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Abstract: Bone malignant tumors are metastatic and aggressive. The manual screening of medical
images is time-consuming and laborious, and computer technology is now being introduced to
aid in diagnosis. Due to a large amount of noise and blurred lesion edges in osteosarcoma MRI
images, high-precision segmentation methods require large computational resources and are difficult
to use in developing countries with limited conditions. Therefore, this study proposes an artificial
intelligence-aided diagnosis scheme by enhancing image edge features. First, a threshold screening
filter (TSF) was used to pre-screen the MRI images to filter redundant data. Then, a fast NLM
algorithm was introduced for denoising. Finally, a segmentation method with edge enhancement
(TBNet) was designed to segment the pre-processed images by fusing Transformer based on the UNet
network. TBNet is based on skip-free connected U-Net and includes a channel-edge cross-fusion
transformer and a segmentation method with a combined loss function. This solution optimizes
diagnostic efficiency and solves the segmentation problem of blurred edges, providing more help and
reference for doctors to diagnose osteosarcoma. The results based on more than 4000 osteosarcoma
MRI images show that our proposed method has a good segmentation effect and performance, with
Dice Similarity Coefficient (DSC) reaching 0.949, and show that other evaluation indexes such as
Intersection of Union (IOU) and recall are better than other methods.

Keywords: osteosarcoma; artificial intelligence; magnetic resonance imaging (MRI); pre-screening;
denoising; edge enhancement

MSC: 68T01

1. Introduction

Osteosarcoma is the most common solid tumor of bone origin, accounting for ap-
proximately 20% of primary sarcomas of bone [1]. Osteosarcomas frequently occur in
adolescents or children under 20 years of age, with more than 75% of patients having an
age of onset younger than 25 years [2]. Although some osteosarcomas can be cured by
surgical means, some cases remain that are highly fatal even with the most aggressive
treatment measures. With the application of comprehensive therapeutic approaches, a
cure rate of 65–70% can be achieved in some patients. However, osteosarcoma is prone to
lesions with long treatment cycles and poor prognosis, leading to high mortality rates of
malignant tumors [3]. Patients with advanced osteosarcoma had a 5-year survival rate of
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only 20% [4]. The early detection of malignancies can significantly enhance disease cure
rates and minimize patient death [5].

In the current application of evaluation of suspected osteosarcoma, radiographs are
inaccurate in determining tumor borders, often resulting in results smaller than the actual
size of the tumor [6]. Although CT shows the extent of bone destruction well, MRI performs
better than CT in showing the extent of focal lesions [7]. MRI has the advantage of providing
multidimensional images and allowing for more sensitive quantification of the extent of
marrow cavity involvement [8]. Therefore, MRI images are very important for physicians
to clinically examine patients with osteosarcoma.

The artificial intelligence-aided detection of medical images is important for predicting
patient outcomes and monitoring disease progression with the development of treatment
strategies [9–11]. Due to the general underdevelopment of health care systems, most coun-
tries, especially developing countries, still suffer from a strain and uneven distribution
of health care resources [12]. Many hospitals have difficulty in meeting the hardware
and staffing requirements for osteosarcoma treatment. Most diagnoses of osteosarcoma
rely on the manual recognition of pictures [13]. However, the volume of image data from
patients with osteosarcoma is enormous, but few images are of value. Only about 20 of the
approximately 700 MRI images generated per patient with osteosarcoma may be useful
to the physician for diagnosis [14,15]. The manual screening and processing of validated
osteosarcoma images by physicians is a time-consuming and laborious process [16]. Con-
sidering the lack of uniformity in the diagnosis of histological features of osteosarcoma,
it requires a high level of expertise and knowledge base in pathology on the part of the
diagnosing physician. Diagnosis by inexperienced physicians is highly subjective, which
can lead to an increased rate of misdiagnosis.

At present, image processing technology is developing rapidly, especially in image
segmentation, and new methods are constantly proposed [17]. As medical image processing
technology progress, more and more imaging modalities are being employed to diagnose
osteosarcoma [18]. Analysis of the extent of tumor infiltration and the boundaries of tumor
infiltration by MRI helps clinicians to localize the tumor. MRI images are susceptible to
various noise sources (including thermal noise and physiological noise [19] caused by
mechanical defects and external signals), which significantly reduces the image quality. The
denoising operation is necessary to improve diagnostic efficiency. In addition, osteosarcoma
itself has complex local tissue formation and morphological changes, difficult-to-maintain
marginal features, and blurred tumor boundaries. Due to this, some medical image pro-
cessing algorithms are less effective at identifying osteosarcomas, and it is challenging to
obtain global multidirectional features and implicit features [20], as well as both accuracy
and performance. It is crucial to improve the efficiency of osteosarcoma diagnosis by
effectively extracting global features and solving the edge ambiguity segmentation problem
without consuming too many computational resources and time costs. Edge feature-based
methods are processing models employed in medical images, such as Transformer which
has achieved wide application in the field of medical images by taking advantage of global
modeling [20–22]. Such methods have achieved good results when dealing with simple
tasks. When faced with the MRI segmentation task of osteosarcoma where there are a large
number of complex boundaries and blurred lesion edges, it is difficult to acquire edge
features globally and in multiple directions and to mine the implicit features, making the
model accuracy and robustness poor [22]. Therefore, their segmentation results did not
meet the expectations.

