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Abstract: Cardiomegaly is associated with poor clinical outcomes and is assessed by routine monitor-
ing of the cardiothoracic ratio (CTR) from chest X-rays (CXRs). Judgment of the margins of the heart
and lungs is subjective and may vary between different operators. Methods: Patients aged > 19 years
in our hemodialysis unit from March 2021 to October 2021 were enrolled. The borders of the lungs
and heart on CXRs were labeled by two nephrologists as the ground truth (nephrologist-defined
mask). We implemented AlbuNet-34, a U-Net variant, to predict the heart and lung margins from
CXR images and to automatically calculate the CTRs. Results: The coefficient of determination (R2)
obtained using the neural network model was 0.96, compared with an R2 of 0.90 obtained by nurse
practitioners. The mean difference between the CTRs calculated by the nurse practitioners and senior
nephrologists was 1.52 ± 1.46%, and that between the neural network model and the nephrologists
was 0.83 ± 0.87% (p < 0.001). The mean CTR calculation duration was 85 s using the manual method
and less than 2 s using the automated method (p < 0.001). Conclusions: Our study confirmed the
validity of automated CTR calculations. By achieving high accuracy and saving time, our model can
be implemented in clinical practice.

Keywords: cardiothoracic ratio (CTR); U-Net; deep learning; hemodialysis; chest X-ray

1. Introduction

The cardiothoracic ratio (CTR), first mentioned in 1919 [1], is a commonly used pa-
rameter for evaluating cardiomegaly, which is diagnosed if CTR > 50% [2,3]. It has good
sensitivity (86.2%) and negative predictive value (74.0%) for identifying left ventricular
dilation [4]. There are several different ways to calculate the CTR, the most common of
which is the ratio of the length of the greatest horizontal heart span divided by the length
of the greatest horizontal lung cavity span.

The CTR is related to the clinical outcomes of patients undergoing hemodialysis,
including cardiovascular events and all-cause mortality [5–7]. This parameter is easily
calculated from chest X-rays (CXRs), and serial monitoring of the CTR may have clinical
benefits for patients undergoing hemodialysis. Routine CXR examination and calculation
of the CTR for all hemodialysis patients are also requested by the Taiwan Nephrology
Association. In our hemodialysis unit, all patients receive a routine CXR evaluation after
hemodialysis at least twice a year, usually during April and October. Manual calculation of
the CTR by residents or nurse practitioners is required for all CXR images in our clinical
hemodialysis room practice. However, calculating all these CTRs is not only time con-
suming; it also exhausts manpower. Furthermore, judgment of the margins of the heart

Diagnostics 2023, 13, 1376. https://doi.org/10.3390/diagnostics13081376 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13081376
https://doi.org/10.3390/diagnostics13081376
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-8725-6740
https://orcid.org/0000-0002-7253-6301
https://doi.org/10.3390/diagnostics13081376
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13081376?type=check_update&version=1


Diagnostics 2023, 13, 1376 2 of 11

and lungs is subjective and may vary between different operators, which may result in
discrepancies in the CTR calculated from the same CXR. Misinterpretation of the CTR
may lead to inappropriate dialysis prescriptions and cause complications in hemodialysis
patients. A false-positive CTR of greater than 50% may lead to dialysis prescriptions with
higher ultrafiltration volumes, which have been associated with intradialytic hypotensive
episodes [8]. In contrast, a false-negative CTR of greater than 50% may lead to dialysis pre-
scriptions with insufficient water removal, causing volume overload, which is responsible
for hypertension in the end-stage renal disease (ESRD) population [9]. Long-term volume
overload is considered a major underlying risk factor for all-cause and cardiovascular
death in ESRD patients [10]. Therefore, we aimed to establish an automated cardiothoracic
ratio calculation system to save time and labor for our staff and improve the accuracy of
the calculation.

