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Abstract: This paper uses EEG data to introduce an approach for classifying right and left-hand
classes in Motor Imagery (MI) tasks. The Kernel Cross-Spectral Functional Connectivity Network
(KCS-FCnet) method addresses these limitations by providing richer spatial-temporal-spectral feature
maps, a simpler architecture, and a more interpretable approach for EEG-driven MI discrimination.
In particular, KCS-FCnet uses a single 1D-convolutional-based neural network to extract temporal-
frequency features from raw EEG data and a cross-spectral Gaussian kernel connectivity layer to
model channel functional relationships. As a result, the functional connectivity feature map reduces
the number of parameters, improving interpretability by extracting meaningful patterns related to
MI tasks. These patterns can be adapted to the subject’s unique characteristics. The validation results
prove that introducing KCS-FCnet shallow architecture is a promising approach for EEG-based MI
classification with the potential for real-world use in brain–computer interface systems.

Keywords: functional connectivity; kernel methods; motor imagery; EEG; cross-spectral distribution;
deep learning

1. Introduction

The Media and Information Literacy (MIL) methodology proposed by UNESCO en-
compasses a range of essential competencies crucial for individuals to actively participate
in human development, as highlighted in recent studies [1]. Among the most notable tech-
nological advancements in this field is the emergence of Brain-Computer Interfaces (BCIs),
which have the potential to revolutionize human-technology interaction, particularly for
individuals with motor disabilities [2]. Motor Imagery (MI) is a widely-used BCI paradigm
that refers to the mental rehearsal of motor tasks without any physical movement [3].
Figure 1 depicts a conventional experimental setup for MI, including brain activity sig-
nal acquisition, commonly through Electroencephalography (EEG), stimuli delivery and
marker synchronization using a visual cue, and posterior data processing. The use of MI
is beneficial in a wide range of contexts, such as enhancing language comprehension in
children and older adults [4], neurofeedback training therapy for individuals with Parkin-
son’s disease [5], and improving attentional focus [6]. Moreover, specific brain activities
elicited by cognitive processes, i.e., MI tasks, must be identified. Then, techniques such as
Event-Related Potentials (ERPs) will contain particular patterns for different processes [7].
In other words, ERP gather time-frequency information about different brain areas [8].
However, it is essential to note that MI’s Signal-to-Noise Ratio (SNR) can be significantly
affected by other background brain processes and artifacts [9].
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Figure 1. Experimental setup of validation methodology performed for Motor Imagery-based BCI.
Source: Adapted from [10].

EEG is a non-invasive and portable neuroimaging technique that measures brain
electrical activity over the scalp at a high temporal resolution, reflecting synchronized
oscillatory activity. As a result, EEG is commonly used to measure brain activity evoked
by MI [11]. Yet, during data acquisition, the limited spatial information provided by EEG
data and its susceptibility to various disturbances, such as electromyographic signals from
the heart, eyes, tongue, and muscles, can lead to a low SNR and decrease the accuracy
of MI-BCI [12]. In addition, classifying EEG records is challenging due to their high
dimensionality and non-stationary behavior. Moreover, ERP components recorded on
the scalp via EEG reflect the sum of superimposed components generated from different
neural sources. Hence, the observed patterns reflect distinct neural sources, misleading the
estimation of time-frequency features when cognitive processes or stimuli are elicited by
brain activity [8,13]. Therefore, developing robust and accurate signal processing methods
is crucial to improve time-frequency feature estimation in MI.

There are several strategies for enhancing BCI performance and developing MI skills.
One practical approach is subject-specific models, as each individual may have unique
self-regulation evoked responses in diverse frequency bands [14]. As a result, most MI-
BCI systems are based on subject-specific temporal and spectral features [15,16], typically
calculated on a single-trial basis. One example is the Filter Bank-Common Spatial Patterns
(FBCSP) method, which leverages task-related brain rhythms primarily localized in the
sensorimotor area [17]. Besides, brain functional connectivity is often used to measure
synchronization within sensorimotor rhythms [18]. Furthermore, many approaches with
high performance and interpretability rely on covariance matrices computed from the
EEG signal. Nevertheless, due to the high nonlinearity, intra-class variability inherent in
MI tasks, and the small training data size, standard Euclidean distance-based covariance
estimation tends to be less accurate [19].

MI-BCI systems are generally enhanced using different frequency features from an
array of overlapped bandpass filters. Still, the ad hoc selection of the bandwidth and
overlap percentage are some of the main drawbacks, resulting in low temporal resolution,
overfitting, and complex tuning. Nonetheless, advancements in the field of Deep Learning
(DL) have helped to tackle these issues. In this light, Convolutional Neural Networks
(CNN)-based techniques have surpassed classical machine learning and signal processing
methods in extracting relevant local and general spatio-spectral information from raw
EEG [20]. Indeed, temporal and spatial CNN blocks are widely used in DL to extract
relevant feature maps at the top of the model [21–23].

However, applying DL-based models to achieve reliable single-trial MI classification
remains challenging. First, relevant spatial-temporal-spectral feature maps are desired to
overcome overfitting due to high intra-class variability [24,25]. Second, more robustness in
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dealing with noise in the raw EEG while avoiding complex architecture is required [26,27].
Third, DL lacks straightforward interpretability, which is critical to validate neural activ-
ity for medical diagnosis, monitoring, and computer-aided learning [28–30]. Therefore,
additional efforts are needed to improve DL-based approaches for EEG-based MI-BCI,
aiming for richer spatial-temporal-spectral feature maps, yielding more straightforward
and explainable algorithms.

