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Abstract: This study proposes a deep-learning-based solution (named CapsNetCovid) for COVID-19
diagnosis using a capsule neural network (CapsNet). CapsNets are robust for image rotations and
affine transformations, which is advantageous when processing medical imaging datasets. This study
presents a performance analysis of CapsNets on standard images and their augmented variants for
binary and multi-class classification. CapsNetCovid was trained and evaluated on two COVID-19
datasets of CT images and X-ray images. It was also evaluated on eight augmented datasets. The
results show that the proposed model achieved classification accuracy, precision, sensitivity, and
F1-score of 99.929%, 99.887%, 100%, and 99.319%, respectively, for the CT images. It also achieved
a classification accuracy, precision, sensitivity, and F1-score of 94.721%, 93.864%, 92.947%, and
93.386%, respectively, for the X-ray images. This study presents a comparative analysis between
CapsNetCovid, CNN, DenseNet121, and ResNet50 in terms of their ability to correctly identify
randomly transformed and rotated CT and X-ray images without the use of data augmentation
techniques. The analysis shows that CapsNetCovid outperforms CNN, DenseNet121, and ResNet50
when trained and evaluated on CT and X-ray images without data augmentation. We hope that this
research will aid in improving decision making and diagnostic accuracy of medical professionals
when diagnosing COVID-19.

Keywords: COVID-19 diagnosis; medical imaging; capsule neural network; machine learning;
CT scans

1. Introduction

Coronavirus disease 19 (COVID-19), one of the deadliest pandemics in the history
of mankind, has swept through almost all the countries in the world [1]. Coronavirus
has infected over 676 million people and killed over 6.88 million as of 17 March 2023, as
indicated in the COVID-19 map of Johns Hopkins University. Unfortunately, the virus is
still evolving, and new variants continue to emerge worldwide. Multiple nations, including
Australia, Bangladesh, Denmark, India, Japan, and the United States, detected a novel
immune-evasive COVID-19 strain (XBB) in August 2022, which is causing outbreaks in
various nations. This shows that COVID-19 is still a threat, and there is a need for suitable
techniques that can be used to tackle this pandemic.

Recently, computer-aided diagnosis technologies have become a fundamental part
of routine clinical practice. These tools can be utilized to aid physicians in accurately
diagnosing COVID-19 patients. Convolutional neural networks (CNNs) are one of the
effective deep learning (DL) algorithms for building improved medical imaging systems.
However, they are unable to handle input transformations effectively. In addition, CNNs
must be trained on massive or augmented datasets to generate superior results. A capsule
neural network (CapsNet) is a recent deep learning (DL) algorithm proposed by Hinton
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et al. [2]. CapsNets are resistant to image rotations and transformations [2], and they can
produce excellent results when trained on small datasets [1,3].

This study proposes a CapsNet model for COVID-19 diagnosis using CT and X-ray
images. This study also evaluates the robustness of CapsNets for image rotations and
transformations. The main contributions of this study are as follows:

1. This study proposes an improved CapsNet technique for COVID-19 diagnosis (named
CapsNetCovid). The proposed model was trained and evaluated on 14,000 CT images
and 15,153 X-ray images. The results show that the proposed technique achieved good
results for both CT and X-ray datasets. The full results are presented and discussed in
Section 4.

2. As noted by the researchers that developed CapsNets [2], one of the key advantages
of CapsNets over CNNs is its robustness to image rotations and affine transforma-
tions. To the best of the authors’ knowledge, no study has presented a performance
analysis of CapsNet on different image rotations and transformations. This study
presents a performance analysis of CapsNets on standard CT and X-ray images and
their corresponding augmented variants. The analysis is presented for both binary
classification and multi-class classification. The objective of the analysis is to evaluate
the robustness of CapsNets to affine transformations.

3. To the best of the authors’ knowledge, no study has compared CapsNets and other
CNN-based techniques in terms of their ability to recognize randomly transformed
and rotated images. This study presents a comparative analysis between CapsNet,
CNN, and two state-of-the-art CNN models, namely DenseNet121 and ResNet50.
The comparative analysis is presented for both CT and X-ray images. The analysis
compares the ability of CapsNet, CNN, DenseNet121, and ResNet50 to correctly
identify randomly transformed and rotated CT and X-ray images without using data
augmentation techniques.

This paper is organized as follows. A detailed review of related studies is presented in
Section 2, and in Section 3, the methodology used in this study is presented. Furthermore,
the dataset details and performance metrics used for evaluation are presented in Section 3.
The results are presented and discussed in Section 4. The paper is finally concluded in
Section 5.

2. Related Studies

Many DL-based COVID-19 diagnosis methods have been developed by different
researchers, and most of them have produced promising results. AbouEl-Magd et al. [4]
proposed a CNN-based COVID-19 diagnosis technique using VGG16 and a capsule neural
network (CapsNet). The Synthetic Minority Oversampling Technique (SMOTE) [5] was
used to generate new synthetic samples for their unbalanced dataset. Moreover, the
Gaussian optimization technique was used to optimize the parameters for the CapsNet.
Four different experiments were performed in the study. In the first two experiments, the
CapsNet was evaluated on unbalanced datasets, as well as on balanced datasets based on
class weights. In addition, the CapsNet was evaluated on a SMOTE-based balanced dataset.
Finally, CapsNet was evaluated on a balanced dataset using the optimized parameters. The
CapsNet model that was trained on the SMOTE-based balanced dataset produced the best
classification accuracy and F1-scores of 96.73% and 97.08%, respectively.

Saif et al. [6] developed a modified CapsNet framework for COVID-19 diagnosis.
The framework consists of three sets of convolution blocks concatenated in parallel. Each
convolutional block consists of different filter sizes. Concatenating the convolutional blocks
of different filter sizes helps to integrate discriminative coarse spatial features into the
network. The proposed architecture handles images of large spatial resolution by using
an extended number of capsule layers and routing numbers. The concatenated feature
set is fed into the CapsNet. The CapsNet uses a concatenation technique in the capsule
layers, in which the output of two higher-layer capsules is concatenated. The concatenated
connections between the capsule layers helps to capture underlying complex features
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from specific regions in an image. Moreover, the concatenated connections strengthen the
coupling coefficient and improves the learning ability of the capsule layers. It also increases
the model’s ability to extract complex features from images with large spatial dimensions.
The authors also used a pre-trained model to finetune the network’s performance. The
proposed framework was tested on three different datasets, and it achieved classification
accuracies of 96.0%, 96.8%, and 95.9% without finetuning. The technique also produced
classification accuracies of 98.3%, 99.0%, and 98.9% for the three datasets with finetuning.

Toraman et al. [7] introduced a novel CapsNet architecture for COVID-19 diagnosis
from X-ray images. The architecture is composed of five convolution layers, and each layer
consist of 16, 32-, 64-, 128-, and 256-layer kernels. A large number of convolutional layers
was added to provide effective feature maps to the primary layer of the CapsNet. The
kernel size of the first three layers is 5 × 5, while the kernel size of the fourth layer is 9 × 9.
The fifth layer is a primary capsule layer, consisting of 32 capsules, and each has a kernel
size of 9 × 9. The proposed architecture was evaluated on a dataset consisting of 231 X-ray
images of COVID-19 [8], 1050 X-ray images of no findings [9], and 1050 X-ray images of
pneumonia [9]. The technique produced a classification accuracy of 84.22% and 97.24% for
multi-class and binary classification, respectively.

Tiwari et al. [10] designed a hybrid framework for COVID-19 diagnosis (called VGG-
CapsNet). The framework consists of CapsNet and VGG16. The input images are fed into
the VGG16 pre-trained network to extract feature maps. The extracted feature maps are
then fed into the CapsNet for classification. The proposed technique was evaluated on a
dataset containing 219, 1345, and 1341 radiography images of COVID-19, pneumonia, and
normal conditions, respectively [11]. The proposed technique was evaluated for multi-class
classification and binary classification. The proposed hybrid model was also compared
with the standard CapsNet model (called CNN-CapsNet). The framework achieved 97%
for binary classification and 92% for multi-class classification. The results also show that
the proposed hybrid framework outperforms the standard CapsNet by 2% for binary
classification and by 1% for multi-class classification.