To improve the recognition accuracy of tumors, this study proposes an artificial
intelligence-assisted diagnostic scheme for the MRI images of osteosarcoma with edge-
enhanced features. It first processes the raw MRI images using threshold screening filtering
(TSF) to filter out the redundant data in lesion-free regions. Then, the fast NLM algorithm
and Fourier transform are fused to reduce the noise of the images. Finally, a segmentation
network (TBNet) with edge-enhancement features is designed to improve recognition
accuracy by enhancing the tumor edge features. It effectively alleviates the problem of
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the imprecise identification of fuzzy tumor boundaries by existing methods. The network
introduces a channeled edge-crossing transformer instead of Unet’s skip connection, and
combines loss functions to globally segment tumor regions of different sizes at multiple
scales, optimizing the effect of osteosarcoma segmentation.

2. Related Work

The segmentation of medical images by computer technology (including CT, MRI,
X-ray, etc.), which in turn helps doctors to diagnose diseases, is gradually becoming a
popular research topic. Listed and described below are some of the mainstream algorithms
in the field.

Recently, visual transformers have been increasingly used for the segmentation of
medical pictures. Jienengchen et al. proposed TransUNet [21], the first transformer-based
segmentation method in medical imaging. The first transformer-based pure U-shaped
design was Swin-Unet [22] proposed by Liu et al. MedT network was proposed by Jeya
Maira Jose Valanarasu et al. [23]. To improve medical picture segmentation, Yuhe Gao
et al. presented the UTNet [24], a simple and powerful hybrid transformer design that
combines self-attention into convolutional neural networks. Yuan Fengji et al. proposed
the unified transformer network Multi-Composite Transformer (MCTrans) for cross-scale
dependency and semantic consistency learning problems [25]. Olivier Petit et al. combined
the complementary capabilities of the U-shaped network and transformer and proposed
the UNet-capable of combining the self-attention and cross-attention of both transform-
ers [26]. TransFuse network [27] was suggested by Yundong Zhang et al., which mixes
transformers and CNNs in tandem, proposing a fusion of the two techniques, in contrast
to most earlier efforts, which replaced the convolutional layers in U-Net networks with
the transformer or cascaded the two. HiFormer, a hierarchical multiscale representation
transformer was recently proposed by Moein Heidari et al. [28]. Chen Wei et al. presented
that HRSTNet [29] replaces the convolutional layer with a transformer module that cre-
ates varied resolution feature mapping information. Ruina Sun et al. [30] introduced an
effective image classification segmentation technique based on an enhanced Swin trans-
former, which was designed specifically for lung cancer classification and segmentation.
UNeXt model [31] was proposed by Vishal M. Patel et al. as a deep network architecture.
CapsNet [32], a capsule network architecture built, was developed by Minh Tran et al. for
medical picture segmentation.

In the disease diagnosis of osteosarcoma, image processing by computer technology
as an aid to diagnosis has gradually become a research hotspot. The accurate classification
of the morphology of different stages of osteosarcoma can enable the timely control of the
spread and treatment of osteosarcoma patients in early diagnosis. In the article [33], a CNN
has been used to pre-train a publicly available dataset of osteosarcoma tissue images to
avoid extensive metastasis. Yu Fu [34] developed a DS-Net network capable of automati-
cally classifying histological images. Hosein Barzekar et al. presented C-Net [35], a new con-
volutional neural network structure with multiple tandem CNNs. Rahad Arman Nabid [36]
proposed a convolutional network to evaluate the grading of patients with osteosarcoma,
but the model suffers from the problem of simple overfitting. To identify osteosarcoma
cells from osteoblastic cells (MSC), the method proposed by Mario D’Acunto et al. [37] has
an accuracy close to one and allows for the study of single cells but requires a huge amount
of cellular data. Parlak et al. [38] employed diffusion-weighted imaging to accurately show
Ewing’s sarcoma and osteogenic sarcoma by measuring the expression diffusion coefficient
(ADC) values for borderline case segmentation of Ewing’s sarcoma and osteogenic sarcoma.

Many scholars in the literature have proposed the application of many image-processing
techniques for the early identification and prediction of treatment options for patients with
osteosarcoma. Su Young Jeong et al. [39] proposed the use of machine learning methods
incorporating baseline 18-FDG positron emission tomography to predict textural features
in scanned images. To this end, Hyung-Jun Im et al. [40] proposed various segmentation
methods for pseudo-myelinating lesions, including the relative background threshold



Diagnostics 2023, 13, 1063 4 of 21

method, the gradient-based method (PETedge), and Bluse Otsu (MO-PET). Shuai Limei
et al. proposed W-net+ [41], a network structure based on a dense jump connection structure
and cascaded dual U-Net. WB Huang et al. [42] proposed a fully automated MRI method
for osteosarcoma detection. It is used to identify tumors with irregular structure and shape
by using conditional random fields.

The above analysis demonstrates that picture segmentation techniques are becoming
increasingly significant in illness diagnosis and prognosis assessment. However, because
the pictures are vulnerable to noise, edge features in image segmentation of osteosarcoma
are still challenging to retain and segmentation accuracy needs to be improved. In this study,
an artificial intelligence-aided diagnosis method for osteosarcoma with edge-enhancement
features is proposed, which improves the accuracy of tumor recognition by enhancing
edge information.