This paper presents a groundbreaking technique for classifying MI using EEG sig-
nals, termed Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet). Our
approach overcomes current DL limitations by introducing a cross-spectral Gaussian func-
tional connectivity data-driven estimator to classify MI tasks from raw data. KCS-FCnet
utilizes 1D convolutional layers to extract temporal-frequency features from input chan-
nels and a cross-spectral distribution estimation that codes relevant temporal and spectral
MI patterns. It also includes a functional connectivity feature map, which improves the
interpretability of the model by extracting meaningful pairwise channel relationships. Our
approach is evaluated on a publicly available dataset and achieves state-of-the-art results
for EEG-based MI classification. Furthermore, it demonstrated robustness to different
experimental settings and individual differences. Lastly, our results suggest that the KCS-
FCnet architecture is a highly effective method for EEG-based MI classification and can
potentially be applied in real-world BCI.

The remainder is organized as follows: Sections 2 and 3 describe the related work
reviewed along with the materials and methods. Sections 4 and 5 present the experiments
and discuss the results. Finally, Section 6 outlines the conclusions and future work.

2. Related Work

The gold standard for MI-based BCI classification is the FBCSP method, which re-
lies on multiple bandpass filters, varying overlap percentages, and bandwidth to extract
features [17]. This strategy aims to extract more relevant information by leveraging subject-
dependent brain rhythms. However, CSP-based approaches are sensitive to noise, and
overfitting [31]. Thus, several regularized CSP-derived approaches have been proposed to
overcome these issues, which can be split into cost function and covariance regularization.
In addition, the L2-norm is used in optimization problems (e.g., Tikhonov regularization
CSP and weighted Tikhonov regularized CSP), but outlier data and artifacts degrade its per-
formance. To cope with this issue, L1-norms (e.g., CSPL1 and SFBCSP) are employed to find
sparse spatial features that are more representative [32]. Other strategies like shrinkage are
also used to estimate covariance matrices, especially under small sample sizes accurately;
the simplest way to reduce the variance of the covariance estimator is to apply diagonal
loading. A more sophisticated strategy is proposed in [33] where a shrinkage estimator
asymptotically minimizes the mean square error, being well-conditioned for small sample
sizes. Moreover, it can be applied to high-dimensional problems. Although interpretable
and efficient algorithms are proposed to improve the calculation of covariance matrices,
their efforts are limited and tend to become less effective against severe covariance changes
within the same brain state (either left or right).

Regarding DL, different strategies have been developed. For example, authors in [34]
use a deep belief network with a conditional random field to recognize emotions; deep
belief networks are strong feature extractors since they can learn complex nonlinear func-
tions. Nevertheless, those networks usually require an unsupervised pre-training stage,
which is sensitive to a small training set. On the other hand, CNNs encode raw EEG signals
or topographic plots (TGP), showing high-performance accuracy. For instance, 1D CNNs
over raw EEG can extract adaptive temporal-frequency features involving spatial infor-
mation [35]. Likewise, 2D CNNs can codify spatial information over a fixed bank of TGP
calculated with different time windows and frequency filters [36]. Nonetheless, 2D CNNs
get local information depending on their size, so they can be affected when information is
not centered on a specific spatial location. Furthermore, the temporal dependency of EEG
channels has been decoded using Long-Short Term Memory (LSTM) approaches, such as
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authors in [37]. LSTMs can find an implicit representation of temporal sequences, but their
training stage requires exhaustive fine-tuning and an expensive computational burden.

Besides, DL approaches rely on the hypothesis that architectures will learn invariant,
generalizable features constrained by the number of available data [38]. For instance,
Shallowconvnet proposed in [21] uses two main convolution layers. The first is designed
to bandpass each EEG channel, while the second is analogous to spatial filters. More-
over, it employs a square and log activation function, an average pooling layer, and a
fully connected layer to emulate the FBCSP strategy [39]. In addition, Deepconvnet, also
proposed by [21], uses similar ideas as Shallowconvnet but operates three additional con-
volutional layers to extract deeper features. Nevertheless, complex DL models are prone
to overfitting by capturing trial-specific variability rather than actual patterns in the same
neural states, either left or right. In contrast, authors in [22] proposed the EEGnet, which
utilizes depthwise separable convolutions to reduce the number of training parameters,
lowering network complexity while yielding significant temporal and spatial features.
TCFussionnet is a more recent approach proposed by [23] that comprises three main parts.
Like EEGnet, it includes a temporal component that allows for learning different bandpass
frequencies and a depth-wise separable convolution to extract spatial features for each
temporal filter. A Temporal Convolutional Network (TCN) block is also applied to extract
temporal patterns, which are then concatenated with the output of a separable convolution
to alleviate feature loss. These outputs are then flattened and concatenated, followed by a
separable convolution. A final dense layer with softmax activation is used to classify the
concatenated features into MI classes. Similarly, adversarial learning has been successfully
applied in many DL applications; these architectures rely on training a generative model
that enforces invariance and generalization. Regardless, adversarial architectures are af-
fected by overfitting, especially with subjects that do not have a similar pattern in each
session [38].

Overall, DL approaches try to solve the class variability from a different point of view
and attempt to generate more generalized models, reaching better MI-BCI performance
results. However, most solutions still need direct interpretability compared with classical
covariance-based approaches that take advantage of the calculated functional connectivity.
In this paper, we leverage the end-to-end KCS-FCnet on functional connectivity to keep
direct interpretability and on CNNs to extract more relevant feature maps from raw EEG.