With the assistance of powerful computer hardware today, medical images can be
processed by deep learning [11], and the heart and lung fields can be accurately segmented
and marked. Then, the CTR can be calculated accordingly by traditional methods. Similar
methods have been shown to be accurate and effective [12–16] in previous works. How-
ever, hemodialysis patients are predisposed to a considerable prevalence of pulmonary
complications (e.g., pulmonary edema 8.20–20.50%, pleural effusions 22.95–33.80%) [17,18].
The incidence of permanent pacemaker implantation was 5.93- and 3.50-fold greater in
hemodialysis and peritoneal dialysis patients than in controls (1.44 and 0.85 versus 0.24
per 1000 person-years, respectively) [19]. In an Irish study, the overall prevalence of
central venous catheter use was 54% among hemodialysis patients. These factors can
make automated segmentation tasks more challenging [20]. The aim of this study was
to use deep-learning algorithms to establish an automated CTR calculation system for
hemodialysis patients.

2. Materials and Methods

This study was approved by the Institutional Review Board of Ditmanson Medical
Foundation Chia-Yi Christian Hospital (IRB2022082), which waived the need for written
informed consent due to the retrospective nature of the study.

2.1. Image Dataset

Four hundred thirteen patients receiving regular hemodialysis aged >19 years in our
hemodialysis unit from March 2021 to October 2021 were enrolled. CXR posterior-anterior
(PA) views were acquired from the Picture Archiving Communication System (PACS) of
our radiology department. Digital Imaging and Communication in Medicine (DICOM)
images were converted into grayscale JPEG format in their original resolution, which
ranged from 2571~3320 by 2800~3408. Most patients underwent routine CXR examinations
after hemodialysis in both April and October 2021. CXR images were excluded if they were
not taken immediately after hemodialysis, or if the image was taken during hospitalization.
Masks of the lungs and heart in the CXRs were manually labeled by a board-certified
nephrologist and were reviewed and verified by another senior board-certified nephrologist.
Consensus was achieved by discussion between the two nephrologists if disagreement
arose in the segmentation mask creation or CTR measurement. In addition, we obtained
the CTRs of these chest X-rays as determined by clinical staff (i.e., nurse practitioners),
who manually calculated the ratio of the maximum transverse cardiac dimension to the
maximum transverse internal thoracic cavity dimension.

The training and validation datasets were composed of all CXR images taken in
April 2021 in our hospital. The testing dataset was composed of the CXR images taken
of hemodialysis patients during October 2021 in our hospital to evaluate the diagnostic
performance and reliability of our image segmentation model. The datasets are represen-
tative of the clinical setting in our hemodialysis unit. To prevent overfitting and improve
the diversity and generalizability of the model for lung and heart segmentation, a publicly
available image dataset from the Japanese Society of Radiological Technology (JSRT) [21]
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was employed. This dataset contains 247 PA CXRs, of which 154 had lung nodules, and
93 had no lung nodules. All CXRs had a resolution of 2048 × 2048 pixels. One hundred
forty-seven CXRs were randomly selected for our training dataset.

2.2. Neural Network/Deep-Learning Model for Semantic Segmentation

U-Net has been widely applied in the segmentation of medical images and can be
used to extract location information with high accuracy [22]. It is known for its ability to
handle small, noisy, and highly imbalanced datasets and for its robust performance on a
wide range of image segmentation tasks. This model was developed from an autoencoder
and consists of a contracting path (also known as the encoder) and an expanding path
(also known as the decoder). The encoder and decoder are connected by a series of skip
connections, which helps to preserve spatial information and improve the performance of
the network. Each output character can be matched with the decoder layer to reconstruct
the original images and predict a high-resolution mask output. This technique can reduce
noise signals and improve segmentation accuracy. U-Net can be adapted with various
types of encoders; here, we implemented AlbuNet-34, a variant of the U-Net architecture
that deploys ResNet as an encoder, to predict the heart and lung margins from CXR
images. After the features of the input image are obtained through ResNet34, to increase
the receptive field, the output of stage 5 is downsampled through a max pooling layer.
During the entire encoder process, the model mainly performs downsampling 6 times. At
this time, the resolution of the feature map is 1/64 of the original input image. Therefore, it
is necessary to perform upsampling 6 times using decoder blocks to restore the resolution
of the image. At the end of the model, the output goes through a 3 × 3 convolutional layer,
where the number of filters is the number of categories. The connection method used in
AlbuNet-34 between the encoder and decoder is the same as in U-Net. AlbuNet-34 has
been shown to outperform custom pretrained encoders and other commonly used variants
of the U-Net architecture [23]. Then, to determine the cardiothoacic ratio (CTR), we utilized
a computer program to calculate the ratio of the maximum transverse cardiac dimension to
the maximum transverse internal thoracic cavity dimension, as indicated by the applied
masks. An example of the determination of the CTR after heart and lung segmentation is
shown in Figure 1.

