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Abstract: This study introduces a new method for identifying COVID-19 infections using blood
test data as part of an anomaly detection problem by combining the kernel principal component
analysis (KPCA) and one-class support vector machine (OCSVM). This approach aims to differentiate
healthy individuals from those infected with COVID-19 using blood test samples. The KPCA model
is used to identify nonlinear patterns in the data, and the OCSVM is used to detect abnormal features.
This approach is semi-supervised as it uses unlabeled data during training and only requires data
from healthy cases. The method’s performance was tested using two sets of blood test samples
from hospitals in Brazil and Italy. Compared to other semi-supervised models, such as KPCA-based
isolation forest (iForest), local outlier factor (LOF), elliptical envelope (EE) schemes, independent
component analysis (ICA), and PCA-based OCSVM, the proposed KPCA-OSVM approach achieved
enhanced discrimination performance for detecting potential COVID-19 infections. For the two
COVID-19 blood test datasets that were considered, the proposed approach attained an AUC (area
under the receiver operating characteristic curve) of 0.99, indicating a high accuracy level in distin-
guishing between positive and negative samples based on the test results. The study suggests that
this approach is a promising solution for detecting COVID-19 infections without labeled data.

Keywords: COVID-19; routine blood tests; kernel PCA; semi-supervised anomaly detection; data-driven

1. Introduction

Detection of contaminated cases with COVID-19 is crucial for controlling the spread
of the virus [1]. When contaminated cases are identified, they can be isolated and treated,
preventing them from spreading the virus to others. This is particularly important for
asymptomatic carriers who may unknowingly spread the virus. Early detection also allows
for contact tracing, where individuals who have been in close contact with the infected
person can be identified and tested, further reducing the spread of the virus. Detection
of contaminated cases can also inform public health decisions such as implementing
quarantine measures, closing public spaces, and adjusting social distancing guidelines. It
also helps to allocate resources, such as medical supplies and hospital beds, more effectively.
Additionally, detecting contaminated cases can help to identify outbreaks and hotspots,
allowing health officials to target their efforts to the areas that need it most, slowing the
spread of the virus and preventing overwhelmed healthcare systems [2]. In short, detecting
contaminated cases is essential for controlling the spread of COVID-19. It helps to identify
and isolate infected individuals, trace contacts, inform public health decisions, allocate
resources, and target efforts to the areas that need it most [3].
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The identification of infected individuals through accurate and efficient procedures is
crucial for effectively controlling the spread of COVID-19. In recent times, various machine
learning techniques that utilize routine blood tests have been proposed as a means to
address the limitations of traditional real-time reverse transcription–polymerase chain
reaction (RT-PCR) tests [4–6]. These machine learning-based strategies have the potential
to provide faster and more accurate results, making them a valuable tool in the fight
against COVID-19. However, it is important to note that the research and development
of these AI-based COVID-19 detection methods are still ongoing, and more studies are
needed to validate their accuracy and reliability before they can be implemented on a large
scale. In [7], Wang et al. proposed a method for detecting whether people are wearing
masks during the COVID-19 pandemic, using transfer learning and broad learning systems.
They proposed a two-stage approach that involves detecting candidate regions where a
mask may be worn using a transfer model; they used a broad learning system to verify
if the detected regions were authentic facial masks. They also introduced a dataset for
mask-wearing detection, which included 7804 realistic images. The results show that this
approach achieves an overall accuracy of 97.32% for simple scenes and 91.13% for complex
scenes, outperforming the compared methods. They suggest that the proposed method
can help curb the spread of COVID-19 by detecting masked faces in public spaces, such as
hospitals and airports. In [8], Sharma et al. proposed an eigenvalue decomposition of the
Hankel matrix (EVDHM)-based autoregressive integrated moving average (ARIMA) model
to predict the number of COVID-19 cases. They decomposed the data into subcomponents
using EVDHM to reduce non-stationarity, applied ARIMA to forecast future values for
each subcomponent, and combined the results to generate the final output values. They
employed a genetic algorithm to obtain the optimal values of ARIMA parameters based
on the minimum Akaike information criterion. This technique is applied to predict daily
new COVID-19 cases in India, the USA, and Brazil, showing high effectiveness. In [9], Lam
et al. used semi-supervised learning (SSL) techniques to develop and validate machine
learning algorithms for predicting the development of acute respiratory distress syndrome
(ARDS) in hospitalized patients [9]. The study employed a dataset of 29,127 encounters
with patients admitted to seven US hospitals, and a recurrent neural network was utilized
to predict ARDS development based on electronic health record data. The study’s outcomes
indicate that SSL techniques can enhance the model performance, and unlabeled data can
be used for predicting ARDS development in scenarios where labeled data are relatively
inexpensive. The area under the receiver operating characteristic curve increases from
0.73 to 0.84 when using the labeled dataset. The paper concludes that unlabeled data can
be valuable for enhancing the efficiency of machine learning models in predicting ARDS
development.

In [10], W. Wu et al. presented a method for reconstructing high-quality computed
tomography (CT) images in low-dose cases, based on a technique called tensor gradient
L0-norm minimization (TGLM). They developed a TGLM strategy to reduce radiation
dose by considering the 3D spatial information of CT images. The optimization of the
TGLM model was carried out using the split Bregman technique, and its performance was
subsequently evaluated using two COVID-19 patients as test cases. Results revealed that
the TGLM model exhibits accurate detection performance in scenarios involving low-dose
cases, and it effectively preserves image edges while minimizing sparse undersampling
artifacts. Various studies have been conducted to detect COVID-19 infection using chest
X-rays. For instance, Han et al. present a semi-supervised deep neural network method
for improving the detection of COVID-19 using CT images in [11]. The method utilizes
labeled and unlabeled CT images to enhance the accuracy and robustness of COVID-19
diagnosis. This approach achieves an overall accuracy of 99.83%, a sensitivity of 0.9286,
a specificity of 0.9832, and a positive predictive value (PPV) of 0.9192 in distinguishing
COVID-19 from non-COVID-19 CT images. Additionally, the method obtains 97.32%
accuracy, 0.9971 sensitivity, 0.9598 specificity, and 0.9326 PPV in discriminating between
COVID-19 and common pneumonia CT images. The results are consistent across different
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datasets, and the proposed method improves diagnostic accuracy and robustness without
exhaustive labeling.

In [12], Khobahi et al. considered a deep learning-based technique for analyzing
chest X-ray images to diagnose COVID-19. This method uses a semi-supervised learning
approach based on autoencoders to extract infected legions in chest X-ray images. Then it
utilizes a deep architecture to extract relevant features and train a classifier for automatic
diagnosis. The results showed that this approach achieved an overall class average accuracy
of 93.5%. Brunese et al. proposed a deep learning-based approach for the rapid and
automatic detection of COVID-19 from X-rays in [13]. The approach consists of three
phases: pneumonia detection, discrimination between COVID-19 and pneumonia, and
localization of the COVID-19 presence in symptomatic areas of the X-ray. The method
was evaluated on a dataset comprising 6523 chest X-rays from multiple institutions, and it
demonstrated an average detection time of 2.5 s and an average accuracy of 0.97.