3. Materials and Methods

The present study introduces a cutting-edge technique for extracting spatial-temporal-
frequency information specific to the subject from EEG recordings. Individuals tend to
engage in MI tasks within varying spectral ranges, so it is crucial to devise a strategy that
effectively captures this relevant information while preserving the less prominent frequency
bandwidths. To accomplish this, we propose using the kernel cross-spectral distribution, a
powerful tool that offers valuable insights into nonlinear pairwise channel relationships.
Furthermore, this innovative approach allows for identifying subject-specific discriminant
features within a DL framework, which can significantly enhance the accuracy and precision
of MI-BCI. Following, the tested dataset and the main mathematical background are
presented in detail.

3.1. Motor Imagery Dataset

We propose to validate our approach using the Giga dataset, which is a comprehensive
collection of MI-EEG recordings obtained from 52 subjects. However, for the purpose of
our study, we will only consider 50 subjects who met the minimum requirement of having
at least 100 EEG trials recorded. The Giga dataset is an ideal choice for our validation as
it has been widely used in the field of MI classification and has been shown to provide a
robust benchmark for evaluating the performance of different models [40].

The Giga dataset is recorded using a 10–10 placement electrode system with 64 chan-
nels, which is a widely used setup for MI-EEG recordings. The electrode system is con-
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figured to record brain activity during a trial, as illustrated in Figure 2 (first row). Each
channel is recorded for 7 s and is sampled at 512 Hz, providing a high-resolution repre-
sentation of the neural activity. Before each run, each subject is asked to perform a finger
movement task, starting with the index finger and proceeding to the little finger, touching
each finger to their thumb within 3 s after the onset of the task. This task is used as a means
to calibrate the subject’s MI, ensuring that the subsequent EEG recordings accurately reflect
the subject’s brain activity.

Besides, a fixation cross was displayed on a black screen at the beginning of each trial
for 2 s, signaling the start of the task. Following the fixation cross, a cue was presented,
linking either to the right or left hand MI label. The cue instructed the subjects to imagine
touching each of their fingers of the selected hand with the thumb, starting from the index
finger and proceeding to the little finger. To ensure that the subjects were imagining the
kinesthetic experience of the task, and not the visual experience, they were instructed to
focus on the sensation of finger movement. This task was repeated for 3 s. At the end of
each trial, a break period was indicated by a blank screen that randomly lasted between 2.1
and 2.8 s. The procedure described above was repeated 20 times to complete a single run,
and each subject performed between five and six runs in total. Furthermore, a cognitive
questionnaire was carried out after each run. Finally, to ensure the quality of the data, each
trial was tested and classified as a “bad trial” based on the voltage magnitude. Any flawed
trials present in each subject were excluded from the analysis. Additionally, along with
the runs set, a single-trial resting-state was recorded, lasting 60 s. The entire procedure is
illustrated in Figure 2 (second row).

Fp1 Fpz Fp2

AF7 AF3 AFz AF4 AF8

F7 F5 F3 F1 Fz F2 F4 F6 F8

FT7FC5 FC3 FC1 FCz FC2 FC4 FC6FT8

T7 C5 C3 C1 Cz C2 C4 C6 T8

TP7 CP5 CP3 CP1 CPz CP2 CP4 CP6TP8

P9

P7 P5 P3 P1 Pz P2 P4 P6 P8

P10
PO7

PO3 POz PO4
PO8

O1 Oz O2

Iz

Black screen

Motor Imagery

Black screen Break

Analysis span

2.5 s 4.5 s

t [s]
0 s 1 s 2 s

Cue

3 s 4 s 5 s 6 s 7 s 8 s

Figure 2. Giga dataset for Motor Imagery classification. First row: The dataset features a topoplot,
which illustrates the sensor positions in a 10–10 placement electrode system, containing 64 channels.
Besides, it highlights in color the main parts of the brain ( Frontal left, Frontal, Frontal right,
Central right, Posterior right, Posterior, Posterior left, Central left). Second row: Motor Imagery
paradigm. The EEG within the interval of 2.5 to 4.5 s is used for concrete testing in the classification
of Motor Imagery for left vs. right hand.
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3.2. Kernel-Based Cross-Spectral Distribution Fundamentals

Let x ∈ X be a stochastic process that is wide-sense stationary and has a real-valued
auto-correlation function Rx(τ) ∈ R, as follows [41]:

Rx(τ) =
∫
R

exp(j2πτ f )dPx( f ), (1)

where Px( f ) ∈ [0, 1] is a monotonic, absolutely continuous, and differentiable spectral
distribution for frequency f ∈ R.

Now, let us consider two records, x, x′ ∈ RNt , the univariable relationship in
Equation (1) that operates over positive-definite functions can be expanded to a pairwise
correlation between the random vectors x, x′ through the use of a generalized, stationary
kernel, κ : RNt × RNt → R. This kernel maps the input space into a Reproducing Kernel
Hilbert Space (RKHS) through a nonlinear function φ : X → H. However, this expansion is
only possible if the following assumption holds between both spectral representations [42]:

κ(x− x′) =
∫

Ω
exp

(
j2π(x− x′)> f

)
Sxx′( f )d f , (2)

where f ∈ Ω is a vector-valued frequency domain containing the bandwidth set Ω, and
Sxx′( f ) ∈ C is the cross-spectral density function, holding Sxx′( f ) = dPxx′( f )/d f , where
Pxx′( f ) ∈ [0, 1] is the cross-spectral distribution. As seen in Equation (2), the cross-spectral
distribution within the specified bandwidth Ω can be computed using the stationary kernel
κ(·), yielding:

Pxx′(Ω) = 2
∫

Ω
F{κ(x− x′)}d f . (3)

where F{·} stands for the Fourier transform and Pxx′(Ω) ∈ [0, 1] gathers the cross-frequency
information between x and x′ within the bandwidth set Ω by extracting nonlinear data
dependencies using κ(·). This approach allows us to capture the nonlinear interactions
between different EEG channels, providing a more accurate representation of the underly-
ing neural activity. Additionally, the use of a stationary kernel ensures that the proposed
method is able to capture the temporal dynamics of EEG signals, which is crucial for the
accurate classification of MI.