Afshar et al. [12] proposed a CapsNet-based framework for COVID-19 diagnosis. The
framework consists of four convolutional layers and three capsule layers. The first convo-
lutional layer is followed by a batch normalization layer, while the second convolutional
layer is followed by an average pooling layer. The features from the fourth convolutional
layer are reshaped and fed into the CapsNet. The dataset used to evaluate the framework
is imbalanced; the number of positive cases is lower than the number of negative cases.
Therefore, the loss function of the network is modified, such that more weight is assigned
to the positive samples. The weights are determined using a formula specified in [12]. The
framework was evaluated by first pre-training it on a dataset containing 94,323 frontal view
of chest X-ray images. The pre-trained network was then finetuned on a dataset containing
358 CXR COVID-19 images, 8,066 8,066 normal images, and 5538 non-COVID-19 images.
The framework achieved an accuracy, sensitivity, specificity, and AUC of 95.7%, 90%, 95.8%,
and 0.97, respectively.

Heidarian et al. [13] proposed a fully automated two-stage framework for COVID-19
diagnosis using CapsNet and CT images, called COVID-FACT. At the first stage, COVID-
FACT uses U-Net architecture to detect infected slices from a 3D volumetric CT scan. The
infected slices are classified in the second stage. Two variants of the framework were
developed in the study. Whole CT images are used as inputs to the first variant, while the
segmented lung region is used as an input to the second variant. COVID-FACT was trained
on a dataset containing 171, 60, and 76 COVID-19, community-acquired pneumonia (CAP),
and normal volumetric CT images, respectively. Experiments shows that the two variants
produced the same classification accuracy of 90.82%. However, the variant that was trained
on the segmented lung regions improved the sensitivity and AUC of the model by over
1.83% and 0.03, respectively.

Quan et al. [14] designed a COVID-19 diagnosis method using DenseNet121 and Cap-
sNet. They also introduced a dataset pre-processing technique that reduces the impact of
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dataset heterogeneity on the performance of a network. Data augmentation was also used
to generate more datasets. The proposed framework uses a segmentation network, namely
TernausNet [15], to segment or extract the lung contour from X-ray images. The segmented
lung contours are then fed into DenseNet121 for feature extraction. The extracted features
are fed into CapsNet for classification. The segmentation network was trained on the Mont-
gomery County Chest X-ray Database [16], containing 80 and 50 normal and tuberculosis
X-ray images, respectively. The classification network was trained on a dataset from three
sources. The dataset contains 781, 2917, 2884, and 2850 COVID-19, normal, pneumonia
(virus), and pneumonia (bacteria) X-ray images, respectively. The framework achieved a
classification accuracy, sensitivity, and F1-score of 90.7%, 96%, and 90.9%, respectively.

Qi et al. [17] developed a fully automated pipeline for classifying COVID-19 from CAP
using CT images. The pipeline consists of four modules. The first module uses LinkNet [18]
to segment the lungs from CT images, and the second module uses CapsNet to select slices
with lesions. The third module uses ResNet50 and CapsNet for slice-level prediction, and
the fourth module uses DensNet121 and CapsNet for patient-level prediction. The pipeline
was trained on a dataset containing 161 CT images with COVID-19 and 100 CT images with
CAP. The CapsNet with ResNet50 achieved a classification accuracy and AUC of 92.5% and
0.933, respectively, for the slice-level prediction. The CapsNet with DenseNet121 achieved
a better classification accuracy and AUC of 97.1% and 0.992, respectively, for slice-level
prediction. The pipeline achieved an accuracy of 100% for patient-level prediction.

Attallah [19] proposed a CNN-based technique for COVID-19 diagnosis called RADIC.
RADIC is divided into four stages. In the first stage, four radiomics methods are used to
analyze CT and X-ray images, including gray-level run-length matrix (GLRLM), gray-level
covariance matrix (GLCM), discrete wavelet transform (DWT), and dual-tree complex
wavelet transform (DTCWT). The output of the analysis was then converted to heatmap
images. In the second stage, the heatmap images are used to train three CNN models,
including MobileNet, DenseNet201, and Darknet53. After training, deep features were
extracted from the batch normalization layers of the three models. Furthermore, the com-
plexity of the extracted features was reduced using the fast Walsh–Hadamard transform
(FWHT). The reduced features from the three CNN models were combined using discrete
cosine transform. Finally, the combined features were used to train different classifica-
tion models, including linear support vector machine (L-SVM), quadratic-SVM, linear
discriminant analysis (LDA), and ensemble subspace discriminant (ESD). The technique
was evaluated on a CT and X-ray dataset, and it produced 99.4% and 99% on the two
datasets.

Mercaldo et al. [20] designed a DL technique for COVID-19 diagnosis using VGG16.
They added one more fully connected layer to the VGG16 and trained the added layer on a
dataset containing 18,000 CT images. The model achieved an accuracy of 95%. In another
study, Shah et al. [21] designed a CNN-based technique for COVID-19 diagnosis. They
evaluated the model on 738 CT images, and it produced a classification accuracy of 82.1%.
They also compared the performance of the proposed model to DenseNet169, VGG16,
ResNet50, InceptionV3, and VGG19. The comparison shows that VGG-19 outperformed
the other techniques, achieving an accuracy of 94.52%.

Attallah and Samir [22] designed a DL-based pipeline for COVID-19 diagnosis using
a multilevel discrete wavelet decomposition (DWT) and three ResNet models. DWT was
used to analyze CT scans and generate heatmap images. The heatmap images were used to
train three ResNet models. After training, spectral–temporal features were extracted from
the three ResNet models, including ResNet50, ResNet101, and ResNet18. Furthermore, the
same ResNet models were trained on the original CT images and some spatial features were
extracted from the models after training. Furthermore, the spatial features were combined
with the spectral–temporal features, and the combined feature dimension was reduced.
Finally, the reduced features were used to train three SVM models. The technique was
evaluated on two datasets, which achieved a classification accuracy of 99.33% and 99.7%.
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Attallah [23] proposed a framework for COVID-19 diagnosis using texture-based
radiomic images. The author trained three ResNet models (ResNet18, ResNet50, and
ResNet101) on two types of texture-based radiomic images. The first set of images were
generated by discrete wavelet transform, while the second set were generated by gray-level
covariance matrix. After training, some texture-based radiomic features were extracted
from the trained models and combined using discrete cosine transform. The fused features
were used to train three SVM algorithms. The technique was evaluated on a dataset
consisting of 2482 COVID-19 normal CT images, and it achieved a classification accuracy
of 99.60%. Zhao et al. [24] designed a technique for COVID-19 diagnosis using a modified
version of the ResNet model. In the modified model, the authors substituted group
normalization for batch normalization and performed a weight standardization for all
the convolutional layers. The model was evaluated on a dataset containing 194,922 images,
and it achieved a classification accuracy of 99.2%.

Shankar and Perumal [25] proposed a novel technique for COVID-19 diagnosis. This
technique is divided into three stages. In the first stage, Gaussian filtering is used for
smoothening and noise removal from the images. Furthermore, the proposed fusion model
is used to extract a different set of features from the processed images. It extracts hand-
crafted features using the local binary pattern model and DL features using the InceptionV3
model. Furthermore, the extracted features were fused and trained on the multilayer per-
ceptron classifier. The technique was evaluated on an X-ray dataset consisting of 27 normal,
220 COVID-19, 11 SARS, and 15 Pneumocystis images, and it produced a classification
accuracy of 94.08%. In another study, Marios et al. [26] presented an analysis of five DL al-
gorithms for COVID-19 diagnosis using ResNet50, ResNet101, DenseNet121, DenseNet169,
and InceptionV3. The models were trained on a dataset consisting 11,956 COVID-19 X-
ray images, 10,701 normal images, and 11,263 pneumonia images. The results show that
ResNet101 achieved the best classification accuracy of 96%. Attallah [27] proposed a CNN-
based method for COVID-19 diagnosis using spectral–temporal images. This method is
divided into three stages. In the first stage, multilevel discrete wavelet transform (DWT) is
used to analyze CT images and extract spectral–temporal images. The extracted images
were then used to train three ResNet models. After training, deep features were extracted
and fused together. The dimension of the fused features was reduced and used to train
SVM. The technique was evaluated on a dataset consisting of CT images, and it produced
satisfactory accuracy. A summary of the literature review is presented in Table 1.