3. Methodology

With the development of computer image processing technology, artificial intelligence
solutions are widely used in the medical field. Its importance is to solve the problems
of high consumption of medical resources and low efficiency of disease diagnosis in
developing countries [43–46]. However, such methods still present major challenges in the
recognition of tumors. Taking osteosarcoma MRI images as an example, existing methods
have difficulty in handling images with complex lesions and blurred edges [10,47]. This
paper proposes an artificial intelligence-aided diagnosis scheme to provide more options for
osteosarcoma-aided diagnosis in developing countries. The overall design of the scheme is
in Figure 1. First, we perform MRI image pre-screening by Threshold Screening Filter (TSF)
to filter redundant data and extract useful images for submission to the next step; then, we
introduce a combined fast Fourier transform NLM algorithm for noise reduction in MRI
images to improve the diagnostic quality. Finally, to improve the recognition accuracy of
the model for tumor edges, a U-shaped network with a fused transformer featuring edge
enhancement is used to segment the pre-processed images. The channeled transformer
bridges the semantic gap that exists in the UNet network. The method also introduces the
edge-enhancement module (BAB) with a combined loss function to optimize the effect of
edge segmentation.
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Figure 1. Image Segmentation Framework. Figure 1. Image Segmentation Framework.

The artificial intelligence-aided diagnosis scheme of the osteosarcoma MRI images we
constructed is divided into two main sections: Section 3.1 is data preprocessing; Section 3.2
is the image segmentation model of osteosarcoma MRI. In Section 3.1, we are mainly divided
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into two parts, which are the pre-screening operation based on Threshold Screening Filter
(TSF) and the noise-reduction processing based on a fast NLM. Table 1 shows the main
mathematical symbols of this chapter and their annotations.

Table 1. Main mathematical notations and their annotations.

Notation Meaning

Z2 The osteosarcoma MRI image domain
Ba A block of image windows of size n1 × n1
Ba The result of Ba initialized noise reduction
λT The hyperparameter of the TSF
p The Euclidean distance

λFFT2 The fixed threshold parameter
X MR noise data
S Original MR images and Phases

k(a) Noise component intensity of the i-th pixel
I0 The modified Bessel function

η1, η2 Real and virtual channel impact
k(a) The activation function of TSF

ω
(

Ni, Nj ) The function of weighted similarity

F2D,F−1
2D The DCT transform operator (FFT) and its inverse

Z(i) The normalization constant
φ(·) The boundary level set
CS Search window side half-length

Mi, M̂i The similarity matrix and Mask edge diagram
ψ(·) The instance normalization
δ(·) The ReLU operator
fi−1 Supplementary layer feature map for layer i − 1
g(·) The probabilistic output of the network

3.1. Data Pre-Processing
3.1.1. MRI Image Pre-Screening Based on Threshold Screening Filter (TSF)

The purpose of pre-screening is to obtain some valuable images from the original MRI
images. For MRI image filtering, we used a threshold filter (TSF).

T(a) = k(

∣∣∣∣∣∑1≤i≤N1 ∑1≤j≤N1

(
Ba(i, j)− 0.5λT

)
n1

2

∣∣∣∣∣− λT (1)

where λT is a hyperparameter of the TSF controlling the screening threshold of the lesion.
Noise significantly reduces the accuracy and there is no greater need for edge details

during pre-screening for the time being. Therefore, we introduced the discrete Fourier
transform (DFT) [48] for coarse initial denoising of noise at high frequencies first. Ba is the
coarse initial noise reduction method for Ba.

Ba = F−1
2D (s(F2D(Ba), λFFT2σ

√
2log(n2

1))) (2)

where F2D represents the DCT transform operator, F−1
2D represents the inverse of F2D, and

λFFT2 is the fixed threshold parameter. Additionally, s is defined as:

s(a, λ) =

{
0, −λ < a < λ

λ, a > λ , a < −λ
(3)

In Equation (1), k is:

k(a) =
{

0, a ≥ 0
1, a < 0

(4)
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If the output of k(a) is 1, the location of the window block Ba contains the lesion area,
and the image is kept to mark the image as “lesion image”. When it is not 1, the image
of window block Ba is considered invalid and the sliding traversal of the entire image
continues. After the original data set is pre-screened, the redundant data without lesions
are eliminated, and the useful and valuable image data are retained for further operations.

3.1.2. Noise Reduction Based on Fast NLM Algorithm

The degree of tumor invasion and the invasion boundary is different, which affects
the recognition effect of the model to a certain extent. The source of noise influence in MRI
images is different from the usual images. The usual images are perturbed by Gaussian
white noise. MRI images, on the other hand, are influenced by the bias induced by the
Rician distribution noise associated with the MR acquisition system signal, as well as
Gaussian white noise. Real and imaginary channels are influenced by and collect complex
MR data X.

X = Scosθ + η1 + j(Ssinθ + η2) (5)

where S is the original MR image and θ is the phase. Changing the noise distribution to
Rician can be expressed as:

P(
X
S

, σ) =
X
σ2 e−(

x2+S2

2σ2 ) I0(
XS
σ2 ) (6)

By first squaring the magnitude of the data X and then considering the expectation of
both sides, it is possible to determine the bias caused by the Rician distribution.

The non-local mean (NLM) takes advantage of the redundancy of the image, and the
pixels in the image filtered by non-local averaging are a weighted average of all other
pixels [7]. NLM can successfully remove the aforementioned image noise. This number is
determined by examining the picture block and determining the sliding window’s similarity
to the selected window. The NLM method’s core equation is Equation (7).

NLM(I(i)) = ∑j∈Ni
ω
(

Ni, Nj
)

I(j)
(

ω
(

Ni, Nj
)
=

1
Z(i)

e
(−p)

h2

)
(7)

where 0 ≤ ω
(

Ni, Nj
)
≤ 1, ∑j∈Ni

ω
(

Ni, Nj
)
= 1, ω

(
Ni, Nj

)
is the weight to calculate the

similarity between two patches, h represents the filtering parameter, and p represents the
Euclidean distance between two patches.