In this sense, the Gaussian kernel is a popular choice in pattern analysis and machine
learning due to its ability to approximate any function and its mathematically tractable
properties [43]. This makes it an ideal alternative for computing the Kernel-based Cross-
Spectral distribution fixing the following Gaussian function:

κG(x− x′; σ) = exp

(
−‖x− x′‖2

2
2σ2

)
, (4)

where ‖·‖2 is the squared Euclidean distance and σ ∈ R+ is a scale parameter. The use
of a Gaussian function in Equation (3) allows for effective and efficient computation of
nonlinear interactions between x and x′.

3.3. Kernel Cross-Spectral Functional Connectivity Network

The input-output EEG dataset, {Xr ∈ RNc×Nt , yr ∈ {0, 1}Ny}R
r=1, comprises R trials,

Nt time instants, Nc channels, and Ny classes. To enhance the most informative EEG spatial-
temporal-spectral patterns from Xr and reduce noise for improved MI class prediction,
we propose to estimate the cross-spectral distribution among channels using a function
composition. This approach gathers 1-D convolutional-based feature layers for extracting
time-frequency patterns within each EEG channel, and a Gaussian kernel-based pairwise
similarity, as follows:

P̂r(w f ) = κG(·; σ) ◦ ϕ(Xr; w f ), (5)

where notation ◦ stands for function composition, ϕ(·; w f ) is a 1-D convolutional layer
that can be used to automatically extract frequency patterns ruled by the weight vector
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w f ∈ R∆t , with ∆t < Nt. Of note, in Equation (6) operates the κG(·) for each pair of filtered
EEG channels regarding the weights w f ; then, P̂r (w f ) ∈ [0, 1]Nc×Nc . Moreover, we can
stack a set of frequency filters to compute an average functional connectivity measure
among EEG channels, as follows:

P̃r(Ω̂) = E f

{
κG(·; σ) ◦ ϕ(Xr; w f ); ∀ f ∈ {1, 2, . . . , N f }

}
(6)

where N f is the number of 1-D convolutional filters and Ω̂ is the boosted frequency band-
width concerning P̃r(Ω̂) ∈ [0, 1]Nc×Nc . This measure provides a way to analyze how
different frequency bands of a single-trial EEG relate to each other across channels.

After computing the average functional connectivity measure, a straightforward
softmax-based output layer is applied over a vectorized version of P̃r(Ω̂), which is the
upper triangular matrix. This takes advantage of the symmetric property of the Gaussian
functional connectivity, meaning that P̃cc′

r (Ω̂) = P̃c′c
r (Ω̂), ∀c, c′ ∈ {1, 2, . . . , Nc}. Then, MI

class membership can be predicted as:

ŷr = softmax(v⊗ vec
(
P̃r(Ω̂)) + b

)
, (7)

where v ∈ R(Nc(Nc−1)/2×Ny , b ∈ RNy ,, ŷr ∈ [0, 1]Ny , and ⊗ stands for tensor product. In
addition, a gradient descent-based framework using back-propagation is employed to
optimize the parameter set Θ = {w f , v, b, σ; ∀ f ∈ {1, 2, . . . , N f }}, as follows [44]:

Θ∗ = arg min
Θ

Er{L(yr, ŷr|Θ); ∀r ∈ {1, 2, . . . , R}}, (8)

being L{·} a given loss function, i.e., cross-entropy. The optimization problem outlined
in Equation (8) enables the training of our Kernel Cross-Spectral Functional Connectivity
Network (KCS-FCnet) for the classification of MI tasks.

4. Experimental Set-Up
4.1. KCS-FCnet Implementation Details

In this study, we evaluate the efficacy of our proposed method for extracting subject-
specific functional connectivity matrices from the KCS-FCnet that predicts MI output labels
from EEG records. To accomplish this, we have developed a pipeline consisting of the
following steps, which were tested on the Giga dataset (as detailed in Section 3.1):

– Raw EEG Preprocessing: First, we load subject recordings using a custom databases
loader module (https://github.com/UN-GCPDS/python-gcpds.databases (accessed
on 27 January 2023)). Next, we downsample each signal from 512 Hz to 128 Hz using
the Fourier method provided by the SciPy signal resample function (https://docs.
scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html (accessed on 27
January 2023)). Then each time series trial was filtered between [4, 40] Hz, using a fifth-
order Butterworth bandpass filter. In addition, we clipped the records from 0.5 s to 2.5 s
post cue onset, retaining only information from the motor imagery task. Preprocessing
step resembles the one provided by authors in [22]. Note that since we are analyzing
only the MI time segment, we assume the signal to be stationary. Our straightforward
preprocessing aims to investigate five distinct brain rhythms within the 4 to 40 Hz
range, including theta, alpha, and three beta waves. Theta waves (4–8 Hz), located in
the hippocampus and various cortical structures, are believed to indicate an “online
state” and are associated with sensorimotor and mnemonic functions, as stated by
authors in [45]. In contrast, sensory stimulation and movements suppress alpha-band
activity (8–13 Hz). It is modulated by attention, working memory, and mental tasks,
potentially serving as a marker for higher motor control functions. Besides, tested
preprocessing also comprises three types of beta waves: Low beta waves (12–15 Hz)
or “beta one” waves, mainly associated with focused and introverted concentration.
Second, mid-range beta waves (15–20 Hz), or “beta two” waves, are linked to increased

https://github.com/UN-GCPDS/python-gcpds.databases
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.html
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energy, anxiety, and performance. Third, high beta waves (18–40 Hz), or “beta three”
waves, are associated with significant stress, anxiety, paranoia, high energy, and
high arousal.