Recently, Dairi et al. in [14] proposed an approach for detecting COVID-19 infection
using blood test samples. They addressed the problem of COVID-19 infection detection as
an anomaly detection problem through the use of a semi-supervised deep hybrid model.
The method combines the use of a variational autoencoder (VAE) deep learning model for
feature extraction and a one-class support vector machine (OCSVM) for separating infected
from non-infected COVID-19 individuals. The performance of the model was evaluated
using blood test samples from hospitals in Brazil and Italy. The results indicate that the
VAE-based OCSVM detector surpasses the other methods, such as generative adversarial
networks (GANs) and restricted Boltzmann machines (RBMs), in terms of discrimination
performance for detecting potential COVID-19 infections. Moreover, in [15], Alves et al.
investigated machine learning techniques for COVID-19 diagnosis through routine blood
tests, using a public dataset from a Brazilian hospital. The random forest (RF) performed the
best among the classifiers tested. A decision tree explainer (DTX) was utilized for localized
explanations to improve interpretability. A criteria graph was employed to aggregate these
explanations and offer a comprehensive understanding of the results. The authors argue
that this approach closely mimics the decision-making process of healthcare professionals,
making it more practical for real-world use. The study findings indicate that simple blood
tests can assist in identifying false positives/negatives in RT-PCR tests. In [16], AlJame et
al. introduced an ensemble learning technique, named ERLX, for identifying COVID-19
from routine blood tests. This model incorporates three distinct classifiers (extra trees,
random forest, and logistic regression) in the initial stage, and then utilizes a second-level
classifier, known as extreme gradient boosting (XGBoost), to merge the predictions and
enhance the performance. The data preparation process includes handling null values
with KNNImputer, removing outliers with iForest, and balancing data distribution with
SMOTE. The model’s interpretability is enhanced using the SHapley Additive exPlanations
(SHAP) technique to report feature importance. The results from a publicly available
dataset from the Albert Einstein Hospital in Brazil show that the ERLX model achieved an
overall accuracy of 99.88%, an AUC of 99.38%, a sensitivity of 98.72%, and a specificity of
99.99%. This model is considered more robust and reliable than existing state-of-the-art
models for early and rapid screening of COVID-19 patients. In [17], an approach called
TESSOM (tree-based entropy-structured self-organizing maps) is proposed for identifying
pertinent attributes in blood test examinations for COVID-19 diagnosis. Specifically, this
approach uses self-organizing maps and an entropy calculation to create a hierarchical,
semi-supervised, and explainable model. By enhancing investigating groups of cases
with high levels of class overlap, the algorithm enables a simpler explanation of results to
experts. The results of their experiments, which analyzed 2207 cases from three hospitals
in Brazil, demonstrate that TESSOM improves COVID-19 case identification and offers a
performance increase of 1.489% in multiple scenarios.

The study conducted by Brinati et al. in [18] aimed to create machine learning models
for identifying COVID-19 using routine blood tests as an alternative to the standard RT-PCR
test. The study utilized hematochemical values from routine blood exams of 279 patients
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admitted to a hospital with COVID-19 symptoms, out of which 177 were positive, and
102 were negative. Two machine learning models, known as the three-way random forest
(TWRF) classifier and RF, were developed using demographic characteristics and a small set
of routine blood tests. The performance of the models was comparable to the gold standard
test, with an accuracy range of 82–86% and a sensitivity range of 92–95%. Additionally, these
models outperformed traditional classifiers, such as decision trees, extremely randomized
trees, KNN, logistic regression, and naive Bayes. Freitas Barbosa et al. [19] developed
an intelligent system, called Heg.IA, to aid in the diagnosis of COVID-19 using blood
test results. The system utilizes laboratory parameters obtained from hemogram and
biochemical tests as input features and employs particle swarm optimization, evolutionary
algorithms, and manual feature selection to identify the most important features.

Several machine learning models were evaluated, and the highest classification per-
formance was achieved with an overall accuracy of 95.159%, a kappa index of 0.903, a
sensitivity of 0.968, a precision of 0.938, and a specificity of 0.936. The best classifier was
found to be the Bayes network. The authors suggest that this system could serve as a
low-cost rapid test and is available for free use. The study by Aktar et al. in [20] aimed to
determine how blood data from COVID-19 patients can be used to predict clinical outcomes.
They used a combination of statistical methods, correlation analysis, and machine learning
algorithms (such as RF, SVM, DT, and LGBM) to analyze clinical data from patients with
known outcomes. They found that certain measurable clinical parameters in blood samples
could distinguish between healthy individuals and those who are positive for COVID-19,
and could also predict the severity of symptoms. The authors developed analytical meth-
ods with accuracy and precision scores above 90% for predicting disease severity. They
concluded that their approach could be used to identify patients at high risk of mortality
and optimize hospital resources for COVID-19 treatment.

It is worth noting that while many countries have progressed in controlling the spread
of COVID-19, ongoing research into effective and efficient diagnostic methods is still
necessary. The approach proposed in this study offers a promising solution that can be
applied to future outbreaks, highlighting the study’s relevance and importance beyond
the current COVID-19 pandemic. This study presents a new semi-supervised method
for identifying COVID-19 infection using blood test data as part of an anomaly detection
problem. The approach merges the capabilities of kernel principal component analysis
(KPCA) with an unsupervised OCSVM to differentiate healthy from infected COVID-19
cases based on blood test samples. This method addresses traditional blood test limitations,
such as cost and time consumption, by providing a flexible and data-driven approach to
COVID-19 detection. KPCA is employed to identify nonlinear patterns in the data, while
OCSVM is used to detect abnormal features. This approach is semi-supervised as it uses
unlabeled data during the training process, and it only requires data from healthy cases to
construct the model. This approach also has the advantage of detecting anomalies in the
data, potentially identifying infected individuals even if they are asymptomatic or have
atypical symptoms. Therefore, this study’s approach has practical implications for public
health efforts to control and prevent the spread of COVID-19. The model’s performance
was tested on two sets of blood test samples from hospitals in Brazil and Italy. Compared to
other semi-supervised models, such as KPCA-based isolation forest (iForest), local outlier
factor (LOF), and elliptical envelope (EE) schemes, independent component analysis (ICA),
and PCA-based monitoring techniques, the proposed KPCA-OSVM approach delivers
good discrimination capability for detecting potential COVID-19 infections.

In Section 2, we provide an overview of the OCSVM and KPCA algorithms, as well as
the proposed semi-supervised KPCA-based OCSVM detector. Additionally, Section 2 offers
a brief review of the benchmark methods used in this study, including PCA, ICA, iForest,
LOF, and EE. In Section 3, we evaluate the performance of the proposed approach using
two publicly available datasets. Finally, in the last section, we summarize this research and
offer future research directions.
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2. Materials and Methods

In this section, we provide an overview of all of the necessary components for this
study. This includes a brief explanation of OCSVM, KPCA, the proposed KPCA-OCSVM
method, as well as the benchmark methods used, such as PCA, ICA, iForest, LOF, and EE.