2.3. Experimental Settings

We implemented the PyTorch framework (https://www.pytorch.org, accessed on 1
November 2021) with a CUDA backend to run our method and trained the entire network
using a stochastic gradient descent (SGD) optimizer (learning rate 0.0001, momentum = 0.99)
using an NVIDA RTX 3090 GPU. The loss function was the sum of the Jaccard loss. To
improve the generalizability and accuracy of our deep-learning model, it was pretrained
with ImageNet [24] and fine-tuned with our training dataset with both heart and lung
margin annotations. ImageNet is a large dataset of labeled images that is commonly
used for training and evaluating image classification models in deep learning. It contains
over 14 million images, spanning more than 1000 different object categories. It has been
used to train models for a wide range of applications, including object detection, image
segmentation, and video analysis. The initial weights of ResNet34 in AlbuNet-34 were
trained on the ImageNet dataset instead of random weights in the pretrained algorithms to
facilitate fine-tuning our model to obtain better generalizability. All images were resized
to 512 × 512. In the process of training, we used various methods for data augmentation,
including RandomResizedCrop, ShiftScaleRotate, RandomBrightnessContrast, InverImg,
ElasticTransform, GridDistortion, and OpticalDistorsion, to increase the diversity of the
training dataset.

https://www.pytorch.org
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Figure 1. Illustration of the segmentation of the heart and lungs margin by manual annotation and 
the neural network model. The blue line was predicted by the neural network model, and the red 
and orange lines are the cardiac and lung margins, respectively, annotated by a senior nephrologist. 

2.3. Experimental Settings 
We implemented the PyTorch framework (https://www.pytorch.org, accessed on the 

first of November in 2021) with a CUDA backend to run our method and trained the entire 
network using a stochastic gradient descent (SGD) optimizer (learning rate 0.0001, mo-
mentum = 0.99) using an NVIDA RTX 3090 GPU. The loss function was the sum of the 
Jaccard loss. To improve the generalizability and accuracy of our deep-learning model, it 
was pretrained with ImageNet [24] and fine-tuned with our training dataset with both 
heart and lung margin annotations. ImageNet is a large dataset of labeled images that is 
commonly used for training and evaluating image classification models in deep learning. 
It contains over 14 million images, spanning more than 1000 different object categories. It 
has been used to train models for a wide range of applications, including object detection, 
image segmentation, and video analysis. The initial weights of ResNet34 in AlbuNet-34 
were trained on the ImageNet dataset instead of random weights in the pretrained algo-
rithms to facilitate fine-tuning our model to obtain better generalizability. All images were 
resized to 512 × 512. In the process of training, we used various methods for data augmen-
tation, including RandomResizedCrop, ShiftScaleRotate, RandomBrightnessContrast, In-
verImg, ElasticTransform, GridDistortion, and OpticalDistorsion, to increase the diversity 
of the training dataset. 

2.4. Statistical Analysis 
Descriptive statistics include the mean and standard deviation (SD) for continuous 

variables and the proportion for categorical variables. To evaluate the similarity between 
the neural network model-predicted mask output and the nephrologist-defined (ground-
truth) margins of the heart and lungs, the mean intersection over union (mIoU) and aver-
age Dice coefficient (ADC) were used as performance metrics. The Dice coefficient was 

Figure 1. Illustration of the segmentation of the heart and lungs margin by manual annotation and
the neural network model. The blue line was predicted by the neural network model, and the red
and orange lines are the cardiac and lung margins, respectively, annotated by a senior nephrologist.