Limitations of Existing COVID-19 Diagnosis Models

As shown in the summary and in a literature survey written in [28,29], COVID-19
diagnosis models have some shortcomings. Tracking people that are infected with COVID-
19 is a challenging task. Moreover, identifying patients infected with COVID-19 beforehand
is impossible because COVID-19 has an incubation period of 14 days. Furthermore, some of
the datasets used for training lacks quality, as some of them are available in an unstructured
format. In addition, some of the datasets are too clean, lacking representation of real-
world datasets [28]. Moreover, the generalization performance of some of the proposed
models is not good due to overfitting. Furthermore, most studies do not explore the use
of unsupervised ML algorithms for COVID-19 diagnosis, such as principal component
analysis (PCA) and cluster analysis [29]. Most studies also focus on DL algorithms, such
as CNN, while few studies explored CapsNet. Furthermore, to the best of the authors’
knowledge, no study presented a performance analysis of CapsNet on images of different
rotations and transformations. Moreover, existing studies did not compare CapsNet and
other CNN-based techniques in terms of their ability to recognize randomly transformed
and rotated images. This is quite necessary, as one of the core advantages of CapsNet over
CNN is its resistance to image rotations and transformations [2], as well as its ability to
produce excellent results when trained on small datasets. This study aims to bridge some
of the highlighted gaps. The main contributions of this study are highlighted in Section 1.
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Table 1. Summary of related studies.

Ref. Method Dataset Performance

AbouEl-Magd
et al. [4]

VGG16, CapsNet, SMOTE, and
Gaussian optimization algorithm.

SIRM Dataset consisting of
219 COVID-19 chest X-ray images,
1341 standard images, and 1345 viral
pneumonia images.

Classification accuracy
of 96.58% and F1-score
of 97.08%.

Saif et al. [6]
CapsNet, concatenation of parallel
convolutional blocks of different filter
sizes, concatenation of capsule layers.

POCUS dataset consisting of
64 videos [30]. A second dataset
consisting of 1142 COVID-19 sample,
1332 normal images, and 1355 viral
pneumonia images from different
sources. A third dataset consisting of
230 COVID-19 images, 1064 normal
images, and 1036 viral pneumonia
images from different sources.

Classification accuracy
of 98.3%, 99.0%, and
98.9%.

Toraman
et al. [7]

Introduced a novel CapsNet
architecture for COVID-19 diagnosis.

Dataset consist of 231 COVID-19 X-ray
images [8], 1050 no findings images [9],
and 1050 pneumonia images [9].

Classification accuracy
of 84.22% and 97.24% for
multi-class and binary
class, respectively.

Tiwari
et al. [10]

Proposed a hybrid technique for
COVID-19 diagnosis. The framework
consists of CapsNet and VGG16.

Dataset consist of 219, 1345, and
1341 radiography images of COVID-19,
pneumonia, and normal conditions,
respectively [11].

Classification accuracy
of 97% for binary
classification and 92%
for multi-class
classification.

Afshar
et al. [12]

Designed a CapsNet framework. No
data augmentation was used. Data
imbalance technique was introduced.

Dataset consist of 358 CXR COVID-19
images, 8,066 8,066 normal, and
5538 non-COVID-19 images.

Accuracy, sensitivity,
specificity, and AUC of
95.7%, 90%, 95.8%, and
0.97, respectively.

Heidarian
et al. [13]

Designed a two-stage framework for
COVID-19 diagnosis using CapsNet
and volumetric CT images. Infected
slices of CT images are detected in the
first stage, and the images are classified
in the second stage.

Dataset consist of 171, 60, and
76 COVID-19, CAP, and normal
volumetric CT images, respectively.

Accuracy, sensitivity,
specificity, and AUC of
90.82%, 94.55%, 86.04%,
and 0.98, respectively.

Quan et al. [14]

Proposed a DL-based framework for
COVID-19 diagnosis using
DenseNet121 and CapsNet. The
framework uses TernausNet for
segmentation, DenseNet121 for feature
extraction, and CapsNet for
classification.

Dataset contains 781, 2917, 2884, and
2850 COVID-19, normal, pneumonia
(virus), and pneumonia (bacteria) X-ray
images.

Accuracy, sensitivity,
and F1-score of 90.7%,
96%, and 90.9%,
respectively.

Qi et al. [17]

Proposed a four-module pipeline for
COVID-19 diagnosis. The first two
modules are used for lung
segmentation and selection of slices
with lesions. The last two modules use
CapsNet, ResNet50, and DenseNet121
for slice-level and patient-level
prediction.

Dataset contains 161 CT images with
COVID-19 and 100 CT images with CAP.

Classification accuracy
and AUC of 97.1% and
0.992, respectively, for
slice-level prediction.
Classification accuracy
of 100% for patient-level
prediction.

Attallah [19]

Designed a novel method for building
classification models for CT and X-ray
images. The method uses four radiomic
methods, three DL models, one feature
reduction technique (FWHT), and one
feature combination technique (FWHT).

Two datasets were used in the study.
Dataset 1 consists of 1230 non-COVID-19
and 1252 COVID-19 CT scans. Dataset 2
consist of 1784 COVID-19 X-ray images,
1754 healthy X-ray scans, and 1345 X-Ray
scans of people with pneumonia.

The technique was
evaluated on a CT and
X-ray dataset, and it
produced 99.4% and 99%
on the two datasets.
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Table 1. Cont.

Ref. Method Dataset Performance

Mercaldo
et al. [20] VGG16. Dataset consists of 18,000 CT images. Classification accuracy

of 95%.

Shah et al. [21] DenseNet169, VGG16, ResNet50,
InceptionV3, and VGG19. Dataset consists of 738 CT images. Classification accuracy

of 94.52%.

Attallah and
Samir [22]

ResNet50, ResNet101, ResNet18, DWT,
and SVM.

Dataset 1 consist of 5152 normal 3D CT
scans and 6012 COVID-19 images.
Dataset 2 consist of 1252 COVID-19 and
1230 non-COVID-19 CT images.

The technique was
evaluated on two
datasets, and it achieved
a classification accuracy
of 99.33% and 99.7%,
respectively.

Attallah [23]
ResNet50, ResNet101, ResNet18,
discrete wavelet transform, and
gray-level covariance matrix.

Dataset consist of 1252 COVID-19 and
1230 non-COVID-19 CT images.

Classification accuracy
of 99.60%.

Zhao et al. [24] Modified ResNet architecture 194,922 CT images. Classification accuracy:
99.2%

Shankar and
Perumal [25]

Gaussian filtering, local binary pattern
model, InceptionV3, MLP classifier.

X-ray dataset consisting of 27 normal,
220 COVID-19, 11 SARS, and 15
Pneumocystis X-ray images.

Classification accuracy:
94.08%

Marios
et al. [26]

Performance analysis of ResNet50,
ResNet101, DenseNet121, DenseNet169,
and InceptionV3.

11,956 COVID-19, 10,701 normal, and
11,263 pneumonia X-ray images.

ResNet101 achieved the
best classification
accuracy of 96%.

3. Methodology

This study proposes a CapsNet architecture for COVID-19 diagnosis (CapsNetCovid).
The architecture is shown in Figure 1. The same model was used for the CT and X-ray
images. The model consists of convolutional layer, primary capsule layer, and digit capsule
layer. The convolutional layer is used to extract features from images, the primary capsule
layer is used to learn different image parts and features of an image (such as orientation,
size, pose, texture, etc.) and the spatial relationships between the parts. The digit capsule
layer is used to perform the final classification.
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Figure 1. The proposed CapsNet architecture (CapsNetCovid).