2.1. Kernel PCA Model

In this study, the KPCA algorithm, an extension of linear PCA, is used to uncover
nonlinear relationships among process variables to improve fault detection performance.
The KPCA algorithm transforms the input space into a higher-dimensional feature space
via a nonlinear mapping function, using kernel tricks on the data. This approach allows
for the discovery of nonlinear patterns in the data that may not be apparent in the original
space, making it a powerful tool for dimensionality reduction and feature extraction. The
KPCA algorithm is then used to feed a one-class SVM scheme for anomaly detection. The
one-class SVM models the normal behavior of the system and detects any deviation from
this normal behavior as an anomaly, thus improving performance over traditional linear
PCA-based monitoring methods. By using KPCA to extract relevant features, this approach
reduces the high computation cost associated with nonlinear optimization compared to
other nonlinear methods. Additionally, the use of kernel tricks allows the KPCA algorithm
to handle nonlinearity without the need for explicit computation of nonlinear functions,
which can be computationally expensive. Furthermore, the use of KPCA with one-class
SVM also reduces the need for labeled data and is less sensitive to the choice of the kernel
function, making it a more robust method for anomaly detection.

In this study, the original training dataset, denoted as x1, x2 . . . , xn ∈ Rm, where n is
the number of samples and m is the number of process variables, is used to construct a
feature space through a nonlinear mapping function Φ(•) : Rm → Fh. The dimension of the
feature space is represented by h, a large positive integer. Similarly to PCA, the covariance
matrix in the feature space F, denoted as ΣF, is calculated by using this nonlinear mapping
function.

ΣF =
1
n

n

∑
i=1

[
Φ(xi)−mΦ

][
Φ(xi)−mΦ

]T

, (1)

The sample mean in the feature space, denoted as mΦ, is calculated by summing
the mapped points and dividing by the number of samples. Each mapped point is then
centered by subtracting the sample mean from it and represented as Φ(xi). The principal
components are found by solving the eigenvalue decomposition problem in the feature
space.

λv = ΣFv =
1
n

n

∑
i=1

[
Φ(xi)

Tv
]

Φ(xi), (2)

The eigenvalue and eigenvector of the covariance matrix ΣF in the feature space are
represented by λ and v, respectively. By multiplying Φ(xj) with Equation (2), the kernel
matrix K or K of dimension n× n is defined as:

K(xi, xj) = Φ(xi)
TΦ(xj), (3)

K(xi, xj) = Φ(xi)
TΦ(xj), (4)

K = K−KE− EK + EKE, (5)

in conjunction with α ∈ Rn to represent the kernel principal components by the feature
space training samples, fulfilling the equation:

v =
n

∑
i=1

αiΦ(xi). (6)
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The problem of eigenvalue decomposition was then transformed, as described in [21],

nλα = Kα. (7)

The nonlinear patterns in the data can be captured by the eigenvectors determined in
the feature space F, also known as kernel principal components. The number of eigenvec-
tors is equal to the number of samples, which is typically much higher than the number of
linear principal components that can be obtained using traditional PCA.

2.2. One-Class SVM

The OCSVM is a popular technique used for anomaly detection, which identifies
abnormal data instances in a dataset. OCSVM is a type of SVM that learns a decision
boundary that separates the normal data from the rest, and is considered anomalous [22].
OCSVM is a semi-supervised learning algorithm used for detecting anomalies in a given
dataset. Unlike traditional supervised learning methods, OCSVM does not require labeled
data for model construction and is trained using only “normal” observations [23]. The
basic idea behind OCSVM is to identify a boundary that maximizes the gap between the
origin and the normal observations in the training data points in their original space. This
boundary is then utilized to classify new test data as comparable or distinct from the
training data [24]. Importantly, OCSVM creates a decision boundary around the normal
data points, which can then be used to identify the anomalous data points. In conclusion,
OCSVM is a powerful and flexible tool for anomaly detection, particularly when the training
data are limited to only one class [25]. With its ability to identify abnormal instances, it has
the potential to be applied in a wide range of fields, from healthcare to cybersecurity.

The goal of OCSVM is to find a hyperplane that maximizes the margin between the
hyperplane and the closest normal observations while separating the normal observations
from the origin. This ensures that the hyperplane is as far away from the anomalous
observations as possible. After determining the hyperplane, new observations can be
classified as normal or anomalous based on which side of the hyperplane they fall on. This
is accomplished by solving the optimization problem represented by Equation (8).

min
ωγρ

(
1
2

ωTω− ρ +
1
υl

l

∑
i=1

γi

)
, (8)

Subject to:
ω. Ψ(x) > ρ− γ.

As shown in (8), the OCSVM scheme uses a weight vector (ω), a regularization
term (υ), a slack variable (γ), and an offset term (ρ) to calculate the decision boundary.
The regularization term (υ) is used to avoid overfitting. The algorithm incorporates a
slack variable, denoted as γ, to account for observations that fall outside the decision
boundary during the training stage. Additionally, an offset term, represented by ρ, is used
to determine the distance between the origin and the mapped samples in the feature space.
The decision function of the OCSVM algorithm, given by F , returns −1 for an anomaly
and 1 for a typical data point based on the hyperplane.

F (x) = sign

(
ω. Ψ(x)− ρ

)
. (9)

The function Ψ is used to transform the original data samples into a higher-dimensional

feature space. The hyperplane, defined by the term
ρ

‖ω‖ , is the Euclidean distance from
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the origin to the support vector point. The goal is to maximize this term. The OCSVM
algorithm solves a quadratic optimization problem as stated in Equation (10).

min
ωγρ

(
‖ω‖2

2
− ρ +

1
υl

l

∑
i=1

γi

)
. (10)

The OCSVM algorithm seeks to maximize the margin between the origin and the

mapped data in the feature space [26]. This is achieved by maximizing the term
‖ω‖2

2
− ρ

in the objective function and minimizing the average of the slack variables γ. There are
several kernel functions available in the literature that can be used with OCSVM. The most
commonly used ones are [27]:

• Radial basis function (RBF) kernel:

K(x, x′) = 〈Ψ(x), Ψ(x′)〉 = e(α‖x−x′‖2), (11)

with the dissimilarity measure being the square of the distance between two data
points and the kernel parameter represented by α.

• Linear kernel:
K(x, x′) = xT · x′. (12)

• Polynomial kernel:
K(x, x′) = (γ · xT · x′ + r)d, (13)

where γ is a scaling parameter, r is a constant term, and d is the degree of the polyno-
mial.

• Sigmoid kernel:
K(x, x′) = tanh(γ · xT · x′ + r), (14)

where γ and r are scaling and constant parameters, respectively.

Where x and x′ are the input feature vectors, and K(x, x′) is the kernel function that
measures the similarity between two input vectors in a higher-dimensional feature space.
The performance of OCSVM with different kernel functions depends on the nature of the
data and the problem being solved. The RBF kernel generally performs well for most
datasets because it can model complex decision boundaries. However, the linear kernel
may be more appropriate if the data are linearly separable.

2.3. The Proposed KPCA-OCSVM Anomaly Detection Approach

The proposed KPCA-OCSVM method for identifying COVID-19 infections from blood
test data involves training the model using only non-infected samples to extract features.
This is done through the use of the KPCA algorithm, which is designed to learn and
accurately describe non-infected blood test data and produce relevant features to aid in the
training process of the OCSVM algorithm. The OCSVM is then employed to detect infected
cases in the testing dataset, which includes both infected and non-infected observations.
The features extracted by the KPCA are used as input for the OCSVM, which is sensitive to
outliers in the training set (Figure 1). The OCSVM’s objective function is responsible for
determining the presence of a COVID-19 infection. The training phase of this approach has
a time complexity of O(n3), and the testing phase has a time complexity of O(n2), where n
is the number of samples.
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Figure 1. Flowchart of the proposed KPCA-OCSVM anomaly detection scheme.