– KCS-FCnet Training: We split trials within each subject data using the standard 5-fold
80–20 scheme. That means shuffling the data and taking 80% of it to train (training
set), holding out the remaining 20% to validate trained models (testing set), and
repeating the process five times. For the sake of comparison, we calculate the accuracy,
Cohen’s kappa, and the area under the ROC curve to compare performance between
models [46,47]. It is worth noting that we rescale the kernel length according to the
new sampling frequency as in [22]. The GridSearchCV class from SKlearn is used to
find the best hyperparameter combination of our KCS-FCnet. The number of filters
N f is searched within the set {2, 3, 4}.

– Group-Level Analysis: We build a scoring matrix that contains as many rows as
subjects in the dataset, 50 for Giga, and six columns, including accuracy, Cohen’s
kappa, and the area under the ROC curve scores, along with their respective standard
deviation. To keep the intuition of the higher, the better, and constrain all columns
to be between [0, 1] in the score matrix, we replace the standard deviation with its
complement and normalize the Cohen’s kappa by adding to it the unit and dividing
by two. Then, using the score matrix and the k-means clustering algorithm [47], with
k set as three, we trained a model to cluster subjects’ results based on the baseline
model EEGnet [22] in one of three groups: best, intermediate, and worst performing
subjects. Next, we order each subject based on a projected vector obtained from the
first component of the well-known Principal Component Analysis (PCA) algorithm
applied to the score matrix. Next, with the trained k-means, the subjects analyzed
by our KCS-FCnet were clustered using the score matrix. The aim is to compare and
check how subjects change between EEGnet and KCS-FCnet-based groups.

A KCS-FCnet sketch can be visualized in Figure 3. The detailed KCS-FCnet architecture
is summarized in Table 1. All experiments were carried out in Python 3.8, with the
Tensorflow 2.4.1 API, on Google Colaboratory and Kaggle environments. The fine-tuning
process for the model’s parameters begins by utilizing the training set for optimization.
To evaluate the model’s performance, the test set is employed solely for reporting scores.
The categorical cross-entropy loss function is applied, and no additional callbacks are
utilized. The training phase involves passing the entire batch of samples. Additionally, to
support further analysis and experimentation, the model weights and performance scores
are systematically saved for future reference.

Figure 3. Kernel Cross-Spectral Functional Connectivity Network-(KCS-FCnet) for Motor Imagery
Classification main sketch.
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Table 1. Detailed KCS-FCnet architecture for MI classification.

Layer Output Dimension Params.

Input Nc × Nt × 1 ·

Conv2D Nc × (Nt − ∆t + 1)× N f
max norm = 2.0, kernel size = (1, ∆t)

Stride size = (1, 1), Bias = False
BatchNormalization Nc × (Nt − ∆t + 1)× N f ·

ELU activation

FCblock N f × (Nc · (Nc − 1)/2)× 1 ·
AveragePooling2D 1× (Nc · (Nc − 1)/2)× 1 ·
BatchNormalization 1× (Nc · (Nc − 1)/2)× 1 ·

ELU activation

Flatten Nc · (Nc − 1)/2 ·
Dropout Nc · (Nc − 1)/2 Dropout rate = 0.5
Dense Ny max norm = 0.5

Softmax

4.2. Functional Connectivity Pruning and Visualization

To compare functional connectivity between the groups mentioned above, first, we
have to check which connections are relevant for class separability. It is worth noting
that a high correlation in the functional connectivity matrix does not guarantee a higher
class separability. Therefore, we use the two-sample Kolmogorov–Smirnov (2KS) test to
overcome this issue and select only relevant connections as in [48]. The null hypothesis is
that both samples are drawn from the same unknown distribution. Thus, we group the
trials of each connection for a subject according to the label to build the samples “right”
and “left”. Then, every pair is passed through the 2KS test, and connections holding a
p-value equal to or lower than 0.05 are kept. Hence, we can state that both samples came
from different distributions and the classes are distinguishable. Next, we build a p-value
matrix containing the information on whether a connection is relevant. To visualize how
each p-value matrix changes across subjects and groups, we plot each p-value matrix on a
2D visualization, where both dimensions are calculated using the well-known t-distributed
Stochastic Neighbor Embedding (t-SNE) algorithm [49], from the SKlearn library, over the
EEGnet score matrix. It is noteworthy that the perplexity parameter has been specifically
set to a value of ten, while all other parameters have been retained at their default settings.

Next, to effectively depict the connections between various regions of the brain, we
employ a specialized connectivity visualizer (https://github.com/UN-GCPDS/python-
gcpds.visualizations (accessed on 27 January 2023)) which utilizes the Circos plot technique
to display only the most significant connections, specifically those that fall within the 99-th
percentile. To further enhance the analysis, we have chosen to plot the subject closest to the
centroid of each group, thereby allowing for a detailed examination of one individual from
each group.

