML models
and algorithms that can accurately and efficiently detect, track and predict the progression
of these diseases. Some examples include developing models that can predict the need
for non-invasive Ventilation and using ML to classify patterns and features of the disease.
Researchers have also been exploring the use of multimodal approaches that combine
multiple imaging modalities, such as MRI, functional MRI and positron emission tomogra-
phy, to gather more comprehensive information for diagnosis and classification. Various
algorithms, such as random forest, logistic regression, and generative adversarial networks,
have been used to classify the patterns and improve the diagnosis process.

3. Proposed Syndrome-Dependent Pattern Recognition Method

This research article introduces an SPRM for the early and progressive detection of
NDD. This method determines the variance between normal and abnormal intrinsic neural
connectivity data. Pattern recognition also helps classify unknown data, improves the
accuracy of predictions, and allows for the identification of learning techniques. This
method can also generate predictions for unknown data and helps in practical decision-
making. It can acknowledge and associate an object at various distances. The proposed
method utilises recurrent learning, a commonly used method for handling sequential data
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before developing attention models. Recurrent learning is used to predict the problems in
the method and recognise the speech that may be given as the input in the method. The
workflow diagram of the proposed model is presented in Figure 1.
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Here in this method, the patient data is given as the input to recognise the patterns.
Then it is checked with the data already stored. After identifying the patterns of the neural
data, it is classified as unknown data or normal data. Unknown data is that found anew,
without matching the existing data. Then, the acquired normal data is that which retains
the previous value of the patients, and matches the previous data. It can be used as input
for the training process. The results are analysed from the received unknown data using
deep recurrent learning. This can also help recognise the data pattern by using the learning
technique to identify the results. It can help generate divinations of unknown data and
helps in preparing practical decisions. This combined analysis exploits deep recurrent
learning by tuning the analysis layer based on variance. The variance is suppressed by
identifying normal and abnormal patterns in the combined analysis. Variance can be both
high and low, depending on the data pattern, to determine the accuracy of the patients’
disease level. If variance occurs, then separate training will be given with the normal
data pattern to reduce the variance. This variance from different patterns is recurrently
used for training the learning model to maximise recognition accuracy. The variance is the
difference from the previously acquired data. If there is an increase in the variance, then the
intensity of the neurodegenerative disease should be identified with the recognised data
pattern. The output of the variance is represented as the progression. From this output, the
abnormality of the patient’s disease can also be recognised, and processes can be carried
out to reduce the abnormality. Abnormal results are those that are determined from the
unknown data from the data pattern. The patients’ data, which is observed at different
times, is given as the input for the process to recognise the data pattern. The process of
fixing the patient data, which is observed at different times as the input for the further
procedure, is explained by the following Equation (1):

Aα =

{
0, i f α = 0
σ(Aα−1, Xα), otherwise

(1)

where (Aα) is denoted as the patient’s data which is represented as the input, (Xα) is
denoted as the observation time, and (σ) is denoted as the calculation of the data in
different observation times. Now the patient’s data input is sent to recognise the pattern.
The patient data is given as the input to recognise the pattern. Then it will be checked with
the already stored data. The input neural data is sent to the pattern recognition process to
identify whether it is unknown data or normal. The given input is checked with the stored
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data of the patient. This process is used to investigate whether the given input data matched
the existing data of the patients. This pattern recognition is used to predict the present state
of the patient’s disease, and to identify the variance which results in progression.