The following seven statistical scores are used in this study to evaluate and compare the
performance of the different techniques: true positive rate (TPR), false positive rate (FPR),
recall, precision, F1-score, accuracy, and the area under the receiver operating characteristic
(ROC) curve (AUC). These scores are calculated using the number of true positives (TPs),
false positives (FPs), false negatives (FNs), and true negatives (TNs) obtained from the
binary detection results.

2.4. Benchmark Methods

In this study, we compared the performance of the introduced KPCA-OCSVM tech-
nique against other dimensionality reduction techniques combined with different anomaly
detection methods. For the dimensionality reduction part, we considered PCA and ICA,
while for the anomaly detection part, we used three commonly used semi-supervised meth-
ods, namely EE, LOF, and iForest. These methods were chosen as they have been widely
used in various applications and have shown good performance in detecting anomalies.
We provide a brief description of each of these techniques in this section.

Dimensionality Reduction Methods

PCA model: PCA is a linear dimensionality reduction technique that seeks to find the
linear combinations of the input variables that explain the most variance in the data [28].
PCA identifies the directions in the data that contain the most information and projects the
data onto these directions to reduce the dimensionality [29]. PCA has a time complexity of
O(n3) for both the training and testing phase. This is because PCA relies on the computation
of the covariance matrix and the eigenvalues/eigenvectors of that matrix, which both have
a time complexity of O(n3). Specifically, for the training phase, PCA needs to calculate the
covariance matrix of the input data, which is of size n ∗ n, then it needs to compute the
eigenvectors and eigenvalues of the covariance matrix, these two steps have O(n3) time
complexity. For the testing phase, once the PCA model is trained, projecting new data
points onto the principal components requires matrix multiplication, which also has a time
complexity of O(n3).

ICA model: ICA is also a linear method, but it aims to find a linear combination of
the original variables, such that the resulting components are statistically independent [30].
ICA is often used to perform blind source separation, which is the task of separating a
multivariate signal into independent non-Gaussian components. Essentially, ICA uses
kurtosis, which measures the peakedness of a distribution, to find non-Gaussian and
independent components [31]. This is because ICA is based on the assumption that the
underlying sources of the data are non-Gaussian and independent, and kurtosis is a robust
measure of non-Gaussianity. The time complexity of ICA depends on the algorithm used to
perform the ICA. Popular algorithms, such as FastICA, have a time complexity of O(n2 p),
where n is the number of samples and p is the number of features. Other algorithms such
as Infomax have a time complexity of O(np log n). However, it is worth noting that the
time complexity of ICA can also depend on the implementation and specific details of the
dataset, such as the number of independent components being estimated. Table 1 compares
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the main features of the three investigated dimensionality reduction methods, KPCA, PCA,
and ICA.

Table 1. Comparison between KPCA, PCA, and ICA.

Method Time Complexity Linear/Nonlinear Data Distribution

KPCA O(n3) or O(n2) Nonlinear Non-Gaussian
PCA O(n3) or O(n2) Linear Gaussian
ICA O(n3) Linear Non-Gaussian

2.5. Semi-Supervised Anomaly Detection Methods

Elliptical envelope (EE): EE is a density-based anomaly detection algorithm that
assumes that the data are generated from a Gaussian distribution. The algorithm fits an
ellipse to the data, and any point outside of this ellipse is considered an anomaly [32]. This
algorithm is sensitive to the shape of the data distribution and is not suitable for data that
do not have Gaussian distributions [33]. The time complexity of EE is O(n3) for both the
training and testing phase.

Local outlier factor (LOF): LOF is a density-based anomaly detection algorithm that
calculates the local density of a point compared to its surrounding points [34]. It considers a
point an anomaly if its local density is significantly lower than the density of its surrounding
points [35]. The time complexity of LOF is O(n2) for both the training and testing phase.

Isolation forest (iForest): iForest is a tree-based anomaly detection algorithm. It
builds a forest of isolation trees, where each tree splits the data based on a randomly
selected feature and a random split value [36]. The goal is to isolate anomalies by creating
shorter paths for abnormal points, and longer paths for normal points [37]. The iForest
algorithm has a computational cost of O(tl log l) during the training phase and O(ntl log l)
during the testing phase, where l is the subsampling size of the dataset, n is the number of
samples in the dataset, and t is the number of trees in the forest, as reported in [38]. It is
worth noting that for optimal detection performance, l should be kept small and consistent
across different datasets. Table 2 lists the main advantages and shortcomings of the four
investigated anomaly detection methods: OCSVM, LOF, iForest, and EE.

Table 2. Summary of advantages and shortcomings of four anomaly detection schemes.

Approach Advantages Shortcomings

OCSVM - Assumption-free about the data dis-
tribution

- Sensitive to the choice of the kernel function
and parameters

iForest - High-dimensional data and large
datasets are supported

- Prone to overfitting and may not handle
circular patterns well

LOF - Can handle multi-dimensional data - Sensitive to the choice of parameters and
may not handle noisy data well

EE - Assumes normal data are distributed
normally

- Sensitive to the choice of parameters and
assumes data are distributed normally

3. Results and Discussion
3.1. Description of the Used Data

This study evaluates the performance of the proposed semi-supervised data-based
models for COVID-19 detection using two datasets of blood test samples.

3.1.1. Dataset 1

The first dataset, referred to as Dataset 1, was gathered from 5644 patients at the Albert
Einstein Hospital in São Paulo, Brazil, with 559 of them being COVID-19-positive patients,
according to [39]. More details about this dataset can be found in [16,39,40]. Figure 2
illustrates the violin plots of the important 18 features and it can be observed that these
datasets do not follow a Gaussian distribution.
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Figure 2. Violin plots of the utilized features in Dataset 1.

Figure 3 shows the pairwise Pearson correlation of the features in Dataset 1 used for
this study.

Figure 3. Pairwise Pearson correlation of the features in Dataset 1.
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3.1.2. Dataset 2

In this study, a second dataset was used to evaluate the performance of the proposed
methods. This dataset, referred to as Dataset 2, was collected from three different sources
and includes hematochemical values from 1624 patients at San Raphael Hospital (OSR)
collected between February and May 2020, 58 cases from the Istituto Ortopedico Galeazzi
(IOG) of Milan, and 54 patients from OSR in November 2018 [41]. Among the 1624 patients
from OSR, 786 were infected with COVID-19 and 838 were uninfected, while 29 of the
58 cases from IOG were infected and 29 were uninfected. The third sub-dataset contains
54 patients from OSR who were not infected with COVID-19 but were used as confounding
cases. The use of different instruments to collect samples and the presence of confounding
cases make Dataset 2 more challenging compared to Dataset 1. In this study, 11 important
features were used to detect COVID-19 infection (Table 3). Figure 4 shows the violin plots
of features in Dataset 2 and indicates that these datasets are not Gaussian distributed.

Table 3. The used features in Dataset 2.

Feature Abbreviation

Hemoglobin HGB
Platelets PLT1
White blood cells WBC
Lymphocyte count LYT
Basophils count BAT
Eosinophil count EOT
Neutrophil count NET
Monocyte count MOT
Urea Urea
Alanine aminotransferase ALT
Aspartate aminotransferase AST

Figure 4. Violin plots of the utilized features in Dataset 2.