4.3. Method Comparison

We compare the proposed KCS-FCnet with four end-to-end DL models that have
been reported recently for effectively extracting relevantly explainable information from
raw EEG. As with our proposal, the contrasted architectures are selected because they
benefit from convolutional layers to extract temporal-frequency features for improving MI
classification performance. Namely, (i) the EEGnet architecture in [22] operates depthwise
separable convolutions to reduce the number of training parameters, extracting temporal
and spatial convolution features from each channel of a previous feature map; (ii) Shallow-
convnet in [21] incorporates two convolution layers (for sequential bandpass and spatial
filtering of the EEG channels) followed by a square and log activation function, an average
pooling layer, and a fully connected layer to emulate the baseline strategy of Filter Bank
Common Spatial Patterns [39]; (iii) Deepconvnet proposed by [21] employs three convolu-

https://github.com/UN-GCPDS/python-gcpds.visualizations
https://github.com/UN-GCPDS/python-gcpds.visualizations
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tional layers to extract DL features; and (iv) TCFussionnet comprises three filtering stages
to extract temporal, bandpass spectral, and spatial features, as explained in detail in [23].

For concrete testing, individual subject accuracy and standard deviation scores are
only compared between the EEGnet and our KCS-FCnet due to their similarity in architec-
ture and the number of parameters. For all provided approaches, the average classification
performance along the 50 subjects in Giga is computed. Every architecture is implemented
using TensorFlow2 and the SciKeras library, which allows wrapping any deep learning
model as a SKlearn classifier. For the EEGnet, Shallowconvnet, Deepconvnet, and TCFus-
sionnet, we use the hyperparameters that each work reported as the best combination.
The complete codes for training, validating, and saving the model are publicly available
(EEGnet (https://www.kaggle.com/dggarciam94/eegnet-11-11-2022-version (accessed on
27 January 2023)), Shallowconvnet (https://www.kaggle.com/dggarciam94/shallownet-11
-11-2022-version (accessed on 27 January 2023)), Deepconvnet (https://www.kaggle.com/
dggarciam94/deepconvnet-11-11-2022-version (accessed on 27 January 2023)), TCFussion-
net (https://www.kaggle.com/dggarciam94/tcnet-fusion-11-11-2022-version (accessed on
27 January 2023)), and KCS-FCnet (https://www.kaggle.com/code/dggarciam94/gfcnet-
11-11-2022-version) (accessed on 27 January 2023)).

5. Results and Discussion
5.1. Subject Dependent and Group Analysis Results

The proposed KCS-FCnet architecture is closely compared to the EEGnet architecture
in this study, with a focus on subject-specific accuracy scores and their standard deviation.
The comparison is illustrated in Figure 4, where the dotted orange line represents the
EEGnet and the dotted blue line represents the proposed KCS-FCnet. The blue and red bars
indicate whether a specific subject’s accuracy improves or decreases when using the KCS-
FCnet, respectively. Additionally, the background of the figure includes low-opacity green,
yellow, and red bars to indicate the group belongingness of the subjects (best, intermediate,
and worst-performing clusters). The X-axis of the figure displays the subjects sorted based
on their maximum score values as determined by the EEGnet results. The average accuracy
for EEGnet and KCS-FCnet is 69.0 and 76.4, respectively, resulting in an incremental of 7.4
for our proposal. Overall, it is demonstrated that KCS-FCnet can effectively classify motor
imagery tasks using raw EEG as input data.
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Figure 4. Subject specific results. EEGnet and KCS-FCnet average accuracies are depicted, with
subjects being sorted based on their performance using EEGnet. The blue bars represent an im-
provement in performance using the KCS-FCnet, while the red bars indicate a decrease in perfor-
mance. The background codes the group membership (best—G I, medium—GII, and worst—GIII
performance clusters).
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Moreover, our proposed method, KCS-FCnet, demonstrates mixed results in terms of
accuracy for the subjects studied. On the one hand, seven subjects experienced a decrease
in accuracy, of which only four experienced a reduction of three points or more. On the
other hand, the remaining subjects experience an increase in accuracy, with the majority
experiencing an increase of more than five points. Notably, our approach has a particularly
strong impact on subjects in the third group, resulting in only one case where KCS-FCnet
fails to surpass the baseline performance and two cases with less than one point of increase.
Additionally, our data-driven functional connectivity method proves effective in extracting
relevant feature maps for subjects in the second group, with over ten subjects experiencing
an accuracy increment of at least three points. The first group, consisting of subjects with
good performance, does not see remarkable results from KCS-FCnet, with only one subject
experiencing a decrease in performance by five points and one subject experiencing an
increase of more than five points. In general, subjects with the best performance appear to
have a limitation when trying to include more relevant feature maps, yet our network is able
to preserve their classification performance in most cases. In contrast, poor-performance
subjects have more room for enhancement in the feature map, which is why we see a more
significant increment in the third group.

Figure 5 illustrates the subject group belongingness and the impact of the KCS-FCnet
method on group classification. The first row shows the subjects organized based on the
EEGnet results, while the bottom row shows how each subject changes or maintains their
group based on the KCS-FCnet results. For example, in the red group on the EEGnet
row, subjects starting from S52, when we look at the new grouping based on KCS-FCnet
for the same subset of subjects, it is evident that a total of eleven subjects significantly
improved their performance, moving to the yellow cluster, while only nine remained in the
red one. Additionally, six subjects had a major performance increase and were promoted to
the best group (green), which demonstrates the effectiveness of the proposed framework.
Furthermore, the subjects that were originally in the best group maintained their status,
indicating that the best-performing subjects are less likely to improve. Then, our approach
achieves better MI discrimination compared to EEGnet, particularly for bad and medium-
performing subjects, which is important as it highlights the model’s capacity to handle
challenging cases.
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Figure 5. KCS-FCnet subject group enhancement regarding the EEGnet performance. Note that green,
yellow and red represent best, medium, and worst performance regarding the average accuracy
along subjects. First row: Subjects organized based on the EEGnet classification. Second row: Subject
membership changes based on the KCS-FCnet results.