Specifically, the proposed model consists of three convolutional layers, sixteen primary
capsule layers, and one digit capsule layer. Three convolutional layers were added to
the network after performing experiments with different number of layers, kernels, and
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filter sizes. The convolutional layers help to extract effective and informed features for
the primary capsule. The first and second convolutional layer consists of 256 kernels of
size 3 × 3 with a stride of 1. The third convolutional layer consist of 512 kernels of size
3 × 3 with a stride of 2. The ReLU activation function is used for all the layers. The ReLU
activation function is used to introduce non-linearity to the model and handle the vanishing
gradient problem.

Initially, images are passed through the three convolutional layers. The images are
resized to 224 × 224 after experimenting with different image sizes. The output from the
convolutional layer is passed to 16 primary capsule layers, where each capsule contains
8D vectors. The capsule layer applies convolutional operation with 9 × 9 kernel, and then
squash the output to obtain a capsule. The output of the capsule layer is passed to a digit
layer, containing 16D vectors per class. The layer is used to classify the CT images into
two classes (COVID-19 and normal) and the X-ray images into three classes (COVID-19,
normal, and pneumonia).

Another CNN model was designed in this study for the purpose of comparison. The
CNN model consists of two convolutional layers, one fully connected layer, and one output
layer. The proposed architecture was also compared with DenseNet121 and ResNet50. The
output of DenseNet121 and ResNet50 was passed through two fully connected layers, and
one output layer. The output layer consists of two neurons for the binary classification,
and three neurons for the multi-class classification. The pooling and dropout layer was
also used to improve the computation speed and prevent overfitting. Note that only the
added layers were finetuned. The number of layers and parameters for the CapsNet model,
CNN model, and the two pre-trained models were selected after performing the series of
experiments. More information about the parameters is presented in Tables 2–4.

Table 2. Training Parameters for CapsNetCovid.

N_Class Epochs LR BS N_Routing Optimizer

2 15 0.001 64 3 Adam

Table 3. Parameters used for DenseNet121 and ResNet50.

Algorithm Dropout Rate Learning Rate Pooling Layer FC BS Optimizer Epochs Activation

DenseNet121 0.5 0.0001 Pool size = 4 Units = 96 64 Adam 15 ReLU

ResNet50 0.5 0.0001 Pool size = 5 Units = 80 64 Adam 15 ReLU

Table 4. CNN model parameters.

Layers Values

Conv1 Filters = 64, kernel size = 5 × 5

Average Pooling layer Pool size = 5 × 5

Conv2 Filters = 64, kernel size = 5 × 5

Average Pooling layer Pool size = 3 × 3

Fully Connected layer 1 Units = 128

Drop out layer Dropout rate = 0.5

Optimizer Adam

Activation ReLU

Learning rate 0.0001

Different experiments were performed to evaluate the efficacy of CapsNetCovid.
Firstly, CapsNetCovid was trained on 80% of the dataset and evaluated on the remaining
20%. Twenty percent of the training set was reserved for validation. After training,
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the trained CapsNetCovid was saved and used in the subsequent experiments. During
the other experiments, the saved CapsNet model was evaluated on the eight augmented
datasets. Note that the augmented datasets were not used to train CapsNetCovid; they were
only used to evaluate the pre-trained CapsNetCovid. We did this to assess CapsNetCovid’s
ability to distinguish precisely between standard, flipped, shifted, and rotated images.
Additionally, we wanted to evaluate the CapsNet’s ability to recognize augmented images,
even if it was not exposed to such images during training. The same procedure was carried
out for CNN, DenseNet121, and ResNet50. The models were trained, validated, and tested
on the original datasets. After training, their trained weights were saved and evaluated on
the eight augmented datasets.

3.1. Dataset

Two types of datasets are used in this study. The first dataset type consists of stan-
dard images, while the second dataset type consists of augmented/transformed images.
Standard images/datasets in this study refers to images/datasets that are not transformed
(rotated or shifted).

3.1.1. Standard Dataset

Two datasets with standard images were used in this study. The first dataset was
obtained from different sources, including China National Center for Bio-information [31],
National Institutes of Health Intramural Targeted Anti-COVID-19 [32], Negin Radiology
Medical Center [33], Union Hospital and Liyuan Hospital of Huazhong University of
Science and Technology [34], COVID-19 CT Lung and Infection Segmentation initiative [35],
and the Radiopaedia collection [36]. The dataset (called COVID-Net CT-2) was created
by Gunraj et al. [37]. Readers are referred to [37] for more information on the dataset. A
subset of the COVID-Net CT-2 dataset is used in this study. Samples of the dataset are
shown in Figure 2. The dataset consists of 14,000 CT images (9000 COVID-19 images
and 5000 non-COVID-19 images). The second dataset was created by some researchers
at the university of Qatar [38,39]. The dataset consists of 3616 COVID-19 X-ray images,
10,192 normal X-ray images, and 1345 pneumonia X-ray images. The dataset is publicly
available and it can be downloaded from [40].
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Figure 2. Samples of standard and augmented CT images used for training.

3.1.2. Augmented Datasets

Eight new augmented datasets were generated from the original CT and X-ray datasets.
The Keras ImageDataGenerator class was used to generate the augmented datasets. The first
four augmented datasets consist of 14,000 randomly flipped CT images, 14,000 randomly
shifted CT images, 14,000 CT images rotated randomly by 45 degrees, and 14,000 CT
images rotated randomly by 90 degrees. The last four augmented datasets consist of
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15,153 randomly flipped X-ray images, 15,153 randomly shifted X-ray images, 15,153 X-ray
images rotated randomly by 45 degrees, and 15,153 X-ray images rotated randomly by
90 degrees. More details on the dataset are provided in Table 5. Additionally, the samples
from the CT and X-ray standard and augmented dataset are shown in Figures 2 and 3,
respectively.

Table 5. Dataset summary.

Dataset Number of Images Description

Standard CT Image Dataset 14,000 Images in this dataset are not augmented.

RandomlyFlip CT Image dataset 14,000 Images in this dataset are randomly flipped horizontally
and vertically.

RandomShift CT Image dataset 14,000
Images in this dataset are shifted by a number of pixels
to the left, right, and vertically. The width and height
shift range are set to 0.2.

RandomRotated CT Image dataset
(45 degree) 14,000 Images in this dataset are randomly rotated by

45 degrees.

RandomRotated CT Image dataset
(45 degree) 14,000 Images in this dataset are randomly rotated by

90 degrees.

Standard X-ray Image Dataset 15,153 Images in this dataset are not augmented.

RandomlyFlip X-ray Image Dataset 15,153 Images in this dataset are randomly flipped horizontally
and vertically.

RandomShift X-ray Image Dataset 15,153
Images in this dataset are shifted by a number of pixels
to the left, right, and vertically. The width and height
shift range are set to 0.2.

RandomRotated X-ray Image dataset
(45 degree) 15,153 Images in this dataset are randomly rotated by

45 degrees.

RandomRotated X-ray Image dataset
(45 degree) 15,153 Images in this dataset are randomly rotated by

90 degrees.
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During the pre-processing stage, the images’ pixel values were converted to the range
0 to 1 by dividing them by 255. This value was used because 255 is the maximum possible
pixel value for an image. The images were also resized to 224 × 224 and used as inputs
to the CapsNet model. Eighty percent of the dataset was used for training, while the
remaining twenty percent was used to test the model. During training, 20 percent of the
training images was used to validate the training performance. All the experiments were
conducted on a computer cluster. The cluster computer had the following specifications:
2 × Intel Xeon E5-2697A v4 processors with 512 GB of 2.4 GHz DDR4 memory.