The distribution of the blood test data, as shown in Figure 4, is non-Gaussian, which
poses a challenge for traditional dimensionality reduction techniques, such as PCA, which
assume linearity and Gaussianity in the data. In this scenario, nonlinear techniques, such
as KPCA, which do not have any assumptions on the data distribution, could be more
effective.
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The pairwise Pearson correlation matrix of the features in Dataset 1 is displayed in
Figure 5.

Figure 5. Pairwise Pearson correlation of the features in Dataset 2.

3.2. Detection Results

The detection performance of various methods, including KPCA-OCSVM, PCA-
OCSVM, ICA-OCSVM, iForest, LOF, and EE, were evaluated and compared using Table 4.
In this study, four variants of the OCSVM are investigated. The four kernels used in
these variants are RBF, polynomial, sigmoid, and linear. They are denoted as OCSVMRBF,
OCSVMPoly, OCSVMSig, and OCSVMLin, respectively. These detectors were trained in a
semi-supervised manner, using only non-infected blood test data for training. The training
set consisted of 85% of non-infected observations, while the test set included the remaining
15% of non-infected observations and all infected observations. In the training phase of
PCA and ICA, it was determined that using three principal components resulted in satisfac-
tory performance. Here is the setting of KPCA (number of components = 5, kernel = ‘RBF’,
gamma = 0.1). We used the grid search approach to determine the optimal values of these
parameters. In the training phase of the four anomaly detection techniques, we used the
following parameter settings: isolation forest (number of estimators = 150, contamination
rate = 0.05), OCSVM (kernel = RBF, nu = 0.001, gamma = 0.05), local outlier factor (novelty
detection = true, number of neighbors = 20, metric = ‘Minkowski’, contamination = 0.1),
and elliptical envelope (support fraction = 0.25). All experiments were conducted on a
laptop with an i3 processor running Ubuntu 20.04.4 LTS, with 8GB of RAM, to ensure a
fair comparison. The methods were implemented using Python 3.8, and the Keras and
scikit-learn libraries, version 0.22.

As per Table 4, the KPCA-OCSVMRBF, PCA-OCSVMRBF, and ICA-OCSVMRBF
methods showed excellent detection performance with an AUC of 0.99. They were followed
by the ICA-based EE method with an AUC of 0.82. The other methods did not provide
satisfactory results. In terms of all metrics, the KPCA-OCSVMRBF, PCA-OCSVMRBF,
and ICA-OCSVMRBF detectors performed the best in detecting COVID-19 infection based
on Dataset 1. The results showed that combining PCA, ICA, and KCA with OCSVMRBF
provided better performance than the other combinations of dimensionality reduction
techniques and OCSVM kernels. This indicates that using OCSVM with an RBF kernel
with PCA, ICA, and KCA can effectively capture the non-linear relationships between
the data points, resulting in improved anomaly detection performance. The results also
suggest that using dimensionality reduction techniques as feature extractors followed by
the OCSVMRBF algorithm provides better detection accuracy than other semi-supervised
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detectors, such as iForest, LOF, and EE. It is worth mentioning that this research focuses
on identifying COVID-19 infections using blood test results as an outlier detection task,
and the semi-supervised method proposed has shown to be highly effective in detecting
contaminated cases.

Table 4. Detection results based on testing data in Dataset 1.

Approach TPR FPR Accuracy Precision Recall F1Score AUC

KPCA-OCSVMRBF 1.00 0.03 1.00 1.00 1.00 1.00 0.99
KPCA-OCSVMPoly 0.37 0.40 0.51 0.35 0.37 0.36 0.48
KPCA-OCSVMSig 0.34 0.44 0.45 0.43 0.34 0.38 0.45
KPCA-OCSVMLin 0.46 0.35 0.58 0.44 0.46 0.45 0.56

KPCA-iForest 0.93 0.83 0.68 0.70 0.93 0.80 0.55
KPCA-LOF 0.95 0.45 0.91 0.95 0.95 0.95 0.75
KPCA-EE 1.00 0.47 0.91 0.90 1.00 0.95 0.76

PCA-OCSVMRBF 1.00 0.03 1.00 1.00 1.00 1.00 0.99
PCA-OCSVMPoly 0.39 0.39 0.52 0.41 0.39 0.40 0.50
PCA-OCSVMSig 0.33 0.45 0.44 0.43 0.33 0.37 0.44
PCA-OCSVMLin 0.20 0.61 0.29 0.28 0.20 0.23 0.29

PCA-iForest 0.91 0.87 0.66 0.69 0.91 0.79 0.52
PCA-LOF 0.94 0.52 0.90 0.94 0.94 0.94 0.71
PCA-EE 1.00 0.48 0.91 0.90 1.00 0.95 0.76

ICA-OCSVMRBF 1.00 0.03 1.00 1.00 1.00 1.00 0.99
ICA-OCSVMPoly 0.39 0.39 0.51 0.43 0.39 0.41 0.50
ICA-OCSVMSig 0.39 0.39 0.48 0.56 0.39 0.46 0.50
ICA-OCSVMLin 0.14 0.80 0.16 0.22 0.14 0.17 0.17

ICA-ISOL 0.91 0.87 0.73 0.78 0.91 0.84 0.52
ICA-LOF 0.94 0.48 0.90 0.95 0.94 0.95 0.73
ICA-EE 1.00 0.36 0.94 0.94 1.00 0.97 0.82

One possible explanation for the superior performances of KPCA-OCSVM, PCA-
OCSVM, and ICA-OCSVM methods is that they combine the advantages of both dimen-
sionality reduction techniques and the OCSVM algorithm. The use of dimensionality
reduction models as feature extractors allows these methods to reduce the dimensionality
of the data, which can help to improve the detection performance by reducing noise and
irrelevant information. Additionally, the OCSVM algorithm used in these methods can
detect abnormal features in the data, which further improves the detection performance.
Importantly, the use of OCSVM as an anomaly detector performs better than other semi-
supervised detectors, such as iForest, LOF, and EE. This could be due to the flexibility of
OCSVM to map the data to higher-dimensional spaces via non-linear kernels, making it
easier to separate the normal data from anomalies. EE assumes that data will follow a
multivariate Gaussian distribution, while OCSVM, iForest, and LOF are non-parametric
and, therefore, more robust to deviations from the assumed distribution. However, iForest
and LOF use distance-based approaches and may struggle with non-linear relationships.
The use of semi-supervised learning in these methods allows them to leverage information
from non-infected observations to improve the detection performance.

To enhance the evaluation of the proposed KPCA-OCSM approach’s detection perfor-
mance, we utilized the bootstrap method to calculate confidence intervals for performance
metrics. This involved generating “nboots” bootstrap sample datasets; each was the same
size as the original test set. To create these sample datasets, instances were randomly drawn
from the test set with replacements. Evaluation metrics were calculated for each sample
dataset, and the 95% confidence interval was determined by computing the 2.5th to the
97.5th percentile among the “nboots” calculated metric values.