The recognition of the neural data is used to check the availability of the data which is
already stored with the information. The input patient data is checked with the existing
stored data to determine the matching. The input given is observed at different times
and sent to settle the data pattern. This data pattern recognition is used to identify the
difference between normal and abnormal connectivity. The already stored data contains
the exact information about the patient’s disease and the state of the disease. By checking
with the stored data, the similarity of the input data can be established. After recognising
the patterns of the neural data, it is classified as unknown data or normal data. It is also
used to verify the pattern of the data. After recognising the data pattern of the patients’
neurodegenerative disease, it can be classified into two types: unknown data, determined
newly, and normal data, which match the stored data. This technique is used to determine
the accuracy of the disease. The process of recognising the data pattern is explained by the
following Equation (2):

Aσ = σ(WXα + SAα−1) (2)

where (W) is denoted as the process of data pattern recognition, and (S) is denoted as the
existing stored data of the patients. Now, the data pattern recognising process identifies
the unknown and normal data. The unknown data which is acquired from the process of
data pattern recognition is the one that is newly received without any matching with the
existing stored data. This is the data pattern recognised newly from the patient’s disease.
After recognising the patterns of the neural data, it is classified as unknown data or normal
data. Unknown data is that which is found anew, without matching the existing data. The
previous data does not match the acquired data. These are the data determined newly after
the process of data pattern recognition. This process results in obtaining the unknown data
pattern from the patients’ neural data. This results in analysis of the unknown results by
using recurrent learning to identify the progression results of the disease.

After the process of data recognition, the data are categorised into unknown data
and normal data. The unknown data do not match the stored data of the patients. Those
data are observed at different times. This method is used to determine the variance that
appeared in the training period by using the normal data, which matches the existing
stored data. These data produce abnormal detection of the patients’ neurodegenerative
disease and produce unknown results. This will not be similar to the state of the stored
patients’ data and does not match those values of the disease. These unknown data are
used in the procedure of analysing the operation, whereas normal data is used in training
to deliver the perfect progression result concerning the patient’s disease and its state. The
results are analysed from the received unknown data using deep recurrent learning. It can
also be helpful in recognising the data pattern to identify the results using the learning
technique. The observed data is combined with previous and healthy function examination
data to identify the variances. The process of determining the unknown data from the data
pattern recognition procedure is explained by the following Equation (3):

Q(X1, X2, . . . .Xn)D(X1) . . . D (Xn|X1 . . . .Xn−1) (3)

where (Q) is denoted as the unknown data, and (D) is denoted as the unknown data pattern
of the acquired data. After recognising the patterns of the neural data, it is classified as
unknown data or normal data. The patient data is given as the input to recognise the
pattern. Then it will be checked with the already stored data. The data pattern recognition
process results show that normal data can be determined. Then the acquired normal data is
that which retains the previous value of the patients, which matches the previous data. It
can be used as input for the training process. These data retain the previous value of the
previous patients’ neural disease reports. These match the already existing stored data of
the patient. These data can be used as the input for the training. This can help detect the



Diagnostics 2023, 13, 887 9 of 22

variance between the connectivity. The schematic diagram of data recognition from the
distinguishable data (patterns) is presented in Figure 2.
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The sequence ∀ X1 to Xn−1 (leaving out the next W) from Aα is observed through Xα.
In this observation instance, the σ ∈W is classified for ϕ and D for preventing V overlaps.
The normal data is recognised from the data pattern recognition procedure. This is the one
which matches the stored data already existing in the process. This procedure has complete
information on patients’ NDD, as shown in Figure 2. The process of acquiring the normal
data from the data pattern recognition process is explained by the following Equation (4):

V Xn|X1, . . . .Xα−1 ) = ϕ(Aα) (4)

where (V) is denoted as the normal data obtained from the data pattern recognition process,
and ( ϕ(Aα)) is denoted as the calculation of the similarities of the found data with the
stored data of the patients’ neural diseases. Now the normal data is used as the input of
the training to detect the variance. The unknown data was used for the analysis process
by using deep recurrent learning. It can also be helpful in recognising the data pattern to
identify the results by using the learning technique. It generates divinations of unknown
data and helps in preparing practical decisions. The recurrent learning technique is used to
predict decisions concerning the accuracy of the connectivity. It is also used to determine
the abnormality of the disease by using unknown data from the data pattern recognition
process. This analysis process helps to identify the unknown results which are produced
by the unknown data from the process. It does not match any of the stored data, and it
does not retain the observed values of the patients. This learning is used to predict the
problems in the method and gives perfect solutions to resolve those abnormalities. This
combined analysis exploits deep recurrent learning by tuning the analysis layer based on
variance. From the training process, the variance is detected with the help of the normal
data. Variance is the difference between the previous data and the present data. The process
of analysis by using deep recurrent learning is explained by the following Equation (5) [34]:

Aα = Bα∆ (Cα)

Bα = θ (Woi Xα + WoA Aα−1 + WoC Cα)

Cα = iα∀Ĉα + Dα∀Cα−1

Dα = θ ( WFiXα + WFA Aα−1 + WFCCα−1 )


(5)
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where (Bα, Dα, Cα) is denoted as the analysing process with the help of the unknown
data which produces the unknown results, (θ) is denoted as the dissimilar data acquired,
(F, i) is denoted as the process of combined analysis, and (∀) is denoted as the values of
the disease. Now the normal data is used as the training input, which helps detect the
variance. Variance is the difference occurring between the previous and the acquired data.
This learning technique is used to determine the high variance and the low variance. This
combined analysis exploits deep recurrent learning by tuning the analysis layer based on
variance. Variance can be both high and low, depending on the data pattern, to determine
the accuracy of the patients’ disease level.

If variance occurs, then separate training will be given with the normal data pattern
to reduce the variance. The occurrence of variance causes the abnormal detection of
the patient’s disease and needs separate training to resolve the abnormalities. It can
produce both a high and low variance depending on the state of the patient’s disease.
It also identifies abnormalities if they occur in the process of detecting the accuracy of
the disease. This variance from different patterns is recurrently used for training the
learning model for maximising recognition accuracy. The variance is the difference from
the previously acquired data. The process of detecting the variance from the analysis
procedure by using the unknown data and normal data in training is explained by the
following Equations (6) and (7):

F(Ai) =

{
∀(Ai), i f Ai > 0

γi∀(Ai), i f Ai ≤ 0
(6)

F(Ai) =
λ(0, F(Ai)

λ(0, ∀(Ai)

}
(7)

where (F(Ai)) is denoted as the process of determining the variance, and (λ) is denoted as
the connectivity. From the result of the variance, high and low variances can be found. If
there is an increasing order of variance, then the intensity of the disease should be identified
to eliminate the abnormalities. This is the divergence between the present and the existing
data. It is used to combine the observed data with the previous healthy functions to detect
the variances in the process and further steps provided to reduce the variance. Separate
training is given to reduce the variance with the help of the normal data, which is given as
the input. The combined analysis based on the similarity process is displayed in Figure 3.
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The variance can be high or low according to the similarities of the data. Then separate
training is given to reduce the variance with the help of the normal data, which is given
as the input of the training. Based on this variance, the analysis process is done by using
deep recurrent learning. This helps in identifying the intrinsic connectivity variances under
two-layers. In the first layer, the possibilities for D and i are extracted for checking Aα and θ
combinations. These two processes are consequent such that the learning process discussed



Diagnostics 2023, 13, 887 11 of 22

above is analysed using two layers, one for variance and the other for λ estimation, as
depicted in Figure 3. The first layer defines the F(Ai) for different variances; the next
function is the θ for identifying similarity. This function is different from the previous
layer by identifying the remaining iterations and distinguishable F. The learning process
is deployed for classifying normal and abnormal variances from the observed data. This
classification is performed to prevent unidentified data features from influencing the
analysis process without increasing the variance. The process of finding the variance
between the normal and abnormal neural data connectivity is explained by the following
Equations (8)–(10) [23]:

G(Ai) = λ(0, ∀(Ai)) + γiλσ(0, ∀(Ai)) (8)

∂R
∂γi

= ∑
Ai

∂L
∂F(Ai)