The original NLM algorithm takes a lot of time to compute the similarity weights and
has a high distance computation complexity [49]. To keep the NLM accurate while reducing
the consumption of computational resources, we introduce the Fast Fourier Transform
(FFT) strategy to implement a fast algorithm for computing pixel-level NLM. v is the input
noisy image, V is the patch, cs is the patch edge half-length, c is the patch side length as
c = 2× cs + 1, and c2 is the number of pixels in the patch procedure. First, we rearrange
the loop to consider all pixels i of all translation vectors t ∈ [[−Cs,+Cs]]

2. In the context of
patches distance, the Euclidean distance can be calculated as follows:

st(i) = [[v(i)− v(i + t)]]22, i = (i1, i2) ∈ Ω (8)

Then, in this case, the weighted norm of the patch difference is a discrete convolution:

|| V(i)−V(i + t)||22.K = ∑{b∈Z2:||b||∝≤ds}
K(b)||v(i + b)− v(i + t + b)||22 =

(
K̃ ∗ st

)
(i) (9)

where ∗ denotes discrete convolution, K̃(b) = K(−b). It is calculated by F and its
inverse F−1.

||V(i)−V(i + t)||22,K = F−1
(
F
(

K̃
)
F (st)

)
(i) (10)



Diagnostics 2023, 13, 1063 7 of 21

The time complexity of FFT is O
(

ND2log(N)
)
, subject to the computation of any

translation vector t ∈ [[−Cs,+Cs]]
2, and the computation of NLM weights is independent

of the patch size. Assuming that the total number of image pixels is N, the introduction of
FFT enables the NLM algorithm to obtain a good speedup. Specifically, the time complexity
is reduced from the original O

(
ND2c2) to O(ND2log(N). As shown in Figure 1, after

the image data are processed by noise reduction, they are then put into the subsequent
segmentation operation.

3.2. Tumor Localization

The original data are input to the segmentation model TBNet for segmentation after
a series of data preprocessing, such as image pre-screening and noise reduction. TBNet
is a U-Net network with edge-enhanced features of a fusion transformer designed by
us, which can effectively solve the edge blur segmentation problem caused by blurred
lesion edges. TBNet is based on the UNet network without skip connection, introducing a
multi-head cross-fusion transformer (MCT), edge-enhanced cross-attention module (ECA)
with combined loss function; this optimizes the segmentation effect and solves the edge
blur segmentation problem. The model mainly consists of U-Net without a skip-connection
mechanism [50], channel edge cross-fusion transformer (including multi-head cross-fusion
transformer module MCT and edge-enhanced cross-attention module ECA), and combined
loss function. Figure 2 shows the general design of the model.
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Figure 2. TBNet Segmentation Model.

The original U-net does not work well in the osteosarcoma diagnosis task. Osteosar-
coma itself has complex morphological changes, difficult-to-maintain edge features, and
blurred tumor boundaries, coupled with the fact that MRI images, the tools relied on for di-
agnosis, are vulnerable to noise. This makes the skip connection mechanism have a certain
semantic gap in the osteosarcoma segmentation recognition task, makes the stage features
incompatible, and makes it difficult to obtain edge features and mine the implicit features
globally and in multiple directions, thus making the model accuracy and robustness poor
with a certain impact on the segmentation. We introduce a cross-fusion channel transformer
with edge-enhancement features to replace the jump connection while taking advantage of
the transformer and Unet for the cross-fusion of multi-scale channel information, solving
the problem of semantic hierarchical inconsistency, and enhancing edge information to
improve the edge segmentation ambiguity problem.
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The channelized edge cross-fusion transformer consists of MCT for encoder feature
transformation, MCT for encoder feature conversion, and the edge-enhancement cross-
attention module (ECA) for decoder feature fusion.

(1) Multi-head cross-fusion transformer (MCT) for encoder feature transformation

MCT is a multi-scale global feature investigation of osteosarcoma MRI images using
transformer long-dependent modeling to fuse multi-scale encoder features. It is divided
into three stages: Embedding Multi-scale Features, Multi-Crossing Attention, and Multi-
Layer Perceptron. Figure 3 shows the design of the MCT.
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Figure 3. Multi-Head Cross-Fusion Transformer (MCT).

Embedding Multi-Scale Features. The embedding of multi-scale features starts by
labeling the features with the Ii of the multi-scale feature of the given osteosarcoma MRI
image, and reshaping the 2D patch of the flat feature sequence so that the patch size is P,
P/2, P/4, and P/8. In this process, the channel size remains the same. We then connect
the four layers as keys and values LΣ = Concat(L1, L2, L3, L4) and feed them into a multi-
headed cross-attention module to encode the channels and dependencies to refine the
features at the encoder level of each osteosarcoma MRI image using multiscale features.

Multi-Crossing Attention. As shown in Figure 4, there are five inputs required
for this module. Let TiεRCi×d , TKeyεRCΣ×d, TValueεRCΣ×d, and WiεRCi×d , WKeyεRCΣ×d,
WValueεRCΣ×d be the weights of different inputs; d is the sequence length, Ci(i = 1, 2, 3, 4)
is the channel size to skip the concatenated layer, and the four sizes we use are C1 = 64,
C2 = 128, C3 = 256, C4 = 512. Through the cross-notice mechanism, a similarity matrix Mi
is generated and TValue is weighted.