In this study, we utilized the bootstrap method with 400 boots to calculate the 95%
confidence intervals for 5 evaluation metrics based on the test data. Figure 6 presents the
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histogram of the 400 boot results, depicting a 95% confidence interval. The histogram
shows the frequency distribution of the bootstrap results. The orange and red lines on
the histogram represent the lower and upper bounds of the 95% confidence interval,
respectively. The confidence interval is a range of values that is likely to contain the true
value of the population parameter with a certain level of confidence. For example, the
95% confidence interval of accuracy and AUC is between around 92% and 98%, which
means that the true values of accuracy and AUC for the population are likely to fall within
this range with 95% confidence. Similarly, the precision is between around 89% and 98%,
which means that the true value of precision for the population is likely to fall within this
range with 95% confidence. The same applies to recall and F1-score. From Table 5, the
accuracy, precision, recall, F1-score, and AUC values obtained from the real testing data
are 1, 1, 1, 1, and 0.99, respectively, means that the model’s performance on the test data is
excellent. However, it is important to note that the confidence intervals calculated using
the bootstrap method are based on a range of values that the evaluation metrics could take
in repeated sampling from the same population. The confidence intervals give an estimate
of the precision of the estimates, taking into account the variability in the sample data. In
this case, the 95% confidence interval of accuracy and AUC was between 92% and 98%,
while the precision was between 89% and 98%. The perfect scores obtained from the real
testing data fall outside the range of these confidence intervals. This could be because the
sizes of the testing data were relatively small.

In the second experiment, we evaluated the effectiveness of the KPCA-OCSVM model
in detecting COVID-19 infection using Dataset 2. The results, as shown in Table 5, indicate
that the KPCA-OCSVM detector performed well with an AUC of 0.99. Compared to other
KPCA-based models, such as iForest, LOF, and EE detectors, the KPCA-OCSVM model
achieved superior results. Additionally, when comparing KPCA-OCSVM, PCA-OCSVM,
ICA-OCSVM, iForest, LOF, and EE detectors, the KPCA-OCSVM and PCA-OCSVM models
provided the highest detection performance with an AUC of 0.99, followed by the ICA-
OCSVM detector with an AUC of 0.97. These results demonstrate the potential of the
KPCA-based OCSVM model for detecting COVID-19 infection using blood test data.

Figure 6. Histogram of 400 bootstrapped outcomes with a 95% confidence interval for each evaluation
metric (a) accuracy, (b) precision, (c) recall, (d) F1-score, and (e) AUC, calculated from the testing
Dataset 1.
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Table 5. Summary of advantages and shortcomings of four anomaly detection schemes.

Approach TPR FPR Accuracy Precision Recall F1Score AUC

KPCA-OCSVMRBF 0.97 0.00 0.99 1.00 0.97 0.99 0.99
KPCA-OCSVMPoly 0.71 0.98 0.23 0.24 0.71 0.36 0.36
KPCA-OCSVMSig 0.90 0.90 0.51 0.51 0.90 0.65 0.50
KPCA-OCSVMLin 0.77 0.96 0.29 0.29 0.77 0.43 0.41

KPCA-iForest 0.55 0.23 0.66 0.71 0.55 0.62 0.66
KPCA-LOF 0.81 0.10 0.86 0.85 0.81 0.83 0.85
KPCA-EE 0.73 0.10 0.82 0.87 0.73 0.79 0.82

PCA-OCSVMRBF 0.97 0.00 0.99 1.00 0.97 0.99 0.99
PCA-OCSVMPoly 0.73 0.96 0.23 0.22 0.73 0.34 0.38
PCA-OCSVMSig 0.89 0.91 0.50 0.50 0.89 0.64 0.49
PCA-OCSVMLin 0.62 0.99 0.16 0.16 0.62 0.26 0.32

PCA-iForest 0.60 0.20 0.70 0.74 0.60 0.66 0.70
PCA-LOF 0.78 0.10 0.85 0.85 0.78 0.82 0.84
PCA-EE 0.71 0.10 0.81 0.87 0.71 0.78 0.81

ICA-OCSVMRBF 0.94 0.01 0.97 0.99 0.94 0.96 0.97
ICA-OCSVMPoly 0.70 0.98 0.22 0.22 0.70 0.34 0.36
ICA-OCSVMSig 0.87 0.93 0.49 0.51 0.87 0.64 0.47
ICA-OCSVMLin 0.96 0.71 0.79 0.79 0.96 0.87 0.62

ICA-ISOL 0.60 0.20 0.71 0.72 0.60 0.66 0.70
ICA-LOF 0.75 0.09 0.84 0.88 0.75 0.81 0.83
ICA-EE 0.71 0.10 0.81 0.87 0.71 0.78 0.81

Figure 7 presents the results based on a bootstrapping technique that produced 400
outcomes, with a 95% confidence interval for each metric. The orange and red lines on the
histogram represent the lower and upper bounds of the 95% confidence interval, respec-
tively. For accuracy, the 95% confidence interval ranges from 97.2% to 98.7%. Similarly, the
confidence interval for precision is between 95.8% and 98.1%. The 95% confidence interval
for the recall is between 97.75% and 99.4%, while that for F1-score is approximately between
97.1% and 98.6%. For AUC, the confidence interval is between 97.20% and 98.6%. In this
case, the actual performance of the proposed approach on the test data is slightly outside
the calculated confidence intervals. One possible explanation for the model’s excellent
performance on the test data relative to the bootstrapped samples could be that the test
data are more representative samples of the populations than the bootstrapped samples.
In that case, this may indicate that the model is better suited to the characteristics of the
test data. This could be due to a variety of reasons, such as differences in the distribution
of the features or the target variable or differences in the data collection process. Another
possible explanation is that the dataset is small. In this case, the model’s performance may
be more variable, and the calculated confidence intervals may be wider. This means that
the model’s actual performance may deviate from the expected performance based on the
bootstrapped samples.
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Figure 7. Histogram of 400 bootstrapped outcomes with a 95% confidence interval for each evaluation
metric (a) accuracy, (b) precision, (c) recall, (d) F1-score, and (e) AUC, calculated from the testing
Dataset 2.

3.3. Comparison with the Existing Methods

In this study, the performance of the developed KPCA-OCSVM detector was eval-
uated against a variety of current techniques applied to both Dataset 1 and Dataset 2,
as detailed in Table 6. Previous studies, such as the one in [40], employed supervised
machine learning techniques, including RF, ANN, logistic regression, and lasso-elastic-net
regularized generalized linear (GLMNET) models, to predict SARS-CoV-2 infection. While
ANN achieved the best classification results with an AUC of 0.95, other studies, such
as [19,42], also applied various supervised machine learning techniques, such as NN, RF,
GBT, SVM, MLP, RT, BN, and Naive Bayes. Despite the high overall accuracy of 95.159%
achieved by BN, these methods all require labeled data for classification. In contrast, the
proposed KPCA-OCSVM detector is a semi-supervised method, which utilizes unlabeled
data during the training process, making it a suitable solution for detecting COVID-19
infections. According to Table 6, the KPCA-OCSVM method exhibits superior performance
in comparison to the state-of-the-art methods, displaying a noteworthy ability to detect
infection in both datasets.

Table 6. Comparison with existing methods.