3.2. Performance Measures

Five performance measures 3454 used to evaluate the performance of the models,
namely accuracy, precision, sensitivity, F1-score, and area under the ROC curve (AUC-
ROC). The performance metrics can be calculated using Equations (1)–(4). The five metrics
are influenced by the number of true negatives (TNs), true positives (TPs), false negatives
(FNs), and false positives (FNs).

Accuracy =
(TN + TP)

(TN + TP + FN + FP)
× 100 (1)

Sensitivity =
TP

TP + FN
× 100 (2)

Precision =
TP

TP + FP
×100 (3)

F1 − Score =
2 ∗ Precision ∗ Sensitivity

Precision + Sesisitivity
(4)

AUC-ROC is a measure showing the efficacy of a model in separating different classes.
A high AUC indicates that the model is performing well, while a low AUC indicates
otherwise.

4. Results and Discussion

Different experiments were performed to evaluate the performance of the proposed
CapsNet model. This section presents the results and discussion. This section also presents
a comparative analysis between CapsNetCovid and CNN, ResNet50, DenseNet121, and
two existing studies.

4.1. Performance of CapsNetCovid for Binary Classification

Tables 6–10 and Figure 4 show the performance of CapsNetCovid on COVID-19 CT
scans. As shown, the CapsNet achieved a test accuracy of 99.929%. This shows that Cap-
sNetCovid misclassified less than 0.1% of the CT images in the test dataset. Tables 7 and 8
show the precision and sensitivity produced by the CapsNet during evaluation. The
CapsNet achieved a precision, sensitivity and F1-score of 99.887%, 100%, and 99.316%,
respectively. The sensitivity of 100% shows that the proposed model correctly classified
all the COVID-19 samples, making them a good fit for medical diagnosis. It is crucial in
the medical field to develop a model with a high degree of sensitivity. The precision of
99.887% shows the quality and completeness of the predictions. It confirms that all the
COVID-19 samples were correctly predicted. The F1-score of 99.316% shows that the pro-
posed CapsNet model correctly predicted 99.316% of the COVID-19 and normal samples
across the evaluated dataset. This is quite admirable, as there is a good balance between
the prediction of COVID-19 and normal samples in the dataset.
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Table 6. Classification accuracy of CapsNetCovid, CNN, DenseNet121, and ResNet50.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 99.929 71.157 84.892 87.121 80.588

CNN 99.143 73.45 86.757 74.492 74.492

DenseNet121 97.750 81.521 82.136 81.885 79.342

ResNet50 88.2857 72.22 73.00 76.771 65.80
Key: RandomShift, randomly shifted images; RandomFlip, randomly flipped images; Rotated_45, randomly
rotated images (45 degrees); Rotated_90, randomly rotated images (90 degrees).

Table 7. Precision of CapsNetCovid, CNN, DenseNet121, and ResNet50.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 99.887 96.056 87.556 98.511 95.433

CNN 98.815 82.163 73.066 69.934 64.147

DenseNet121 97.404 74.025 78.575 77.409 80.767

ResNet50 91.371 80.992 88.091 77.630 60.200

Table 8. Sensitivity of CapsNetCovid, CNN, DenseNet121, and ResNet50.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 100 70.125 88.789 84.158 78.820

CNN 99.829 64.367 64.840 64.047 64.433

DenseNet121 99.025 64.844 78.575 64.812 64.094

ResNet50 88.306 63.784 64.428 64.698 63.519

Table 9. F1-Score of CapsNetCovid, CNN, DenseNet121, and ResNet50.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 99.319 81.067 88.168 90.770 86.335

CNN 98.884 72.184 68.707 66.861 64.290

DenseNet121 98.208 69.131 70.990 70.553 71.471

ResNet50 91.937 71.365 74.724 70.576 61.815

Table 10. ROC score for CT Images.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 0.999 0.614 0.813 0.809 0.723

CNN 0.994 0.657 0.828 0.725 0.725

DenseNet121 0.836 0.770 0.761 0.761 0.727

ResNet50 0.766 0.644 0.631 0.706 0.635
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Table 10 shows the AUC scores produced by the proposed model. Furthermore,
Figure 5 shows the AUC curves and their macro average with AUC scores. As shown, the
proposed model performed well with an AUC of 100% for the two classes. This shows
that the proposed model correctly distinguished all the COVID-19 and normal CT images
in the original dataset. The proposed model is useful to medical practitioners because it
correctly classifies all the COVID-19 and normal classes. A false positive result can lead to
unnecessary procedures and treatments, while a false negative result can prevent a patient
from receiving the necessary treatment, which can lead to the death of a patient.
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4.2. Performance of CapsNetCovid on Augnemted Dataset for Binary Classification

Tables 6–10 also show the performance of CapsNetCovid on the augmented dataset.
As shown, CapsNetCovid produced a classification accuracy of 71.075%, 84.935%, 87.114%,
and 80.5844% for the RandomShift, RandomFlip, Rotated_45, and Rotated_90 datasets,
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respectively. The results show that the CapsNet is able to correctly identify a significant
proportion of the augmented variants of the images it was trained on. The results also
demonstrate the CapsNet’s resistance to image transformations and its ability to generate
accurate results without additional data. Table 10 also shows that CapsNetCovid produced
an AUC score of 0.61, 0.81, 0.81, and 0.72 for the RandomShift, RandomFlip, Rotated_45,
and Rotated_90 datasets, respectively. This indicates that CapsNetCovid’s ability to reliably
distinguish between COVID-19 and normal CT images decreased. The generalization
performance of the CapsNet can be improved if it is exposed to augmented images during
training. In addition, as demonstrated by the results, CapsNetCovid’s performance varies
for various image transformations. The results also shows that the CapsNet is more robust
at capturing randomly rotated and randomly flipped images than randomly shifted images.
This shows that the robustness of the CapsNet depends on the type and degree of image
transformation. More work is required to improve the generalization performance of
CapsNet when applied to augmented medical images. This presents an opportunity for
future research.

4.3. Comparative Analysis of CapsNetCovid with CNN-Based Techniques on Binary Classification

One of the key advantages of the CapsNet over CNN is its ability to capture affine rota-
tions and transformations better than CNN. In view of this, we trained CNN, DenseNet121,
and ResNet50 on the same COVID-19 dataset and compared their performance to that of
CapsNetCovid. The results are shown in Tables 6–10 and Figures 6–8. As shown in the
table, CapsNetCovid outperformed CNN on the standard and rotated datasets. CapsNet-
Covid produced better classification accuracy, precision, sensitivity, and F1-score than CNN
in most cases. This indicates that the CapsNet is more robust than CNN in identifying
randomly rotated and transformed images without data augmentation. This is because the
CNN model must be trained on all orientations of the images to achieve very good results.
However, the CapsNet can detect and learn all orientations from a single image using a
single capsule. In addition, it should be noted that the CapsNet is a recent DL algorithm.
CNN existed before the CapsNet and has undergone numerous improvements over the
years. Therefore, it is quite enthralling to see the CapsNet outperform CNN in most cases.

Diagnostics 2023, 13, x FOR PEER REVIEW  15  of  29 
 

 

recent DL algorithm. CNN existed before the CapsNet and has undergone numerous im-

provements over the years. Therefore, it is quite enthralling to see the CapsNet outperform 

CNN in most cases.   

 

Figure 6. CNN training and validation performance. 

CapsNetCovid was  compared with  two  state-of-the-art CNN pre-trained models, 

namely DenseNet121 and ResNet50. The two models were finetuned on the COVID-19 

datasets used in this study. After training, the finetuned models were saved and evaluated 

on the four augmented datasets. The results of the experiments are reported in Tables 6–

10. As shown in the tables, CapsNetCovid produced better classification accuracy, sensi-

tivity, precision, and F1-score  than DenseNet121 and ResNet50  in  the original dataset. 