2.4. Statistical Analysis

Descriptive statistics include the mean and standard deviation (SD) for continuous
variables and the proportion for categorical variables. To evaluate the similarity between the
neural network model-predicted mask output and the nephrologist-defined (ground-truth)
margins of the heart and lungs, the mean intersection over union (mIoU) and average Dice
coefficient (ADC) were used as performance metrics. The Dice coefficient was calculated
using the following formula: 2 × PPV × TPR/(PPV + TPR), where PPV and TPR denote
the positive predicted value and true positive rate, respectively, and ADC is obtained by
taking the average of the Dice coefficient across all classes. The formula for the IoU is
as follows: TP/(TP + FP + FN), where TP, FP, and FN indicate the number of pixels for
true positives, false positives, and false negatives, respectively, and mIOU is calculated by
taking the average of the IOU values across all classes. The coefficient of determination
(R2) (linear regression of CTR by neural network on CTR by nephrologist) and relative
changes (difference between CTR by neural network and CTR by nephrologist) were used
to examine the similarity of the CTR calculated between the prediction neural network
model and the nephrologist-defined mask. Cardiomegaly was considered for a CTR value
greater than 50% in accordance with regular clinical practice. The diagnostic performance
on ground-truth CTRs > 50% was evaluated in terms of accuracy, sensitivity, specificity,
and area under the receiver operating characteristic (ROC) curve (AUC). A t-test was used
to assess whether there was a statistically significant difference between the CTR obtained
by the neural network model and that calculated by nurse practitioners. A p value less than
0.05 was considered significant.
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3. Results
3.1. Patient Characteristics

The included patients were divided into a group with a CTR (obtained by the nephrol-
ogists) greater than 50% and another group with a CTR less than or equal to 50%. The
baseline characteristics of the patients are shown in Table 1. Patients with a CTR greater
than 50% were older, were more likely to be female, had a lower post-hemodialysis body
weight, and had more left ventricular hypertrophy (LVH).

Table 1. Basic characteristics of all patients, patients with a CTR (obtained by the
nephrologists) ≤ 50%, patients with a CTR >50%, and p values between patients with CTR ≤ 50%
and with CTR > 50%.

All Patients CTR ≤ 50% CTR > 50% p Value

Patient number 413 112 301
Age (±SD) 65.0 ± 11.9 57.9 ± 11.2 67.6 ± 11.1 <0.001

Sex, male (n, %) 236 (57.1%) 82 (73.2%) 154 (51.2%) <0.001
Dialysis vintage, years (±SD) 7.43 ± 6.66 7.26 ± 6.61 7.87 ± 6.81 0.414

Comorbidities
History of myocardial infarction (n, %) 78 (18.9%) 17 (15.2%) 61 (20.3%) 0.24

LVH 264 (63.9%) 50 (44.6%) 214 (71.1%) <0.001
CAD 199 (48.2%) 45 (41.1%) 153 (50.8%) 0.078

History of CVA 82 (19.9%) 20 (17.9%) 62 (20.6%) 0.535
Hypertension 395 (95.6%) 107 (95.5%) 288 (95.7%) 0.949

Diabetes mellitus 243 (58.8%) 59 (52.7%) 184 (61.1%) 0.121
Dialysis parameters

Kt/V (±SD) 1.64 ± 0.22 1.64 ± 0.2 1.63 ± 0.23 0.757
Water removal, kg (±SD) (pre-HD body weight

minus post-HD body weight) 2.29 ± 0.91 2.31 ± 0.92 2.28 ± 0.91 0.758

Post-HD body weight, kg (±SD) 60.1 ± 14.1 62.5 ± 12.56 59.2 ± 14.59 0.035

Abbreviations: CAD, cardiac artery disease; CTR, cardiothoracic ratio; CVA, cerebrovascular accident; LVH, left
ventricular hypertrophy; SD, standard deviation.

In total, there were 460 CXR images in the training dataset (68% from our hemodialysis
patients taken in April 2021 and 32% from the JSRT dataset), 54 CXR images in the validation
dataset (all from our hemodialysis patients taken in April 2021) and 413 CXR images (taken
in October 2021 from our hemodialysis patients) in the testing dataset. Four hundred
thirteen patients in our hemodialysis unit were included; the mean age of the patients was
65.9 ± 12.0 years, and 56.2% were male. The mean CTR was 53.4 ± 6.1%, and 302 patients
(73.1%) had a CTR value greater than 50%.

3.2. Performance in Image Segmentation of the Lungs and Heart

There was a high degree of overlap between the manual and automatic segmentation
masks. The mean IoU (mIoU) and ADC- for segmentation of the heart and lungs in
the validation dataset were 0.935 and 0.966, respectively. These metrics remained highly
consistent in the testing dataset, with an mIoU and ADC of 0.950 and 0.974, respectively, in
our hemodialysis patients, outperforming the CXR images from the JSRT dataset. The CTR
also showed a high correlation between the automatic calculation and the nephrologist-
defined mask, with R2 values in the validation and testing datasets of 0.950 and 0.965
(Table 2), respectively.