Refs Dataset Model Metrics

[40] Dataset 1 RF, LR, GLMNET, and ANN AUC = 95
[42] Dataset 1 NN, RF, GBT, LR, and SVM AUC = 85
[19] Dataset 1 MLP, SVM, RT, RF, BN, and NB Acc = 95.15%

Sens = 96.8%, Spec = 93.6%
[16] Dataset 1 XGBoost AUC = 99.38
KPCA-OCSVM Dataset 1 KPCA-OCSVM AUC = 99

[41] Dataset 2 DT-XGBoost AUC = 85
KPCA-OCSVM Dataset 2 KPCA-OCSVM AUC = 99

In summary, the proposed KPCA-OCSVM method offers several benefits, making it a
promising approach for detecting COVID-19 infection using blood test data. Firstly, it is a
semi-supervised approach, which only requires data from healthy cases during training.
This makes it easier to implement and less time-consuming than supervised methods that
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require labeled data, which can be challenging to obtain in practice. Moreover, labeling
data can be subjective and prone to errors, making semi-supervised methods a more robust
alternative. Secondly, the KPCA-OCSVM method can detect unseen anomalies, which is a
key advantage in the context of detecting COVID-19 infections. Since the COVID-19 virus
constantly evolves, the KPCA-OCSVM method can identify new strains and variants that
were absent during the training phase. This is in contrast to supervised methods that are
limited to detecting only known anomalies. Thirdly, the KPCA-OCSVM method is able
to identify nonlinear patterns in the data. This is important in the case of blood test data,
which may be non-Gaussian distributed and contain complex relationships between the
features. By using KPCA, the method can identify these nonlinear patterns and capture the
underlying structure of the data more accurately. Lastly, the results of this study reveal that
the KPCA-OCSVM method outperforms the state-of-the-art methods in terms of detection
performance, as shown in Table 6. This indicates that the proposed approach is more
accurate and reliable in detecting COVID-19 infections using blood test data.

3.4. Feature Importance Identification

To understand the importance of different variables in COVID-19 infection, we used
XGBoost (extreme gradient boosting) and (SHapley Additive exPlanations) values to ana-
lyze the importance of blood sample variables for COVID-19 contamination detection. This
approach allows researchers to analyze a large amount of data and determine which vari-
ables are most strongly associated with COVID-19 infection, providing valuable insights
into the underlying mechanisms of the disease.

XGBoost is a popular machine learning algorithm that can handle complex, non-linear
relationships in data, making it well-suited for analyzing the complex relationships between
blood sample variables and COVID-19 infection. Specifically, XGBoost builds a series of
decision trees, each trained to predict the outcome variable. The final prediction is obtained
by combining the predictions of all the trees. This allows XGBoost to capture complex
relationships between the input and outcome variables, making it well-suited for analyzing
the complex relationships between blood sample variables and COVID-19 infection. SHAP
values, on the other hand, are model-agnostic techniques for interpreting the output of
any machine learning model, including XGBoost. Importantly, SHAP values measure
each variable’s contribution to the predicted outcome, allowing researchers to identify
which variables are most important for predicting COVID-19 infection. We can identify
which variables are most strongly associated with COVID-19 infection by calculating
each variable’s mean absolute SHAP values. Variables with high SHAP values are more
important for predicting COVID-19 infection, and understanding the mechanisms behind
these variables can provide valuable insights into the disease. Essentially, the importance of
identifying the most important variables for COVID-19 infection detection lies in the ability
to develop more accurate diagnostic tools. By combining the most important variables,
researchers can develop diagnostic tests that are more accurate and efficient in detecting
COVID-19 infection.

Figure 8 shows the bar plot of the mean absolute SHAP values for each variable
based on Dataset 1. From Figure 8, we can observe that the most important feature for
detecting COVID-19 infection in Dataset 1 is ‘Leukocytes’. Indeed, ‘Leukocytes’ are white
blood cells that play a crucial role in the body’s immune system response, so it is not
unexpected that they are essential in predicting COVID-19. ‘Platelets’ is identified as the
second most important variable in detecting COVID-19 infection, as shown in Figure 8.
Platelets are blood cells that are crucial in clotting and wound healing. The significance
of these variables in predicting COVID-19 is not surprising, as leukocytes are essential in
the body’s immune response, and platelets are necessary for clotting and wound healing,
both of which play a crucial role in combating viral infections [1]. The next identified
most important features are ‘Urea’, ‘Monocytes’, and ‘Eosinophils’, respectively. ‘Urea’ is a
waste product filtered by the kidneys, and abnormal levels can indicate kidney dysfunction
or dehydration. Additionally, ‘Monocytes’ and ‘Eosinophils’ are types of white blood
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cells that are involved in the body’s immune response to viral infections, indicating the
importance of the immune system in COVID-19. Monocytes are white blood cells that play
an important role in the immune system’s response to infections, including viral infections
such as COVID-19 [15]. The identification result suggests that changes in monocyte levels or
functions may be significant in determining whether a person is infected with the virus. On
the other hand, eosinophils play a role in the body’s response to parasitic infections, allergic
reactions, and inflammation [43]. In COVID-19, the virus can trigger an overactive immune
response called a cytokine storm, leading to inflammation and tissue damage, especially
in the lungs [15]. Although ‘Creatinine’, ‘Hemoglobin’, and ‘proteina C reativa’ have
relatively low importance in detecting COVID-19 infection compared to the other variables,
they still may play a role in the disease and warrant further investigation. ‘Creatinine’ is
another waste product that is filtered by the kidneys and can indicate kidney dysfunction
or dehydration. ‘Hemoglobin’ is a protein found in red blood cells that carries oxygen
throughout the body, and low levels can indicate anemia, which may be a complication
of severe COVID-19. ‘Proteina C reativa’ is a marker of inflammation in the body and
can be elevated in COVID-19 patients. The remaining features with low importance may
still be useful in predicting COVID-19; they may not be as strongly associated with the
disease as the other features listed above. Further research into the relationship between
these variables and COVID-19 can provide additional insights into the mechanisms of
the disease and potentially guide treatment decisions. Overall, by analyzing the most
important variables for predicting COVID-19 infection using XGBoost and SHAP values,
we could obtain a better understanding of how the virus affects the body and can identify
potential targets for treatment.

Similarly, we investigated feature importance based on Dataset 2; Figure 9 displays
the bar plot of the mean absolute SHAP values. Based on Dataset 2, the eosinophil count
was identified as the most important variable in predicting COVID-19. This indicates
that the eosinophil count may play a significant role in distinguishing between COVID-
19 patients and non-COVID-19 patients in that dataset. From Figure 9, we can see that
aspartate aminotransferase (AST), white blood cells (WBC), and lymphocyte count (LYT)
were also identified as important variables in predicting COVID-19. This suggests that
these variables may also play a role in discriminating between COVID-19 patients and
non-COVID-19 patients in that dataset. However, the exact impact of these variables on
predicting COVID-19 may vary in different datasets or models, and additional research
may be needed to fully understand their relationships with COVID-19. A full analysis of
the importance of blood sample variables in detecting COVID-19 infection is beyond the
scope of the current paper.

Figure 8. Feature importance identification using XGBoost based on Dataset 1.
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The feature importance identification results align with the existing literature on
COVID-19. Studies have reported that COVID-19 patients often exhibit lymphopenia, liver
and muscle damage, and elevated C-reactive protein (CRP) levels [44–46]. Additionally,
various studies have reported common abnormalities in COVID-19 patients, such as in-
creased AST, decreased lymphocyte count, increased white blood cell count (WBC), and
increased ALT [18,47].

Figure 9. Feature importance identification using XGBoost based on Dataset 2.