∂F(Ai)

∂γi
(9)

∂F(Ai)

∂Gλi
=

{
0, i f Ai > 0

I(Ai), i f Ai ≤ 0
(10)

where (G(Ai)) is denoted as the process of finding the variance between the neural data
connectivity, and ( ∂R

∂γi
) is denoted as the process of determining the observed data combined

with the health function examination data. Now, from the variance output, the abnormality
can be identified and resolved. The observed data is combined with previous and healthy
function examination data to identify the variances. This combined analysis exploits
deep recurrent learning by tuning the analysis layer based on variance. In Figure 4, the
abnormality detection using the learning process is presented.
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The λ is estimated between two sequences from the second R for ∀ ∈ (F, i). In the
G(Ai) extraction the R segregates λ and η ∀ i from λσ. In the γ ∗ λσ assessment of the
input F(Ai) identifies abnormalities through recurrent iterations, as displayed in Figure 4.
The abnormalities are found by the unknown data and results which do not match the
previous data stored. With the help of the variance, the accuracy of the disease state and
the abnormalities that occurred in it can be identified. Further steps such as more training
can be performed to reduce the abnormalities. The process of acquiring the abnormality
from the output of the variance can be explained by the following Equation (11):

∂R
∂U

= ∑
i

∑
ui

∂R
∂U(Ai)

∂F(Ai)

∂γ
(11)
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where ( ∂R
∂U ) is denoted as obtaining the abnormality from the output of the analysing

process and variance. Now, the progress report of the situation of the patient’s disease
is made by the output of the variance between the normal and abnormal intrinsic neural
data connectivity. If the progression is abnormal, further steps are taken to reduce the
abnormalities in the patient’s disease report. The process of providing the progression
report by the output of the variance is explained by the following Equations (12)–(14):

γi = λγi + ∑
γi

∂R
∂γi

(12)

Âi =
Ai − γi J[Ai]√

Z[Ai]
(13)

Z[Ai] = ai∆̂i + J[Ai] (14)

where (γi) is denoted as the output of the variance detecting process, (J) is denoted as the
intrinsic neural data connectivity, and (Z[Ai]) is denoted as the process of determining the
progress report of the patients’ neurodegenerative disease. The progression detection using
the variance is presented in Figure 5.
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The progression is extracted by correlating J and ∀ from the G(Ai) estimation. Con-
sidering the ϕ(Aα) and θ between Aα and ∂R

∂U , the variance is computed. The learning
segregates the V and λ for ease of progression detection. Compared to the available stored
data, if ∀ varies to an extreme value, then progression is measured, as shown in Figure 5.

This research article discussed SPRM for the early and progression detection of NDD.
Pattern recognition also helps in classifying unknown data. It makes valuable predictions
and identifies the learning techniques. The observed data is combined with previous
and healthy function examination data to identify the variances. This combined analysis
exploits deep recurrent learning by tuning the analysis layer based on variance. This
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variance from different patterns is recurrently used for training the learning model to
maximise recognition accuracy.

4. Results and Discussion

This section is divided into model analysis and comparative analysis to illustrate the
quantitative work using the dataset. The self-analysis involves analyzing the matching
features extracted using the clinical observation discussed in the proposed method. This
real-time data analysis is performed using the representation and the observation sequences.
The patterns observed in the sequences are correlated with the proposal for verifying its
efficiency and validating the statistical performance. In contrast, the comparative analysis
continues the self-analysis and the representations depicted in the subsequent subsections.
Besides self-consistency, out-of-box verification is required to prove the stability of the
proposed concept. Therefore, the results associated with the data features are comparatively
analyzed. Alongside the metrics, the process features such as time, variances observed,
and their impact on the proposed method are elaborated.