CapsNetCovid also outperformed DenseNet121 and ResNet50 in the augmented datasets 

in most  cases.  In  addition,  the outcomes demonstrate  that CapsNetCovid produced  a 

higher AUC score than DenseNet121 and ResNet50 for the RandomFlip and Rotated_45 

datasets. Additionally, it produced a higher AUC score than ResNet50 for the Rotated_90 

dataset. This demonstrates  that  the CapsNet  is  superior  to CNN at detecting  transfor-

mations in images. Note that DenseNet121 and ResNet50 have already been trained on a 

large-scale dataset (ImageNet) containing over 1.2 million images. Nonetheless, the Cap-

sNet still performed better than the two models. This demonstrates the capability of the 

CapsNet to handle small and augmented medical image datasets without data augmen-

tation techniques.   

Figure 6. CNN training and validation performance.



Diagnostics 2023, 13, 1484 15 of 28
Diagnostics 2023, 13, x FOR PEER REVIEW  16  of  29 
 

 

 

Figure 7. DenseNet121 training and validation performance. 

 

Figure 8. ResNet50 training and validation performance. 

Figures 9–11 show the ROC curves for CNN, DenseNet121, and ResNet50. As shown, 

CapsNetCovid  outperforms  the AUC  score  of  CNN, DenseNet121,  and  ResNet50  by 

0.01%, 0.16%, and 0.23% for both normal and COVID-19 CT images. This shows that Cap-

sNetCovid is more effective at distinguishing between positive and negative classes than 

the three compared CNN-based models. 

Figure 7. DenseNet121 training and validation performance.

Diagnostics 2023, 13, x FOR PEER REVIEW  16  of  29 
 

 

 

Figure 7. DenseNet121 training and validation performance. 

 

Figure 8. ResNet50 training and validation performance. 

Figures 9–11 show the ROC curves for CNN, DenseNet121, and ResNet50. As shown, 

CapsNetCovid  outperforms  the AUC  score  of  CNN, DenseNet121,  and  ResNet50  by 

0.01%, 0.16%, and 0.23% for both normal and COVID-19 CT images. This shows that Cap-

sNetCovid is more effective at distinguishing between positive and negative classes than 

the three compared CNN-based models. 

Figure 8. ResNet50 training and validation performance.

CapsNetCovid was compared with two state-of-the-art CNN pre-trained models,
namely DenseNet121 and ResNet50. The two models were finetuned on the COVID-19
datasets used in this study. After training, the finetuned models were saved and evaluated
on the four augmented datasets. The results of the experiments are reported in Tables 6–10.
As shown in the tables, CapsNetCovid produced better classification accuracy, sensitivity,
precision, and F1-score than DenseNet121 and ResNet50 in the original dataset. CapsNet-
Covid also outperformed DenseNet121 and ResNet50 in the augmented datasets in most
cases. In addition, the outcomes demonstrate that CapsNetCovid produced a higher AUC
score than DenseNet121 and ResNet50 for the RandomFlip and Rotated_45 datasets. Addi-
tionally, it produced a higher AUC score than ResNet50 for the Rotated_90 dataset. This
demonstrates that the CapsNet is superior to CNN at detecting transformations in images.
Note that DenseNet121 and ResNet50 have already been trained on a large-scale dataset
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(ImageNet) containing over 1.2 million images. Nonetheless, the CapsNet still performed
better than the two models. This demonstrates the capability of the CapsNet to handle
small and augmented medical image datasets without data augmentation techniques.

Figures 9–11 show the ROC curves for CNN, DenseNet121, and ResNet50. As shown,
CapsNetCovid outperforms the AUC score of CNN, DenseNet121, and ResNet50 by 0.01%,
0.16%, and 0.23% for both normal and COVID-19 CT images. This shows that CapsNet-
Covid is more effective at distinguishing between positive and negative classes than the
three compared CNN-based models.
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4.4. Performance of CapsNetCovid on Multi-Class Classification

The proposed technique was applied to a dataset with three classes: COVID-19, normal,
and pneumonia. Figure 12 and Tables 11–15 show the performance of CapsNetCovid on the
multi-class dataset. As shown, CapsNetCovid achieved a classification accuracy, precision,
sensitivity, and F1-score of 94.721, 93.864%, 92.947%, and 93.386%, respectively. The
accuracy shows that the proposed model correctly predicted over 94% of the images in the
dataset. Figure 13 shows that CapsNetCovid also produced an AUC score of 95.21%. This
shows that the model has a strong ability in distinguishing between COVID-19, normal,
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and pneumonia X-ray images. CapsNetCovid correctly predicted 95% of normal X-ray
scans, 96% of pneumonia scans, and 95% of COVID-19 X-ray scans.
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Table 11. Classification accuracy for CapsNetCovid, CNN, DenseNet121, and ResNet50 for multi-
class classification.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 94.721 51.393 60.7186 51.686 40.53

CNN 89.5414 54.332 55.892 50.146 0.4126

DenseNet121 90.234 84.162 82.1890 77.882 74.790

ResNet50 68.360 67.271 67.264 67.344 67.277
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Table 12. Precision for CapsNetCovid, CNN, DenseNet121, and ResNet50 for multi-class classification.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 93.864 59.475 73.094 62.992 48.482

CNN 83.256 32.549 32.886 33.677 33.230

DenseNet121 87.329 33.111 34.517 34.319 34.171

ResNet50 33.333 33.333 33.333 33.333 33.333

Table 13. Sensitivity for CapsNetCovid, CNN, DenseNet121, and ResNet50 for multi-class classification.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 92.947 60.962 62.499 68.987 64.214

CNN 90.825 32.772 33.117 33.407 34.256

DenseNet121 88.929 33.126 34.645 34.133 34.159

ResNet50 22.787 22.468 22.222 22.222 22.222

Table 14. F1-Score for CapsNetCovid, CNN, DenseNet121, and ResNet50 for multi-class classification.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 93.386 52.698 61.641 56.059 40.708

CNN 86.501 29.090 29.609 28.206 25.190

DenseNet121 88.065 33.097 34.550 33.628 33.781

ResNet50 27.069 26.843 26.669 26.685 26.661

Table 15. AUC-ROC of CapsNetCovid, CNN, DenseNet121, and ResNet50 for multi-class classification.

Technique Original
Dataset (%)

RandomShift
Dataset (%)

RandomFlip
Dataset (%)

Rotated_45
Dataset (%)

Rotated_90
Dataset (%)

CapsNetCovid
(Ours) 0.9521 0.6826 0.775 0.705 0.6059

CNN 0.869 0.6833 0.725 0.656 0.5822

DenseNet121 0.8971 0.8558 0.8274 0.838 0.7821

ResNet50 0.500 0.500 0.500 0.500 0.500

Tables 12–14 shows the precision, sensitivity, and F1-score of CapsNetCovid. As
shown, CapsNetCovid produced a precision, sensitivity, and F1-score of 93.864%, 92.947%,
and 93.386%, respectively. The high F1-score shows that the model has good generalization
performance, and it performs well for normal, COVID-19 and pneumonia classes. The
high sensitivity shows that the model correctly identified most of the COVID-19 and
pneumonia classes. This is quite remarkable because it can be catastrophic to incorrectly
diagnose a patient with COVID-19 or pneumonia. Medical practitioners prefer models
with high sensitivity than models with high accuracy. The high precision shows that the
CapsNetCovid model is 93.864% correct when it predicts an image to be COVID-19 or
pneumonia.
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It was observed that the performance of CapsNetCovid reduced from 99.929% to
94.721% when applied to multi-class classification. This decrease could be because of the
quality of images in the dataset or the change in image modality. This may indicate that the
CapsNet performs better on CT images compared to X-ray images. This reduction may also
be because of the multi-class dataset. This may indicate that CapsNet performs better on
binary classification compared to multi-class classification. More experiments are required
to confirm the reason(s) for the decrease in performance. Overall, the proposed model
performed well on the original X-ray images.