Next, Table 2 shows the accuracy results for each group for EEGnet and KCS-FCnet. It
is important to note that while the difference in the first group is insignificant, with only
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0.9 points, there is a notable improvement in the second group, with an increment of 5.6
accuracy points. Additionally, the third group shows a considerable increment of 12.4
points. A similar trend is observed in the standard deviation, where the second group has
the most reduction of 2.6 points. Hence, our proposal not only outperforms EEGnet in
terms of accuracy but also reduces the variability for all clusters.

Table 2. Group-based accuracy results for EEGnet and KCS-FCnet. The average accuracy for the best,
medium, and worst-grouped subjects is depicted. The KCS-FCnet average increase for each cluster is
also reported.

Approach Group Accuracy KCS-FCnet Gain

EEGnet

G I 90.6± 4.3 ·
G II 72.2± 7.3 ·
G III 54.3± 6.6 ·

KCS-FCnet

G I 91.5± 3.3 0.9

G II 77.8± 4.7 5.6

G III 66.7± 5.6 12.4

Figure 6 compares the accuracy standard deviation for EEGnet and KCS-FCnet. The
background boxes indicate the group membership. For the first group, we can see an
improvement in the variability scores for our proposed method, with a difference of
four points between the maximum values. The second group shows a slight reduction
in all standard deviation values for our method; however, the variability proportion
remains almost the same. For the last group, there is a similar behavior for both methods.
Overall, our proposed strategy reduces the variability and maintains a similar average
accuracy score among subjects in the best group while increasing the average accuracy and
maintaining the variability for the second and third clusters.
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Figure 6. Group comparison between EEGnet (blue boxplots) and KCS-FCnet (green boxplots)
concerning the accuracy’s standard deviation. The background codes the group membership (best—
GI, medium—GII, and worst—GIII performance clusters).

5.2. Estimated Functional Connectivity Results

In this study, we employed the two-sample Kolmogorov–Smirnov test to calculate
a functional connectivity matrix for each subject. The matrix includes information about
the separability of the MI classes. The null hypothesis asserts that the distribution of
connection pairs for classes 0 and 1 is identical. A p-value is calculated, and we reject
the null hypothesis only if the p-value is less than 5%. In other words, connection pairs
with lower p-values indicate higher class separability and are considered more informative
for the classification task Figure 7 depicts the results of the test in the form of p-value-
based matrices for each subject, which are plotted in a 2D projection using the t-SNE
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algorithm to reduce the dimensionality of the score matrix. Each matrix has a colored
outer square that indicates the group membership. The matrices in the top left corner (first
group) have the lowest p-values for every connection pair, indicating that almost every
pair has a different class distribution, resulting in high accuracy scores, e.g., more than
90%. Conversely, matrices in the bottom right corner (third group) have the least significant
p-values, indicating that only a few connection pairs can reject the null hypothesis; then,
the class probability distribution for almost every pair cannot be distinguished. There is a
gradual transition between matrices from the highest p-values in the bottom right corner to
the lowest in the top left corner. Additionally, each group keeps an intra-subject p-value
similarity for similar EEG channel connections.

Furthermore, Figure 8 details the amount of information preserved within each sub-
ject representative connectivity matrix. We utilize the widely used quadratic Rényi’s
entropy [50] to quantify the interpretability performance from pruned functional connec-
tivity matrices. Namely, a higher entropy value indicates a higher interpretability of that
particular group of subjects concerning both relevant pair-wise channel relationships and
MI discrimination capability. The background boxes represent the group membership,
and the box-and-whisker plots depict each cluster’s distribution of Rényi’s entropy val-
ues. The first group displays the most significant values, indicating that most connections
discriminate highly between classes. In contrast, the third group has the lowest values,
suggesting poor class discriminability. As expected, the groups that perform better show
higher retention of information by the KSC-FCnet-based functional connectivity matrix.

G.III

G.II

G.I

0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Figure 7. t-SNE 2D projection of pruned functional connectivity matrices based on KSC-FCnet and
two-sample Kolmogorov–Smirnov test. The color bar depicts the p-value of every connection for
each subject matrix, where deep blue means more class separability. Therefore, the bluer the matrix,
the better the discriminability. Outer boxes indicate subject group belongingness: green G I, yellow G
II, and red G III. p-values below 5% are taken as significant.



Diagnostics 2023, 13, 1122 14 of 19

G I G II G III

1

1.5

2

2.5

R
en

yi
’s

En
tr

op
y

V
al

ue

Figure 8. Rényi’s entropy-based retained information within the estimated functional connectivity
matrices using KSC-FCnet. The background codes the group membership (best, medium, and worst
performance clusters). Boxplot representation is used to present the retained information within
each group.

Further, the Circos plot is a valuable tool to visualize which EEG channels are most
important for each subject’s experiment. Figure 9 shows that relevant channel dependencies
are kept mainly for the best performance group. Note that all connections are normalized
between the three subjects (connectivities above the 99th percentile are shown). For the G
I case, the most robust connections are found between the frontal, central left, and right
areas, with a few connections in the posterior region. This pattern is consistent with a
good-performing subject who presents the most relevant information in the sensorimotor
area (central left and right). Conversely, G II shows significant connections between the
center-right and frontal areas, with fewer robust connections in the central left. It is worth
noting that EEG noise may be present in the connectivity feature map around the central
left region. Notably, G III has no significant connections, indicating that the model could
not extract noise-free and discriminative connectivities.