4.1. Dataset Description and Model Analysis

The analysis for identifying disease prediction is performed using PD progression
data [48]. This source provides observed information from 42 human subjects for detecting
PD progression. A total of 16 fields correlating personal and medical information are
recorded for the corresponding progression detection. The motor operations, harmonics,
fluctuation, entropy, jitter, testing time, etc., are the features used for detecting progression.
A total of 5876 records are used for analysis of the patterns and progression. The progression
is observed through 120–148 sensing instances at different intervals. These patterns for the
known and unknown sequences are extracted as presented in Figure 6.
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The sequence variance determines its need for unknown detection. The observations
identify Unified Parkinson’s Disease Rating Scale (UPDRS) and shimmer during the first
and normal test times. Contrarily, if a difference due to fitter and shimmer is observed, then
it is a variance. This requires Noise-to-Harmonics Ratio (NHR), Recurrence Period Density
Entropy (RPDE), and Detrended Fluctuation Analysis (DFA) observations (additional)
during the next sequence. In this case, the unknown pattern features are identified in the
(next) successive observation, as depicted in Figure 6. The variance is estimated using
different ranges as defined by the disease correlation values. Say, for example, the DA
(different amplitude) between two successive sequences ranges between 0.4 and 0.6. The
exceeding range (beyond 0.6) is termed a variance. Therefore, the “Jitter” and “Shimmer”
above 0.6 is marked as unknown. The additional NHR, RPDE, and DFA are observed
to prevent disease progression detection errors. Therefore, the number of additional
observations required among the 42 patients between 120 and 148 sequences is presented
in Figure 7.
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Figure 7. Observation analysis.

The observation of patterns and variations for different sequences is presented in
Figure 7. The pattern across different observations is validated if any unknown information
is sensed. Therefore, the analysis is performed to extract abnormalities under varying se-
quences. Hence, the consecutive training iteration relies on analysis other than classification.
This is validated until NHR (or) RPDE (or) DFA clarifies the patterns from the observed
patient data. The intense assessment is concluded if the variance (between sequences) is
stabilised. The variance achieves its maximum output without increasing/decreasing, as
interpreted from Figure 7. The variations are identified from the ϕ and V patterns based on
λ for which G(Ai) is computed. The variance for progression estimation is set as 0.06 (from
the Jitter RPP) (max), and therefore the decision is performed. This average progression
value varies with the patient’s physical attributes (age, disorder, healthy level, etc.). The
different (mean) variation across the different patterns is analysed in Figure 8.
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Figure 8. F(Ai) analysis.

The F(Ai) analysis is presented in Figure 8 for the varying patterns. This analysis
considers the varying patients and (Q, V) depending on the λ. The λ for the observable
ρ(Aα) achieves less f (Ai); this is true under less available patient data. Contrarily, if ∂R

∂ri
is

required variation (function verification), then the F(Ai) increases such that Xα requires
a new instance. Therefore, the ∂R

∂U is the consecutive derivative function for abnormality
detection. In this process, the learning process identifies the F(Ai) suppression condition
for maximising precise Z(Ai). Now, the progression classification based on D is performed
as presented in Figure 9.
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The progression is analysed from F(Ai) = true condition till a ρ(Aα) is observed.
Therefore Z[Ai] is the combination of (F, i) and G(Ai) between two consecutives λ. Hence
a new observation is required to prevent false progression detection. Considering the
differences across various Xα, the θ and ∂R

∂ri
are utilised for λ verification and ηri assessment,

as shown in Figure 9.

4.2. Comparative Analysis

This section presents the discussion of comparative analysis by performing comparison
of proposed SPRM with the existing methods—MMQA [37], MGR-ND [40], and AI-WC [43].
This analysis computes the performance matrices’ accuracy, precision, pattern verification,
variance, and verification time. From the data source, the inputs are varied from 500 to
5000, and the patterns are varied from 2 to 32.