Identifying feature importance using the XGBoost algorithm can be a helpful tool in
predicting COVID-19 infection from blood test data. The algorithm can identify which
features are most strongly associated with COVID-19 infection by analyzing many features
simultaneously. This information can be used to develop more accurate diagnostic tools
for COVID-19 and to identify new biomarkers that may be useful in predicting infection
or monitoring disease progression. Additionally, identifying feature importance can help
researchers better understand the underlying biological mechanisms of COVID-19 infection.
By identifying which features are most important in predicting infection, researchers can
gain insights into the specific pathways and processes affected by the virus. This informa-
tion can be used to develop new treatments or therapies that target these specific pathways,
potentially improving patient outcomes. For example, if the algorithm identifies white
blood cell counts as the most important feature, this may indicate that the immune response
is a key factor in the disease. Researchers can then use this information to investigate the
specific mechanisms by which the virus affects the immune system, potentially leading to
the development of new treatments or therapies. In summary, by providing insights into
the underlying biological mechanisms of the disease and identifying new biomarkers for
diagnosis and treatment, this approach can help healthcare professionals and researchers
better understand, diagnose, and treat COVID-19.

While XGBoost and SHAP values can provide valuable insights into the importance of
different variables in COVID-19 infection, it is important to further investigate and validate
the results with the help of medical experts. The most important variable identified by
the algorithm should be carefully examined to determine whether it makes physiological
sense and whether it aligns with existing knowledge about the disease. It is also crucial
to consider potential confounding variables that may impact the results and to carefully
design experiments to validate the findings. Overall, using XGBoost and SHAP values
to identify the most important variables for COVID-19 detection is just the first step in a
rigorous process that requires collaboration between data scientists and medical experts to
ultimately develop effective diagnostic tests and treatment strategies.

This study highlights that semi-supervised machine learning methods can be essential
in detecting COVID-19 from blood test data. Machine learning methods can analyze
large amounts of data quickly and accurately, providing valuable insights that can aid in
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diagnosing COVID-19. By analyzing blood test data, machine learning models can identify
specific biomarkers indicative of COVID-19 infection. These biomarkers can include white
blood cell counts, levels of specific enzymes, and other indicators of inflammation or
organ dysfunction. By using machine learning to analyze these biomarkers, healthcare
professionals can quickly and accurately identify patients who may be infected with
COVID-19, allowing for earlier intervention and treatment. Additionally, machine learning
algorithms can continually learn from new data, improving accuracy and providing more
effective diagnostic tools for COVID-19 detection. Overall, the use of semi-supervised
machine learning methods for COVID-19 detection in blood test data have the potential to
improve patient outcomes and aid in global efforts to control the spread of the disease.

4. Conclusions

This study proposes a novel method for detecting COVID-19 infection using blood
test data as part of an anomaly detection problem. The KPCA-OCSVM approach combines
KPCA and semi-supervised OCSVM techniques to detect infected cases without requiring
labeled data. The KPCA method identifies nonlinear patterns, while the OCSVM measures
dissimilarity between normal and abnormal features. The approach outperformed other
semi-supervised models when tested on two datasets of blood test samples from hospitals
in Brazil and Italy. The proposed method shows promise for detecting COVID-19 infection
using blood test data without labeled data.

While the proposed approach for detecting COVID-19 infections based on blood test
data shows promise, some limitations need to be addressed. One of the main limita-
tions is that the study only tested the approach on two sets of blood test samples from
hospitals in Brazil and Italy. Therefore, it is necessary to validate the approach on more
diverse datasets from different regions and populations to ensure its generalizability and
reliability. Moreover, incorporating deep learning techniques, such as deep generative
models, could potentially improve the ability of the method to detect anomalies in the
data. This could include using generative adversarial networks (GANs) [48] to learn more
complex representations of the data. These deep learning techniques have been shown
to be effective for anomaly detection in other domains and could be useful for detecting
COVID-19 infections based on blood test data. Additionally, incorporating other relevant
features, such as demographic information and medical history, could also be explored
to improve the accuracy of the model. These features could provide additional insights
into the factors that contribute to COVID-19 infections and help to develop a more robust
and accurate detection model. Finally, as new virus variants emerge, it will be necessary to
continually update and validate detection methods based on blood test data to ensure their
effectiveness. This highlights the importance of ongoing research and development in this
area to keep up with the evolving nature of the COVID-19 pandemic.
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43. Kukar, M.; Gunčar, G.; Vovko, T.; Podnar, S.; Černelč, P.; Brvar, M.; Zalaznik, M.; Notar, M.; Moškon, S.; Notar, M. COVID-19
diagnosis by routine blood tests using machine learning. Sci. Rep. 2021, 11, 10738. [CrossRef]

44. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138
hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [CrossRef]

45. Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513.
[CrossRef]

46. Zhang, C.; Shi, L.; Wang, F.S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol. 2020, 5,
428–430. [CrossRef] [PubMed]

47. Lippi, G.; Plebani, M. Laboratory abnormalities in patients with COVID-2019 infection. Clin. Chem. Lab. Med. 2020, 58, 1131–1134.
[CrossRef] [PubMed]

48. Kadri, F.; Dairi, A.; Harrou, F.; Sun, Y. Towards accurate prediction of patient length of stay at emergency department: A
GAN-driven deep learning framework. J. Ambient. Intell. Humaniz. Comput. 2022, 1–15. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.knosys.2020.105754
http://dx.doi.org/10.1109/78.875477
http://dx.doi.org/10.1016/j.psep.2016.01.015
http://dx.doi.org/10.1016/j.jlp.2012.10.003
http://dx.doi.org/10.1109/TIM.2022.3150589
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://dx.doi.org/10.1080/00401706.1999.10485670
http://dx.doi.org/10.3390/diagnostics12122984
http://www.ncbi.nlm.nih.gov/pubmed/36552991
http://dx.doi.org/10.1109/ACCESS.2022.3221145
http://dx.doi.org/10.1145/2133360.2133363
http://dx.doi.org/10.1109/ACCESS.2022.3144425
https://www. kaggle. com/einsteindata4u/covid19
http://dx.doi.org/10.1016/j.intimp.2020.106705
http://www.ncbi.nlm.nih.gov/pubmed/32652499
http://dx.doi.org/10.1515/cclm-2020-1294
http://dx.doi.org/10.1101/2020.04.04.20052092
http://dx.doi.org/10.1038/s41598-021-90265-9
http://dx.doi.org/10.1001/jama.2020.1585
http://dx.doi.org/10.1016/S0140-6736(20)30211-7
http://dx.doi.org/10.1016/S2468-1253(20)30057-1
http://www.ncbi.nlm.nih.gov/pubmed/32145190
http://dx.doi.org/10.1515/cclm-2020-0198
http://www.ncbi.nlm.nih.gov/pubmed/32119647
http://dx.doi.org/10.1007/s12652-022-03717-z
http://www.ncbi.nlm.nih.gov/pubmed/35132336

	Introduction
	Materials and Methods
	Kernel PCA Model
	One-Class SVM
	The Proposed KPCA-OCSVM Anomaly Detection Approach
	Benchmark Methods
	Semi-Supervised Anomaly Detection Methods

	Results and Discussion
	Description of the Used Data
	Dataset 1 
	Dataset 2

	Detection Results
	Comparison with the Existing Methods
	Feature Importance Identification

	Conclusions
	References