The second and third rows in Figure 9 depict the most significant brain areas using
2KS and the weights of the last layer in the KCS-FCnet. In G I, similar results are observed,
highlighting the sensorimotor area; however, the results in the third row are more concen-
trated around C4 and C3. It suggests that subjects in the best-performing group do not
exhibit much noise and the MI task can be completed using only a few sensors. For G II,
there is a slight difference between the results. In particular, a high activation in the left
frontal area is observed, while the information is more focused on the sensorimotor area.
Finally, for the last group, the most significant difference is observed. While in the 2KS test,
some importance (below 0.4) is observed around C4 and C3, in the weight-based approach,
there is no clear pattern, indicating that our DL approach can not find relevant information
in the sensorimotor area.

5.3. Method Comparison Results: Average MI Classification and Network Complexity

Table 3 summarizes the results of KCS-FCnet and the contrasted end-to-end archi-
tectures of Convolutional neural network models. Deepconvnet performs the poorest,
making it unsuitable for handling high intra-class variability. By contrast, Shallowconvnet
and TCFussionnet have values of quality measures that are very close to each other, being
more competitive. Despite this, KCS-FCnet achieves the highest scores, outperforming the
other models.

Another essential aspect to quantify the model performance is the number of trainable
parameters. Figure 10 presents the required number of trainable parameters vs. the attained
MI classification performance for each studied DL approach. As seen, a higher number of
trainable parameters does not necessarily imply a higher classification accuracy. In fact,
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two clusters are evident: models holding less than 20k trainable parameters and algorithms
requiring more than 100k parameters. Notably, the EEGnet gathers 2.194 trainable parame-
ters and got a 69% accuracy score. Then, the Deepconvnet has the most significant number
of trainable parameters (178.927) but only achieves a 62.5% accuracy score. The overfitting
issue can explain the latter, especially when dealing with a high intra-class variability MI
dataset. As previously stated, the Shallowconvnet, TCFussionnet, and KCS-FCnet have
the highest accuracy scores. However, the Shallowconvnet has more than 100k trainable
parameters, and the TCFussionnet has more than 25k. Conversely, our KCS-FCnet, not
only outperforms these architectures in terms of accuracy but also requires the lowest
complexity to achieve competitive discrimination results.
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Figure 9. KSC-FCnet functional connectivity results (Circos plots and topoplots). The first row
illustrates the 99th percentile of the most significant functional connections across the centroid
subjects concerning the studied best, medium, and worst performance clusters (see Figure 2), with
the opacity representing the strength of the connectivity. The second and third rows display topoplots
of the two-sampled Kolmogorov–Smirnov test and the weights of the classification layer on the
KCS-FCnet, respectively. The purer the purple color, the more important the brain area is. The left to
right column represents each group from G I to G III.
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Table 3. Method Comparison results regarding the average MI classification for the Giga database.

Approach Accuracy Kappa AUC

Deepconvnet [21] 62.5± 13.0 24.5± 25.9 68.9± 17.8

EEGnet [22] 69.0± 14.6 38.0± 29.1 75.4± 16.6

TCFussionnet [23] 72.7± 14.0 45.0± 28.2 79.6± 15.9

Shallowconvnet [21] 74.9± 13.9 49.5± 27.8 79.9± 15.1

KCS-FCnet 76.4± 11.3 52.6± 22.7 82.2± 12.2
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Figure 10. Method comparison results: number of trainable parameters vs. average motor imagery
classification accuracy for the Giga database.

6. Conclusions

We have developed a cutting-edge EEG-based motor imagery classification technique
known as the Kernel Cross-Spectral Functional Connectivity Network (KCS-FCnet). This
method combines cross-spectral analysis to extract important features from EEG signals,
and a data-driven Gaussian functional connectivity block to model the non-linear con-
nections between different channels. We evaluated the effectiveness of our technique
using a widely-used public dataset, the Giga dataset and found that it outperforms current
state-of-the-art methods regarding EEG-based MI classification, spatio-temporal-frequency
interpretability, and a number of trainable parameters (network complexity). Additionally,
our method has the added benefit of being able to automatically estimate the cross-spectral
distribution from subject-specific filters and provide interpretable functional connections.
Furthermore, compared to other similar architectures, KCS-GFCnet demonstrates an im-
pressive performance increase, and even holds its own against more complex methods,
while having the second-fewest trainable parameters. Our analysis of results from three
natural groups also showed that the top-performing subjects retained more critical con-
nections than the other groups. Overall, our results indicate that the KCS-FCnet approach
is a highly promising method for EEG-based MI classification and has the potential to be
utilized in practical brain–computer interface applications.

In future work, the authors plan to address the issue of high intra-class variability
and overfitting, specifically in the worst-performing subjects, by incorporating functional
connectivity regularization based on Rényi’s entropy [51]. Additionally, further analysis
of the inter-class variability will be conducted, specifically focusing on how each subject
performs within different runs of the experiment. We aim to understand if subjects learn to
execute motor imagery tasks as they progress through the runs and whether this results in
better performance in subsequent runs [52,53]. Furthermore, we plan to analyze subject-
specific filters, specifically looking at the activity of the filter waves concerning brain
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frequency bands such as Theta, Alpha, Beta, and Gamma. This will provide insight into
how the brain processes motor imagery tasks and can further improve the performance of
our method.
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