3.3. Comparison between Automatic and Manual CTR Calculation

The calculation of CTR is usually performed by nurse practitioners or resident doctors
in our hemodialysis unit. We also assessed the accuracy of the CTR calculated by nurse
practitioners or resident doctors (Table 3). The mean absolute difference between the
CTR calculated by the nurse practitioners and the ground-truth CTR was 1.52 ± 1.46%.
There were 128 (31%) CXR images with an absolute CTR difference ≥ 2% relative to
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the nephrologist-defined mask. In contrast, the mean absolute difference between our
neural network model and the nephrologist-defined mask was 0.83 ± 0.87%, and 35 (8%)
CXR images had an absolute CTR value difference ≥ 2% (all p < 0.001). The average
time taken in calculating the CTR value by the neural network model and the clinical
staff was 1 s and 85 s, respectively. The performance in detecting cardiomegaly was
comparable between the automated and manual CTR calculation methods (neural network
model: accuracy 94.9%, sensitivity 96.4%, specificity 91.0%, AUC 0.992; manual calculation
by nurse practitioner: accuracy 92.5%, sensitivity 90.1%, specificity 99.1%, AUC 0.985,
Figure 2). Scatter plots comparing the CTRs calculated by the neural network with the
CTRs by the nephrologists and the CTRs calculated by the nurse practitioners with the
CTRs calculated by the nephrologists are shown in Supplemental Figure S1. Bland–Altman
plots comparing the neural network with the nephrologists and the nurse practitioners with
the nephrologists are shown in Supplemental Figure S2. The mean duration of the manual
CTR calculation was 85 s, whereas that of the automated calculation was 2 s (p < 0.001).

Table 2. Automatic segmentation and CTR calculation performance. mIoUs are calculated with the
mask predicted by the neural network and the mask marked by the nephrologists; Dice coefficients are
calculated with the mask predicted by the neural network and the mask marked by the nephrologists;
R2 represents the correlations between the CTR predicted by the neural network and the CTR marked
by the nephrologists with linear regression; relative changes represent the difference between the
CTR predicted by the neural network and the CTR marked by the nephrologists.

Dataset Training Validation Testing

Number of images 460 * 54 ** 413 **
mIoU 0.943 0.935 0.950

Average Dice coefficient 0.970 0.966 0.974
R2 0.967 0.950 0.965

Relative change (difference between neural
network mask and nephrologist-defined mask) 1.82% 2.0% 1.56%

Abbreviation: CTR, cardiothoracic ratio; mIoU, the mean of intersection over union; R2, the coefficient of
determination. * JSRT dataset, 147; hemodialysis patients, 313. ** hemodialysis patients only.
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Table 3. Comparison of CTRs calculated by nurse practitioners vs. nephrologists and those calculated
by our neural network vs. nephrologists.

Method Clinical Staff Neural Network Model p Value

Mean difference ± SD 1.52 ± 1.46% 0.83 ± 0.87% <0.001
Absolute CTR bias ≥ 2% (n, %) 128 (31%) 35 (8%) <0.001

R2 0.90 0.96
Average time (second) 85 2 <0.001

Abbreviations: CTR, cardiothoracic ratio; SD, standard deviation. R2, the coefficient of determination.

4. Discussion

The lung and heart segmentation methods of our study had good IoUs and Dice
coefficients in both the validation and testing datasets. The automated CTRs calculated
accordingly were highly correlated with those calculated by senior board-certified nephrol-
ogists and were superior to those calculated by nurse practitioners. These automated CTR
calculations were more precise, robust, and less biased than the CTRs manually calculated
by the nurse practitioners in routine CXR examinations for hemodialysis patients. Regard-
ing the performance in detecting cardiomegaly, the automated CTRs slightly outperformed
the nurse practitioners. These results validated the automated CTR calculation as a solid
and robust method for implementation in daily clinical practice. This method not only
improved accuracy in calculating the CTR but also reduced the workload of the staff of the
hemodialysis unit.