Ti = LiWi , TKey = LΣWKey, TValue = LΣWValue (11)

CAi = MiTT
Value = σ

[
ψ

(
TT

i TKey√
CΣ

)]
TT

Value = σ

[
ψ

(
WT

i LT
i LΣWKey√

CΣ

)]
WT

ValueLT
Σ (12)

where ψ(·) and σ(·) denote the instance normalization and the softmax function, respec-
tively. We change the original method of the attention operation along the patch-axis in the
self-attention mechanism and change the direction to along the channel direction. Instance
normalization is also used to normalize each instance’s similarity matrix on the similar
mapping, allowing for the gradient to flow smoothly. In the case of N-head focus:

MCAi =
∑0<j<N,j∈Z CAj

i
N

(13)

Multi-Layer Perceptron (MLP). After the multiple cross-notice mechanisms, the re-
sults are fed into the MLP with the residual structure and residual operator to obtain the
output. An L-layer transformer is constructed by repeating the operation equation (14) L
times. The four outputs O1, O2, O3, O4 of the L-th layer are reconstructed by up-sampling
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the operations after convolutional layers. They are connected to the decoder features
F1, F2, F3, F4, respectively, and fed to the Edge-Enhanced Cross-Attention (ECA).

Oi = MCAi + MLP(Ti + MCAi) (14)
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The segmentation of the focus area in the MRI image is a binary classification task.
The introduction of too many layers of transformers will lead to the explosive growth of
computational complexity and model over-fitting problems. After balancing resource cost
and segmentation accuracy, N and L are set to 4.

(2) Edge-Enhanced Cross Attention (ECA) module for decoder feature fusion

As shown in Figure 5, we propose a channel-based edge-enhancement cross-attention
module to better fuse the semantic inconsistency characteristics between the channel
transformer and the U-Net decoder, as well as to correct for fuzzy edge segmentation
and the lack of some regions in osteosarcoma MRI images. The module is split into
two sections: Decoder Channel Crossing Attention Module and Edge-Enhancement Mod-
ule. It can not only direct the channel and information filtering of interceptor features
to minimize ambiguity in decoder features, but it can also increase edge information to
replenish missing regions.

Diagnostics 2023, 13, x FOR PEER REVIEW 9 of 21 

Figure 4. Multi-Head Cross-Attention Module. 

Multi-Layer Perceptron (MLP). After the multiple cross-notice mechanisms, the re-

sults are fed into the MLP with the residual structure and residual operator to obtain the

output. An L-layer transformer is constructed by repeating the operation equation (14) L 

times. The four outputs 𝑂1, 𝑂2, 𝑂3, 𝑂4 of the L-th layer are reconstructed by up-sampling

the operations after convolutional layers. They are connected to the decoder features 

𝐹1, 𝐹2, 𝐹3, 𝐹4, respectively, and fed to the Edge-Enhanced Cross-Attention (ECA). 

𝑂𝑖 = 𝑀𝐶𝐴𝑖 + 𝑀𝐿𝑃(𝑇𝑖 + 𝑀𝐶𝐴𝑖) (14) 

The segmentation of the focus area in the MRI image is a binary classification task. 

The introduction of too many layers of transformers will lead to the explosive growth of

computational complexity and model over-fitting problems. After balancing resource cost 

and segmentation accuracy, N and L are set to 4. 

(2) Edge-Enhanced Cross Attention (ECA) module for decoder feature fusion 

As shown in Figure 5, we propose a channel-based edge-enhancement cross-atten-

tion module to better fuse the semantic inconsistency characteristics between the channel 

transformer and the U-Net decoder, as well as to correct for fuzzy edge segmentation and

the lack of some regions in osteosarcoma MRI images. The module is split into two sec-

tions: Decoder Channel Crossing Attention Module and Edge-Enhancement Module. It 

can not only direct the channel and information filtering of interceptor features to mini-

mize ambiguity in decoder features, but it can also increase edge information to replenish 

missing regions. 

Figure 5. Edge-Enhanced Cross-Attention Module (ECA).Figure 5. Edge-Enhanced Cross-Attention Module (ECA).

Decoder Channel Crossing Attention Module. We take level i transformer output
Oi ∈ RC×H×W and Fi ∈ RC×H×W as the input for cross-attention. Spatial squeezing is
performed through the GAP layer to construct attention masks.

Mi = X1·ξ(Oi) + X2·ξ(Oi) (15)
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where the resulting vector ξ(x) ∈ RC×1×1, the k-th channel ξ(x) = 1
H×W ∑H

i=1 ∑W
j=1 Xk(i, j),

x1 ∈ RC×C and x2 ∈ RC×C. We recalibrate and excite Oi.

Ôi = σ(Mi)·Oi (16)

Edge-Enhancement Module. The blurred focus edge in MRI images often leads to
inaccurate tumor segmentation. To solve the problem of edge fuzzy segmentation, the
edge-enhancement module is introduced into the cross-attention module of the feature
fusion part of the encoder.

Fab = d3

[
c
(

d3

[
c
(

d1[Fi], M̂i

)
, fi+1

])]
(17)

For the edge attention mechanism, we are inspired by the spatial channel compression
and stimulus attention module and designed the attention module that focuses more
on the edge feature information with the same simplicity and without increasing the
parameters. The specific process can be expressed as follows: first, the input feature map
Fab ∈ RC×H×W is compressed in channel and space, and the compressed feature map
Fa ∈ RH×W×1 obtained after the compression is multiplied with the vector Fb ∈ R1×1×C

to obtain a weight WB ∈ RC×H×W of the same size as the input. This not only provides
a corresponding weight for each pixel of the input feature map but can also highlight
more important location information at the edges and suppress location information of a
small value.

F̂i = (Fa × Fb)
⊙

Fab (18)

where × represents the expansion to direct multiplication and
⊙

represents the pixel-by-
pixel multiplication. Finally, the output Ôi of the decoder channel cross-attention module
and the output F̂i of the edge-enhancement module will converge to obtain the final output
Fi. Fi will continue to work as an input to the i − 1 layer.