4.5. Comparative Analysis of CapsNetCovid with CNN-Based Techniques on Multi-Class
Classification

Figures 14–16 and Tables 11–15 shows the performance of CNN, DenseNet121, and
ResNet50 on the multi-class dataset. As shown, CapsNetCovid outperforms the three mod-
els in terms of classification accuracy and AUC score. It outperforms CNN, DenseNet121,
and ResNet50 by 5.18%, 4.52%, and 26.36%, respectively. This shows that CapsNetCovid
performs better than CNN in correctly distinguishing between COVID-19, pneumonia, and
normal X-ray images without using data augmentation. It also shows that the proposed
technique outperformed the compared CNN-based techniques in terms of correctly identi-
fying COVID-19 and pneumonia cases. The proposed model will be a good fit for medical
practitioners as its predictions for COVID-19, pneumonia, and normal X-ray images are
satisfactory.

Note that DenseNet121 and ResNet50 are pre-trained on the ImageNet dataset con-
taining over 1.2 million images. This shows that CapsNet does not need to be trained
on large-scale datasets to outperform CNN-based models. The results also show that
CapsNetCovid produced higher F1-score, precision, sensitivity, and AUC score than the
compared CNN-based techniques in most cases. This indicates that the proposed technique
has a better ability to correctly predict COVID-19 and pneumonia X-ray scans compared to
CNN, DensNet121, and ResNet50. This shows that the CapsNet will be more acceptable
to medical practitioners compared to CNN, especially when working with small datasets,
which is mostly the case for medical image datasets.

Figures 17–19 show the ROC curves produced by CNN, DenseNet121, and ResNet50
for multi-class classification. As shown, CapsNetCovid outperformed CNN by 0.09%,
0.05%, and 0.11% for normal, pneumonia, and COVID-19 images, respectively. CapsNet-
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Covid outperformed DenseNet121 by 0.07%, 0.02%, and 0.08% for normal, pneumonia, and
COVID-19 images, respectively. CapsNetCovid outperformed ResNet50 by 0.45%, 0.46%,
and 0.45% for normal, pneumonia, and COVID-19 images, respectively. This shows that
CapsNetCovid is more effective at correctly predicting COVID-19, pneumonia, and normal
X-ray images than CNN, DenseNet121, and ResNet50.
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4.6. Performance of CapsNetCovid on Augmented Dataset for Multi-Class Classification

As aforementioned, the proposed technique was evaluated on four augmented X-ray
datasets containing 15,153 randomly flipped, randomly rotated, and randomly shifted
X-ray images. The results are reported in Tables 11–15. As shown, the performance of
CapsNetCovid decreased when evaluated on the augmented images. This is obviously
because the model was not exposed to any of the augmented images during training. Cap-
sNetCovid was anticipated to successfully recognize a larger percentage of the augmented
version of the images it was trained on. However, as shown in the results, that was not
the case. This shows that the robustness of CapsNet to affine transformations requires
improvement, especially for multi-class classification. This is an opportunity for future
research.

As shown in Tables 11–15, the performance of CapsNetCovid on randomly flipped,
randomly rotated, and randomly shifted images varies. It achieved a higher classification
accuracy for randomly flipped and randomly rotated images. This shows that the CapsNet
is more resistant to randomly flipped and rotated images compared to randomly shifted
images. CapsNetCovid also produced higher AUC score for randomly flipped and rotated
images. This shows that it correctly predicted more randomly flipped COVID-19 and
pneumonia images compared to normal images. The results also show that CapsNetCovid
performed better on images that are randomly rotated by 45 degrees compared to images
that are rotated by 90 degrees. This shows that the robustness of the CapsNet for image
rotation is limited by the degree of image rotation.

4.7. Comparative Analysis of CapsNetCovid with CNN-Based Techniques on Multi-Class
Classification

Tables 11–15 also show the performance of CNN, DenseNet121, and ResNet50 on
augmented X-ray images. As shown in the results, the performance of the three models also
decreased. CapsNetCovid produced better accuracy than CNN for randomly flipped and
randomly rotated images. Furthermore, although DenseNet121 and ResNet50 produced
higher classification accuracy than CapsNetCovid, the proposed model produced better
precision, sensitivity, and F1-score than DenseNet121 and ResNet50. This shows that
CapsNet is more robust than CNN-based techniques in correctly identifying COVID-19 and
pneumonia images. The high classification accuracy of DenseNet121 and ResNet50 is most
likely because the two models were pre-trained on over 1.2 million normal and augmented
images. This suggests that data augmentation can be used to improve the robustness and
generalization performance of CapsNet for image transformations. This can be confirmed
from the performance of the CNN model. The CNN model was not previously trained
on the augmented images, and it performed poorer than CapsNet, DenseNet121, and
ResNet50.
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Furthermore, as shown in the results, CapsNetCovid outperform CNN, DenseNet121,
and ResNet50 in terms of precision, sensitivity, and F1-score. This shows that CapsNet is
more robust for image rotations and affine transformation than the compared CNN-based
techniques. Figure 13 shows the ROC curves of CapsNetCovid for the three classes and
their macro average. As shown, the proposed model produced a better AUC score for
standard images compared to augmented images. This shows that the performance of
the CapsNet can be improved if it is exposed to augmented images during training. The
ROC curves for CNN, DenseNet121, and ResNet50 are shown in Figures 17–19. As shown,
CapsNetCovid produced a better AUC score than CNN and ResNet50. This shows that it
outperforms the two models in correctly predicting COVID-19 and pneumonia images.

4.8. Comparison of CapsNetCovid with Related Studies

The proposed technique is compared with existing state-of-the-art COVID-19 diagnosis
techniques. The technique is compared with 10 binary classification techniques and 11 multi-
class classification techniques. The results are reported in Tables 16 and 17. As shown in
the tables, the proposed technique outperformed all the compared techniques for binary
classification and most of the techniques for multi-class classification. It is noteworthy
to highlight that some of the compared techniques combined CNN pre-trained models
with CapsNet. Notwithstanding, the proposed CapsNetCovid model still outperformed
most of them. As an example, Tiwari and Anurag [41] proposed a CapsNet architecture for
COVID-19 diagnosis from CT scans. They hybridized different CNN pre-trained models
with a CapsNet. As shown in the results, CapsNetCovid performed slightly better than
DenseCapsNet. It should be noted that DenseCapsNet is an aggregation of CapsNet and
DensNet121, implying that it is already pre-trained on the ImageNet dataset with millions
of images. Despite this, CapsNetCovid still produced comparable results to DenseCapsNet.
Some studies combined CNN and SVM, CNN and CapsNet, optimization techniques and
InceptionV3; nevertheless, the proposed model still outperformed them.

Table 16. CapsNetCovid versus existing COVID-19 diagnosis techniques for binary classification.

Technique Model Dataset Accuracy (%)

Tiwari and Anurag [41] DesneNet121 +
CapsNet

1252 COVID-19 and 1230
non-COVID-19 CT images 99%

Prottoy et al. [42] CNN + ML classifier
ensemble

4600 COVID-19, 2300
non-COVID-19 98.91

Apostolopoulos
et al. [43] VGG19 224 COVID-19, 504

non-COVID-19 98.75

Narin et al. [44] ResNet50 50 COVID-19, 50
non-COVID-19 98.0

Sethy et al. [45] CNN + SVM 25 COVID-19, 25
non-COVID-19 95.3

Alqudah et al. [46] CNN 1525 COVID-19, 3050
non-COVID-19 95.2

Dimeglio et al. [47] DenseNet121 15,000 COVID-19 and
non-COVID-19 99

Chakraborty et al. [48] CNN 3797 COVID-19 and
non-COVID-19 97.11

Toraman et al. [7] CNN + CapsNet 1050 COVID-19, 1050
non-COVID-19 97.24

Sharma et al. [49] CNN + CapsNet 3616 COVID-19, 11,537
non-COVID-19 97.69

CapsNetCovid (Ours) CapsNet 9000 COVID-19 and 5000
non-COVID-19 99.929
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Table 17. CapsNetCovid versus existing COVID-19 diagnosis technique for multi-class classification.