To detect cardiomegaly in chest X-rays using deep learning, there are two main ap-
proaches: classification-based and segmentation-based methods. Candemar et al. employed
a classification-based method to detect cardiomegaly in chest X-rays [25] by using con-
volutional neural networks (CNNs) to learn relevant features from the input images and
classify them as either cardiomegaly or not. However, this approach only provides a binary
decision, without providing information about the location or extent of the cardiomegaly
region. In contrast, we employed a segmentation-based method, in which the model would
be trained to first segment the region of interest (heart and lungs) from the input chest X-ray
image and then identify whether the segmented region contains cardiomegaly or not. This
approach can be more accurate, as it provides more detailed information about the location
and extent of cardiomegaly in the image and facilitates the removal of disturbances from
extrapulmonary soft tissue and bone structures. It also provides an accurate estimation of
CTR, which is a crucial indicator for nephrologists in determining the need for dry weight
adjustments in dialysis patients.

We conducted experiments on the publicly available JSRT dataset and compared the
results with three other different methods in currently published literature (Supplemental
Table S1) [26–28]. Our model ranked second in average Dice coefficient after Eslami et al.’s
work with the pix2pix model. However, our model outperformed the pix2pix model in the
image dataset from hemodialysis patient. Thus, the pix2pix model’s generalization ability
is low and insufficient to handle most hemodialysis patients.

Cardiomegaly is an important predictor of various clinical outcomes in patients un-
dergoing hemodialysis. A study of 3436 participants undergoing hemodialysis in Japan
showed that a higher CTR was associated with a higher risk for both all-cause mortality and
cardiovascular events [5]. Another study of 387 patients undergoing regular hemodialysis
showed that CTR > 55% was an independent factor related to 2-year all-cause mortality [6].
A study with 2586 pairs of patients with normal and high CTRs matched by propensity
scoring showed that a baseline CTR > 50% was associated with increased mortality and
morbidity in patients with heart failure [7]. Among dialyzed patients infected with COVID-
19 in Taiwan, deceased patients had a higher cardiothoracic ratio than surviving patients
(0.61 vs. 0.55, p = 0.036) [29].

Previous studies have shown that CTRs determined by segmentation-based methods
using deep learning can identify cardiomegaly with good accuracy [12–14,30]. The CXRs of
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the general population were selected for model training, validation, and testing. However,
there are differences in the CXR imaging characteristics between the general population
and hemodialysis patients due to the high prevalence of pulmonary disease, including
atelectasis, vascular congestion, parenchymal consolidation, and parenchymal scarring-
fibrosis [31], which may obscure the heart border. Furthermore, hemodialysis patients may
have central venous catheters, such as Perm-Caths, or heart implants, such as pacemakers,
which may make the segmentation task more challenging. Thus, we included both a
public CXR image dataset and CXRs from our hemodialysis patients in the training and
validation datasets to reinforce the generalizability of the neural network/deep learning
model segmentation. Additionally, we included only CXRs from hemodialysis patients in
the testing dataset to evaluate the diagnostic performance in hemodialysis patients. The
segmentation masks were highly correlated with the nephrologist-defined masks (ground
truth), with excellent mIoU and average Dice coefficient (ADC) values in both the validation
and testing datasets.

There are several circumstances that could obscure the borders of the heart and lungs
on CXRs. During annotation of the lung and heart borders, the most common areas with
ambiguous borders are the upper and lower parts of the heart. The upper part of the heart is
within the mediastinum, where no clear border exists among the heart, aorta, and superior
vena cava. The lower border of the heart, meanwhile, is in contact with the diaphragm,
where minor pleural effusions and vague diaphragm–heart borders make it difficult to
define, even for senior nephrologists. The neural network model tends to underperform
in these two areas, marking bulging or concave borders at times. Nonetheless, this poor
performance did not alter the results of the automated CTR calculation. However, when
there are large pleural effusions or areas of lung collapse, the neural network model also
has difficulty marking the margins accurately. Thus, the feasibility of the computer-aided
detection of cardiomegaly without human intervention is limited. When using CXRs
with lesions obscuring the border of the heart, the performance dropped significantly
without human intervention [14]. To avoid erroneous CTR calculations due to inaccurate
segmentation, we designed a human-monitored automated CTR calculation system and
incorporated it into our electronic health record (EHR) system. Our staff can review the
segmentation results and then approve the CTRs if the result is correct; otherwise, they can
manually input the correct CTR data if the segmentation area is obviously wrong.