In addition, the following loss function is proposed.

L = αLDice + βLBD (19)

It combines dice loss and boundary loss:

LDice = 1− 2PT
P2 + T2 (20)

LBD =
∫

Ω
φG(i)g(i)di (21)

where P is the predicted value, T denotes the true label value, G is Ground Truth, and g(·)
is the softmax probability output of the network. If i ∈ G, then φG(i) is the negative value
of the distance between the point and G; conversely, it has a positive value. We introduce
parameters α and β as balancing coefficients in the defining Equation (19) of the integrated
loss function L.

By focusing on both the tumor region and edge information, our method effec-
tively alleviates the edge-blurring problem that has not been addressed in previous
research methods.

4. Experimental Analysis
4.1. Dataset

The data for this article are from the Research Center for Artificial Intelligence of
Monash University [51]. The original dataset included more than 4000 MRI image samples
from 204 patients with osteosarcoma. All patients are diagnosed by specialists at the
hospital based on clinical presentation and pathological images. All images were rotated
by 90◦, 180◦, and 270◦, respectively, to improve the generalization ability of the model.
Finally, the dataset was partitioned into a training set, a validation set, and a test set in a
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ratio of 7:1:2. In addition, the ground-truth label of our MRI images was carried out by a
collaboration of three doctors at the hospital. As shown in Figure 1, in this mission, only
the focal area needs to be segmented. Therefore, the ground-truth label consists of two
parts—the tumor area is the foreground and the other part is the background.

The experiments in this paper were conducted under the Ubuntu 18.04.5 operating
system with Python as the main programming language, Python version 3.8, and PyTorch
version 1.10.0. The GPU used in the experiments was a GTX 3060, and the CPU used was
an Intel(R) Xeon(R) E5-2630L v3 with 30 GB of RAM.

4.2. Evaluation Metrics

Based on an earlier study, classification accuracy (CA) expresses the ratio between the
screened accurate samples and the expected samples [52]. We used CA to assess the validity
of the MRI image pre-screening algorithm. Let CR be the correctly classified image, i.e.,
the lesioned image that is correctly screened out by the normal image, CF be the incorrect
classification result, and CR + CF be denoted as all the images of the input. The overall
error of this process can be denoted by CF.

CA =
CR

CR + CF

The peak signal-to-noise ratio (PSNR) can objectively quantify the denoising effect.
NMISE represents the normalized mean squared error of integration between the denoised
and noise-free data [53].

PSNR = 10log10(
max(pi)

2

NMISE
)

Intersection of Union (IOU) is a metric that is commonly used to measure the similarity
between the predicted tumor region and the actual tumor region [54]. Specifically, IOU
is the ratio of the intersection region between the judged tumor region I1 and the real
tumor region I2. The larger this index is (the closer it is to 1), the greater the impact of
the segmentation.

IOU =
I1 ∩ I2

I1 ∪ I2

DSC is commonly used to indicate segmentation effects on a similarity measure from
0 to 1 [55]. The DSC is calculated as the ratio of twice the area of the junction of I1 and I2
to the entire area, as expressed in the following equation. The best segmentation effect is
obtained when the DSC is 1.

DSC =
2 ∗ |I1 ∩ I2|
|I1|+ |I2|

The segmentation network’s performance is explained using a confusion matrix.
Among them, TP indicates that the area is predicted and is actually a focus area. TN
indicates that both predicted and actual tissues are normal. FP represents the predicted
tumor area, which is actually normal tissue. On the contrary, FN indicates that it is predicted
to be normal, but it is actually a tumor. In this experiment, accuracy (ACC), precision (Pre),
recall (Re), and F1-score (F1) are calculated by using the confusion matrix to measure the
performance of each network [56].

4.3. Algorithm Comparison

We perform a comparative experimental analysis with our proposed TBNet using the
following method. These methods are briefly described below.

(1) A fully convolutional network (FCN) is a pixel-level classification of images, using
skip structures to achieve fine segmentation [57]. In this paper, 2 networks with 8 and
16 up-sampling are used FCN-8s and FCN-16s.
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(2) The PSPNet focuses on the pyramid pool module as a technique of extracting global
contextual information, collecting and fusing contextual information at various scales,
thus being particularly effective in acquiring global information [58].

(3) The MSFCN is a fully convolutional network with many supervised lateral output
layers for automatic volume segmentation [59]. To enable the effective learning of local
and global visual features, a supervised lateral layer is added to the three layers of the
convolutional network to provide a system-level structure to guide multidimensional
feature learning.

(4) Multi-scale residual networks (MSRN) [60] can adaptively identify image features at
different scales and make them interact to produce effective high-resolution picture
information. The generation of structural multiscale residual block MSRBs is achieved
by combining convolution kernels of different sizes on the basis of the creation of
residual blocks.

(5) U-Net is a symmetric U-shaped structure that enables image-semantic-level segmen-
tation [61]. The left side is a convolutional layer (systolic path) responsible for feature
extraction and the right side is an up-sampling layer (extended path) responsible for
feature reduction. It can use very little data to obtain the best results.

(6) Feature pyramid networks (FPN) [62] use low-level feature semantic information with
accurate target locations and information-rich high-level feature semantic informa-
tion to make predictions independently at different feature layers using multi-scale
feature fusion.

(7) The UTNet network [24] hybrid transformer design incorporates self-attention into
convolutional neural networks. The self-attention module is used in both the encoder
and decoder in UTNet, and it is combined with relative position coding to considerably
minimize the complexity of the self-attention process. In addition, a self-attentive
decoder is presented to recover fine-grained features from the encoder’s skipped
connections, addressing the problem that the transformer requires a considerable
quantity of data to acquire the visual sensing bias.