4.2.1. Accuracy

The accuracy of the recognition process is efficacious in this method by using the
SPRM. After recognising the patterns of the neural data, it is classified as unknown data or
normal data. The results are analysed using deep recurrent learning from the unknown
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data. It can also help recognise the data pattern to identify the results by using the learning
technique. It generates divinations of unknown data and helps in preparing practical
decisions. This method identifies the variance between normal and abnormal intrinsic
neural connectivity data. The variance is the difference from the previously acquired
data. If there is an increase in the variance, then the intensity of the neurodegenerative
disease should be identified with the recognised data pattern. The output of the variance is
represented as the progression. From this output, the patient’s disease’s abnormality can
also be recognised, and processes can be carried out to reduce the abnormality. Through this
process, the accuracy of the recognition is increased. Figure 10 depicts the comparison of
accuracy for implemented SPRM, and existing MMQA, MGR-ND, and AI-WC for different
data inputs and patterns.
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4.2.2. Precision

The precision is high in this process using the SPRM and the deep recurrent learning
technique. At first, the data pattern is recognised with precision, and then it is classified
into unknown data and normal data. It is determined by the patients’ neural data, which is
observed at different times. This method identifies the variances in different observation
intervals. The observed data is combined with previous and healthy function examina-
tion data to identify the variances. In this combined analysis, deep recurrent learning is
exploited by tuning the analysis layer based on variance. The variance is suppressed by
identifying normal and abnormal patterns in the combined analysis. This is the divergence
between the present and the existing data. It is used to combine the observed data with
the previous healthy functions to detect the variances. Based on this variance, the analy-
sis process is carried out by using deep recurrent learning. This helps in identifying the
intrinsic connectivity using the variances in each observation instance. Figure 11 shows
the comparison of precision for implemented SPRM, and existing MMQA, MGR-ND, and
AI-WC for different data inputs and patterns.
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4.2.3. Pattern Verification

The pattern verification is highly accurate using the SPRM and the recurrent learning
technique. The patient data is given as the input to recognise the pattern. Then, it will
be checked with the already stored data. Based on the data features and variances, the
progression is identified in this proposed method. The variances indicate the chances of
the risks by estimating precise patient behavior. This behavior varies with the actual body
conditions of either risk or nil risks. The input neural data is sent to the pattern recognition
process to identify whether it is unknown data or normal. The given input is checked
with the stored data of the patient. This process is used to investigate whether the given
input data matched the existing data of the patients. This pattern recognition predicts the
present state of the patient’s disease. This is also used to identify the variance which results
in progression. By checking with the stored data, the similarity of the input data can be
established. After recognising the patterns of the neural data, it is classified as unknown
or normal data. It is also used to verify the pattern of the data. After recognising the
data pattern of the patients’ neurodegenerative disease, it can be classified into two types:
unknown data, which is determined newly, and normal data, which matches the stored
data. Figure 12 displays the comparison of pattern verification for implemented SPRM,
and existing MMQA, MGR-ND, and AI-WC for different data inputs and patterns.
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4.2.4. Variance

The occurrence of variance is less in this process using deep recurrent learning. The
normal data is used as the input to the training process, which helps in detecting the
variance. Variance is the difference that occurs between the previous and the acquired data.
This method identifies the different variances across distinguishable patterns. This learning
technique is used to determine the high variance and the low variance. This combined
analysis exploits deep recurrent learning by tuning the analysis layer based on variance.
Variance can be both high and low depending on the pattern of the data in determining
the accuracy of the patients’ disease level. If variance occurs, then separate training will
be given with the normal data pattern to reduce the variance. The occurrence of variance
causes the abnormal detection of the patient’s disease, and this needs extra separate
training to resolve the abnormalities. This variance from different patterns is recurrently
used for training the learning model to maximise recognition accuracy. Figure 13 shows
the comparison of variance for implemented SPRM, and existing MMQA, MGR-ND, and
AI-WC for different data inputs and patterns.
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4.2.5. Verification Time