In a study evaluating the effects of sample size on U-Net-based organ segmentation,
the slope of the Dice similarity coefficient (DSC) stabilized after 200 cases and showed
minimal changes as the number of cases increased further. The DSCs stabilized at a smaller
sample size with the incorporation of data augmentation for all organs except the heart [32].
We applied data augmentation methods provided by PyTorch to increase the sample size
and thus the accuracy after training, however, a few erroneous segmentations were still
generated. In future studies, we may incorporate some newly developed data augmentation
methods [33] to improve model performance in segmenting the heart.

Variations in the manually calculated CTR may result in inappropriate hemodialysis
prescriptions and inadequate ultrafiltration for hemodialysis patients. In a previous study,
the interobserver variation was 2.13% in the general population [3]; this variation may be
higher in hemodialysis patients because of the higher prevalence of pulmonary disease
or implants, which can obscure the heart or lung margins. The CTR can also be used
to monitor the effect of different interventions and provide prognoses for hemodialysis
patients. In patients with isolated congenital complete atrioventricular block (CCAVB),
the CTRs were significantly different (p < 0.001) between symptomatic and asymptomatic
patients after pacemaker therapy (52% and 48%, respectively) [34]. Changes in the CTR
during serial monitoring of the same patient were reported to be correlated with higher
mortality in a hemodialysis population [35]. We can also assess the effect of dry weight
reduction on hypertension or fluid overload according to the serial monitoring of the CTR
to evaluate the effects of interventions. By using automated CTR calculations, the results
of our study provide more consistent data and may be used to improve clinical decision
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making and provide good correlations for future CTR-related studies. Our model also
reduced the labor costs required by our staff in calculating the CTRs.

The strength of this study is the development of a neural network/deep-learning
model for segmenting the lungs and heart with good IoUs and Dice coefficients with
respect to the nephrologist-defined mask. The automated CTR calculations correlated
well with the nephrologist-defined CTR and were more accurate than those of the nurse
practitioners who are responsible for the routine CTR calculations in our hemodialysis
unit. We used various data augmentation methods to increase the size of the training
dataset to obtain better prediction results. In addition, CXRs from different hemodialysis
units may have different density characteristics due to differences in the X-ray machine
settings. To avoid neural network model overfitting, we included a publicly available JSRT
image dataset in the training dataset to increase the robustness and generalizability of
the neural network model. However, one weakness of this study is that the model still
calculated the CTR erroneously at times due to the poor segmentation of the lungs and
heart. Some of these errors were due to the presence of implants, and some were due to
vague heart borders. However, even the senior nephrologists found it difficult at times to
define the lung and heart margins. This is one of the limitations of CTR detection with
plain CXRs [36], and chest computed tomography or magnetic resonance imaging [13] may
be needed to obtain an accurate CTR when the above circumstances are present. To avoid
erroneous segmentation with inaccurate CTR data, we developed an option for manual
input to override any poorly predicted automated CTRs.

The segmentation of the lung and heart fields represents a foundational step for the
subsequent evaluation of lung and heart diseases. The cardiothoracic ratio is the first
clinical application that we have implemented in our clinical practice. Our goal is to
evaluate lung edema, pleural effusion, and other clinical markers to determine whether a
neural network can generate better surrogates with chest X-rays, enabling the detection of
a wide range of clinical conditions and diseases.

5. Conclusions

Our study confirmed the validity of automatically calculated CTRs, which were
slightly better than those calculated by the hemodialysis staff and provided high accuracy
and reliability compared to nephrologist calculations. A neural network-assisted CTR
calculation system can improve the quality of routine CTR evaluation and reduce the time
and labor costs of our staff in routine practice.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics13081376/s1. Figure S1. (A) scatter plot com-
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practitioners with CTR by nephrologists. Figure S2. (A) Bland-Altman plot of CTRs by nurse practi-
tioners and by nephrologists (B) Bland-Altman plot of CTRs by neural network and by nephrologists.
Figure S3. Confusion matrix: 1.Left, Neural network vs. nephrologist: accuracy 94.92%, sensitivity
96.36%, specificity 90.99%. 2.Right, Clinical staff vs. nephrologist: accuracy 92.49%, sensitivity 90.07%,
specificity 99.10%. Table S1 Comparison of Dice coefficient with the other articles.
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