(8) The TransUNet network [21] combines the advantages of a transformer and U-Net in a
hybrid CNN transformer design. The global context extraction encodes the tokenized
picture blocks in the CNN feature map as input sequences by the transformer. The
decoder performs up-sampling to achieve accurate localization. This operation is
performed before combining the encoded features with the high-resolution CNN
feature map.

4.4. Influence of Super Parameters

In the preparation before training, to improve the efficiency of training and model
performance, we first performed the pre-screening and noise-reduction operation of the
data to avoid meaningless redundant and invalid data, which affect the improvement in
segmentation efficiency. For the fixed parameters of the TSF in the pre-screening operation,
referring to the general settings of the study, we set n1 to 7 and the fixed threshold parameter
λFFT2 to 0.82.

In addition, for the setting of parameter λT in TSF, we found that the reasonable setting
interval of λT should be 90–160 by repeating the experiment and statistically analyzing
the lesion areas on the MRI images of different osteosarcomas. If λT is set too small or
too large, the accuracy of screening is reduced. The former is because it causes the TSF
to incorrectly classify lesioned images as normal, reducing the accuracy of the screening
process. The latter is because the TSF will incorrectly label healthy images as lesions. The
average classification accuracy is maximum when 120 < λT < 140, which may reach
95.82%, and the optimal interval of λT can be defined as 120–140. The trend of classification
accuracy (CA) can be shown in Figure 6 for a suitable range of parameters.
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4.5. Results

From the MRI images screened by the TSF algorithm (the lesion images used for the
experiment and the rejected normal images), 100 images were selected separately and
the accuracy of the model was judged by the confusion matrix, as shown in Table 2. The
predicted values indicate the results judged by the TSF algorithm. The classification results
judged by the physician after examining the MRI images are represented by the actual
values. Among them, the model correctly classified 93 normal images and lesion images,
judged 3 lesion images as normal, and judged 4 normal images as lesion images. According
to the analysis in Section 4.4, the best CA value of the TSF algorithm reached above 0.95.
The CA value of the randomly selected results in Table 2 reached 0.93. It proves that the
TSF algorithm is as expected and can effectively eliminate redundant data from lesion-free
regions and filter out valuable training images.

Table 2. Analytical constant images of TSF algorithm screening results.

Predicted
True Lesion Image Normal Image

Lesion image 49 4

Normal image 3 44

To verify the effectiveness of the denoising process, we used the evaluation metric
PSNR to quantify the validity of this operation. Figure 7 shows the reconstruction results
of the images before and after noise reduction with the corresponding PSNR values. By
comparison, it can be observed that the post-noise-reduction image (Figure 7b) is clearer
than the image before the noise-reduction treatment (Figure 7a) and is very close to the
noise-free image (Figure 7c). Meanwhile, we can know that the PNSR value will be higher
after the noise-reduction processing.

Specifically, Figure 8 shows the effect comparison of some randomly selected images
before and after the noise-reduction process to prove that noise reduction has a great impact
on the recognition accuracy of tumors. Comparing the segmentation effect before noise
reduction (Figure 8B) and after noise reduction (Figure 8C), the segmentation effect is
similar in the global view. However, we can visually see from the details of the local area
magnification that the segmentation effect after noise reduction (Figure 8C) compensates
for the detailed contour of the edge area of the lesion compared with the segmentation
effect without noise reduction (Figure 8B), which is closer to the real image. The results
demonstrate that noise-reduction processing increases accuracy.
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Figure 8. The segmentation effect before and after noise reduction. The sub-figure (A) represents the
ground truth of the image, the sub-figure (B) represents the result of image segmentation without
Denoised, and the sub-figure (C) represents the result of image segmentation with Denoised.
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In Table 3, we further visualize the effect of the TSF filtering algorithm (λT = 133) and
the NLM noise-reduction algorithm on the performance of the model. When the original
MRI images were processed directly by the TBNet network, all the other indexes performed
poorly, although its Re value reached 0.974. When images without tumor regions (or tumor
regions barely visible) were removed using the TSF method, the performance of our model
improved more significantly. Precision increased by around 0.009 after image pre-screening,
F1 increased by about 0.003, recall increased by about 0.001, and DSC increased by about
0.006. The most important DSC index improved by roughly 0.012 after the noise-reduction
treatment, whereas precision, F1, and IOU improved by 0.005, 0.002, and 0.011, respectively.

Table 3. Comparison of TBNet under different conditions.

Model ACC IOU DSC Pre Re F1

TBNet 0.991 0.904 0.931 0.927 0.974 0.949
TBNet+Denoise 0.993 0.915 0.943 0.932 0.968 0.951

TBNet+Denoise+Pre-Screening 0.997 0.915 0.949 0.941 0.969 0.954

After the screening of the dataset by Threshold Screening Filter (TSF), more than
3000 MRI images remained. All comparison methods, including UNet, were experimented
with using the pre-processed images to ensure fairness. The results of each model for the
segmentation of osteosarcoma MRI images are shown in Figure 9 below. We can visually
examine the model’s segmentation performance using ground-truth photographs. Mean-
while, we have selected the DSC metrics, and based on the following six segmentation
examples of osteosarcoma, we can find that the TBNet network can obtain better segmen-
tation results. When dealing with simple segmentation jobs, our technique can obtain
the same segmentation outcomes as previous models. It performs better when dealing
with tumor segmentation jobs with complex boundaries (cases 3 and 4). Our method,
particularly in the specifics of the border contour of the osteosarcoma lesion, can obtain a
more precise and comprehensive segmentation of the tumor borders with higher accuracy
when compared to other methods that can handle it appropriately.
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Similarly, for the same osteosarcoma images with complex edge blurring characteristics
as in cases 3 and 4 above, we selected the following six examples of osteosarcoma images
with blurred edges and used TransUNet, and our proposed TBNet for image segmentation,
respectively. As shown in Figure 10, our method can segment the boundary of the lesion
region more effectively and precisely.
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Figure 10. Segmentation effect with blurred edges.