Data pattern verification and variance occurrence are less in this method using SPRM
and learning techniques. This method identifies the variance between normal and abnormal
intrinsic neural connectivity data. This learning technique is used to determine the high
variance and the low variance. Based on this variance, the analysis process is carried out
using deep recurrent learning. Now, from the variance output, the abnormality can be
identified and resolved. The observed data is combined with previous and healthy function
examination data to identify the variances. This combined analysis exploits deep recurrent
learning by tuning the analysis layer based on variance. The output makes the progression
report concerning the situation of the patient’s disease based on the variance between the
normal and abnormal intrinsic neural data connectivity. If the progression is abnormal,
further steps are taken to reduce the abnormalities in the patient’s disease report. Figure 14
compares verification time for implemented SPRM and existing MMQA, MGR-ND, and
AI-WC for different data inputs and patterns.
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Tables 1 and 2 summarise the comparative analysis of results obtained from the
implemented SPRM, and existing MMQA, MGR-ND, and AI-WC. The above results are
presented by observing the cumulative progression of data inputs and the patterns from
the inputs. Considering the cumulative mean value of the existing methods, the proposed
method is validated in terms of ratio.
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Table 1. Summary of data inputs.

Metrics MMQA MGR-ND AI-WC SPRM

Accuracy 82.44 86.91 90.02 93.034

Precision 0.784 0.841 0.895 0.9584

Pattern Verification 7 12 21 27

Variance 0.232 0.187 0.108 0.0497

Verification Time (s) 6.16 5.02 3.32 1.821

Table 2. Summary of patterns.

Metrics MMQA MGR-ND AI-WC SPRM

Accuracy 81.46 83.65 90.79 93.683

Precision 0.788 0.849 0.904 0.9525

Pattern Verification 8 13 21 26

Variance 0.236 0.174 0.112 0.0532

Verification Time (s) 6.12 5.08 3.24 1.343

Summary: The proposed method achieves 13.15% high accuracy, 11.84% high preci-
sion, and 8.44% high pattern verification. It reduces the variance and verification time by
12.6% and 10.39%, respectively.

Summary: The proposed method achieves 16.77% high accuracy, 10.55% high preci-
sion, and 7.69% high pattern verification. It reduces the variance and verification time by
12.08% and 12.02%, respectively.

5. Conclusions

This article introduces an SPRM for identifying neurodegenerative disease progression.
The progression is identified using clinical and patient-observed data across multiple
instances. The data correlation is based on different patterns exhibited by the input data
and is combined for unknown patterns and dissimilarity analysis. The connectivity and
variance metrics are validated in this analysis to prevent observation function overflows.
The process is extended using deep recurrent learning to identify consecutive sequential
abnormalities. The identified abnormalities are validated for the intrinsic data connectivity
for progress estimation. The accuracy and precision features are consistently retained from
successive iterations by mitigating the abnormalities. Further data analysis is resolved
through the same kind of process; therefore, the healthy (previous) and the observation
instance data are jointly used for analysis to prevent variance verification. This guides
the identification of new unclassified patterns; this unclassified data is normalised using
precise data computation for which the new variance is estimated. The unidentified
instances generate a chance of causing variations that are suppressed by training from the
previous consecutive intervals. The difference between successive variance pronounces
the disease progression, correlated to the clinical values. The proposed method achieves
13.15% high accuracy, 11.84% high precision, and 8.44% high pattern verification. It reduces
the variance and verification time by 12.6% and 10.39%, respectively. The implemented
SPRM has significantly improved the accuracy and efficiency of NDD diagnosis, ultimately
leading to better patient outcomes. Despite significant achievements in disease progression
identification, the proposed method lags in identifying and slagging missing data. This
issue may generate high variances across different observation intervals that impact the
accuracy. Therefore, a modified missing value substitution method can be proposed to
extend the current work. This work will either reduce the errors or identify the error-
causing sequences.
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