We measured segmented data to quantitatively compare the effectiveness of the
various methods by comparing several classical comparative metrics. The osteosarcoma
task is shown in Table 4. Our proposed model TBNet performs well overall in the task.
Several metrics of our scheme are the highest. For example, ACC, IOU, DSC, and Re
reach 0.997, 0.915, 0.949, and 0.969, respectively. The performance of the UNet network is
also relatively good with an ACC value of 0.99. The MSRN network has the least params
among all methods with only 12.42 M, and it also has a recall of 0.945. Comparatively,
although the MSRN network also requires only 24.53 M parameters, it has significantly
lower DSC values. For the PSPNet algorithm, it has the lowest FLOPS value but it has
the worst IOU and DSC values. It indicates that the performance of this model is poor.
Although our method has more parameters than UNet, MSFCN, and MSRN models, it has
fewer parameters than some other convolution-based models. It has higher segmentation
accuracy and faster computation speed with only a small number of additional parameters.

Table 4. Performance comparison of different models on the osteosarcoma task.

Model ACC IOU DSC Pre Re F1 FLOPS Params

FCN-16s 0.989 0.824 0.859 0.922 0.882 0.900 187.35 G 122.4 M
FCN-8s 0.993 0.830 0.876 0.941 0.873 0.901 187.18 G 122.4 M
PSPNet 0.975 0.772 0.870 0.856 0.888 0.872 103.55 G 47.70 M
MSFCN 0.991 0.841 0.874 0.881 0.936 0.906 1642.43 G 24.53 M
MSRN 0.988 0.853 0.887 0.893 0.945 0.918 1346.12 G 12.42 M
FPN 0.989 0.852 0.888 0.914 0.924 0.919 134.14 G 47.82 M
UNet 0.990 0.867 0.892 0.922 0.924 0.923 160.16 G 17.26 M

UTNet 0.990 0.879 0.919 0.924 0.934 0.936 264.27 G 52.53 M
TransUNet 0.993 0.898 0.923 0.919 0.959 0.948 240.26 G 40.38 M

Our(TBNet)+Denoise+Pre-Screening 0.997 0.915 0.949 0.941 0.969 0.954 235.26 G 36.51 M

Each model was trained for a total of 200 rounds, and 1 round was selected every
4 rounds for visualization. As can be seen from Figure 11, our method is the fastest to
reach the best stability in terms of accuracy, recall, and F1 value. In Figure 11a, the accuracy
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ranking among the models is ours > TransUNet > Unet > FPN > MSRN > MSFCN. In
Figure 11b, overall, the recall rate of our suggested method has been kept as high as
possible, ensuring that missed diagnoses are avoided to the greatest extent possible. Finally,
the F1-score of each model in the training process is compared with our method. From
Figure 11c, we can see that our F1 value fluctuates to some extent, but its average value
remains the highest. It can be seen that the model is more robust and accurate in processing
MRI images of osteosarcoma with different morphological characteristics.
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4.6. Discussion

It is shown that the pre-screened TSF shows a robust and accurate classification
capability, effectively filters redundant data, and improves segmentation performance
while saving the running time of subsequent processing operations. The fast FFT-based
NLM algorithm effectively improves image segmentation and largely reduces the impact
of noise in osteosarcoma diagnosis.

We designed TBNet, a U-Net network with a fusion transformer and edge enhance-
ment, for the osteosarcoma MRI Image segmentation problem. Several comparison studies
reveal that our model outperforms others in terms of assessment indices such as DSC
and IOU. It offers significant benefits over other classical convolutional models for the
proper processing of contour features in the complicated tumor border problem. In ad-
dition, comparative tests in terms of accuracy, recall, and F1 by systematic sampling of
random samples show that our model has greater stability. This ensures the stability and
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accuracy of segmentation results for practical diagnosis. This is mainly due to the intro-
duction of a cross-fusion channel transformer with edge-enhancement features to replace
the original U-Net jump connection in this paper. This approach takes advantage of both
a transformer and Unet to perform the cross-fusion of multi-scale channel information,
bridge the semantic gap, and solve the problem of semantic hierarchy inconsistency. In
addition, the algorithm improves the problem of fuzzy edge segmentation by enhancing
the edge information. Therefore, compared with the classical UNet model, the recognition
accuracy of our method is higher. To apply to developing countries, our model reduces the
computational cost as much as possible while ensuring accuracy and stability.

5. Conclusions

In this study, an artificial intelligence-aided diagnosis system for osteosarcoma MRI
pictures with edge-enhancement characteristics is suggested. The method employs strate-
gies such as image pre-screening, noise-reduction processing, and a segmentation model
using edge-enhancement characteristics. It is used mainly to improve the recognition accu-
racy of osteosarcoma and assist doctors to detect the lesion location of patients more quickly
and accurately. Our model is more robust in processing the MRI images of osteosarcoma
with different shapes.

However, the recognition accuracy of the TBNet model is relatively low for images
without noise reduction and pre-screening. With the development of image processing
technology, we will strive to improve the recognition accuracy of tumors in original images.
In addition, improving the function of the auxiliary scheme in combination with the actual
clinical performance is also the focus of research.
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