Technique Model Dataset Accuracy (%)

Apostolopoulos
et al. [43] VGG19

224 COVID-19, 504
non-COVID-19, 700
pneumonia

93.48

Shain et al. [50] CapsNet 55 COVID-19, 25 pneumonia,
78 CT images. 89.8

Afshar et al. [12] CNN + CapsNet COVID-19, bacterial, normal,
non-COVID-19 viral 95.7

Mohammad
et al. [51] CNN 219 COVID-19, 51341 normal,

1345 pneumonia 96.69

Rahimzadeh
et al. [52]

Xception, ResNet
V2 180 COVID-19 80

Kim et al. [53] ResNet, AlexNet,
GoogleNet 69 COVID-19 80

Wang et al. [54] CNN 53 COVID-19, 8066 healthy,
5526 pneumonia 93.3

Sharma et al. [49] CNN + CapsNet 3616 COVID-19, 10,192
normal, 1345 pneumonia 96.47

Toraman et al. [7] CNN + CapsNet 1050 COVID-19, 1050 normal,
1050 pneumonia 84.2

Shankar and
Perumal [25]

Gaussian filtering, local
binary pattern model,
InceptionV3, MLP
classifier

27 normal, 220 COVID-19, 11
SARS, and 15 pneumocystis
images

94.08

Quan et al. [14] DenseNet121 + CapsNet
781 COVID-19, 2917 normal,
2884 pneumonia, and 2850
pneumonia.

90.7

CapsNetCovid
(Ours) CapsNet 3616 COVID-19, 10,192

Normal, 1345 pneumonia 94.721

4.9. Summarized Results and Deductions

Different experiments were performed in this study, and their results are presented
in Sections 4.1–4.8. As shown in the results, CapsNetCovid performed differently for
both CT and X-ray images. The summary of the all the results is presented in this section.
Deductions from the results are also presented in this section.

• The results show that CapsNetCovid performs well on standard X-ray and CT images.
It produced better accuracy when trained and evaluated on CT images and binary
classification. Its performance slightly decreased when trained and evaluated on
X-ray images and multi-class classification. Overall, the proposed technique produced
very good accuracy, sensitivity, F1-score, and AUC score when trained on standard
images without data augmentation. The proposed technique also performs well on
small medical image datasets. This is because the CNN model must be trained on all
orientations of the images to achieve very good results. However, CapsNet can detect
and learn all orientations from a single image using a single capsule.

• The results show that CapsNet is able to correctly identify a large proportion of the
augmented variants of the images it was previously trained on, especially for binary
classification. This demonstrates the CapsNet’s resistance to image transformations
and its ability to achieve good results without data augmentation techniques.

• The performance of the CapsNet decreased when evaluated on the augmented vari-
ants of images it was previously trained on. This decrease was higher for X-ray images
and multi-class classification. This is an indication that the CapsNet is more resis-
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tant to image rotations and transformations for binary classification than multi-class
classification.

• The results show that CapsNetCovid outperforms CNN, DenseNet121, and ResNet50
when trained and evaluated on CT and X-ray images without data augmentation. This
indicates that CapsNet is an excellent choice when working with small dataset and
binary and multi-class classification.

• CapsNet outperforms CNN, DenseNet121, and ResNet50 when evaluated on an
augmented CT image dataset with two classes (binary classification). It outperforms
the CNN-based techniques in terms of classification accuracy, sensitivity, F1-score,
and AUC score. Furthermore, although DenseNet121 and ResNet50 outperform the
CapsNet in terms of classification accuracy, the CapsNet produced better precision,
sensitivity, and F1-score than CNN, DenseNet121 and ResNet50 when evaluated on an
augmented X-ray dataset with three classes (multi-class classification). This shows that
medical practitioners will favor the CapsNet over CNN due to the significance of high
sensitivity and F1-score in the medical domain. The higher classification accuracy of
DenseNet121 and ResNet50 is most likely because the two models are pre-trained on a
dataset with over 1.2 million normal and augmented images. This suggests that data
augmentation can be used to improve the performance of the CapsNet for multi-class
classification.

• The results show that the CapsNet produces a better AUC score than CNN, DenseNet121,
and ResNet50 for both binary and multi-class classification problems. This shows that
the CapsNet has a better ability to distinguish between positive and negative classes,
which is remarkable.

Overall, as shown in all the reported results, the proposed CapsNet model pro-
duced very good results for a small medical image dataset and it outperformed CNN,
DenseNet121, and ResNet50 at classifying both standard and augmented CT and X-ray
images. Moreover, Figures 4 and 12 show the training and validation loss of CapsNetCovid.
As shown, the training and validation loss and accuracy curves are nearly overlapping,
indicating that there is no significant variance between the training and validation loss and
accuracy. This shows that the CapsNet model did not overfit.

5. Conclusions

The COVID-19 pandemic remains a threat, with multiple waves causing significant
damage to the health of millions of people around the world. This study developed a
CapsNet model (named CapsNetCovid) for COVID-19 diagnosis using CT and X-ray
images. The model achieved a classification accuracy, precision, sensitivity and F1-score of
99.929%, 99.887%, 100%, and 99.319%, respectively, for CT images. Moreover, it achieved a
classification accuracy, precision, sensitivity, and F1-score of 94.721%, 93.864%, 92.947%,
and 93.386%, respectively, for the X-ray dataset. CapsNetCovid was compared with a CNN
model designed for the purpose of comparison, and it outperformed the model on both
standard and augmented CT and X-ray images. CapsNetCovid was also compared with two
state-of-the-art pre-trained models, namely DenseNet121 and ResNet50. CapsNetCovid
outperformed the two models for the standard CT and X-ray image dataset.

Moreover, the results show that CapsNetCovid is more resistant to image rotations and
affine transformations than CNN, DenseNet121 and ResNet50 for CT and X-Ray images.
Furthermore, the results show that the CapsNet is more resistant to image rotations and
transformations for binary classification than multi-class classification. Furthermore, the
results show that the CapsNet performs better when applied to randomly rotated and
flipped images compared to shifted images. The results also suggest that data augmentation
can be used to improve the performance of the CapsNet for multi-class classification. Data
augmentation can also be used to improve the overall generalization performance of the
CapsNet. Future research can focus on improving the generalization performance of the
CapsNet and the robustness of the CapsNet for image rotations and transformations,
especially for multi-class classification problems.
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Teknol. Derg. 2021, 14, 355–366.
30. Born, J.; Brändle, G.; Cossio, M.; Disdier, M.; Goulet, J.; Roulin, J.; Wiedemann, N. POCOVID-Net: Automatic detection of

COVID-19 from a new lung ultrasound imaging dataset (POCUS). arXiv 2020, arXiv:2004.12084.
31. Zhang, K.; Liu, X.; Shen, J.; Li, Z.; Sang, Y.; Wu, X.; Zha, Y.; Liang, W.; Wang, C.; Wang, K.; et al. Clinically applicable AI system

for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell
2020, 181, 1423–1433. [CrossRef] [PubMed]

32. An, P.; Xu, S.; Harmon, S.A.; Turkbey, E.B.; Sanford, T.H.; Amalou, A.; Kassin, M.; Varble, N.; Blain, M.; Anderson, V.; et al. CT
Images in COVID-19 [Data Set]. 2020. Available online: https://wiki.cancerimagingarchive.net/display/Public/CT+Images+in+
COVID-19 (accessed on 5 January 2022).

33. Rahimzadeh, M.; Attar, A.; Sakhaei, S.M. A fully automated deep learning-based network for detecting COVID-19 from a new
and large lung ct scan dataset. Biomed. Signal Process. Control 2021, 68, 102588. [CrossRef]

34. Ning, W.; Lei, S.; Yang, J.; Cao, Y.; Jiang, P.; Yang, Q.; Zhang, J.; Wang, X.; Chen, F.; Geng, Z.; et al. Open resource of clinical data
from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng. 2020, 4, 1197–1207.
[CrossRef]

35. Ma, J.; Wang, Y.; An, X.; Ge, C.; Yu, Z.; Chen, J.; Zhu, Q.; Dong, G.; He, J.; He, Z.; et al. Towards efficient COVID-19 ct annotation:
A benchmark for lung and infection segmentation. arXiv 2020, arXiv:2004.12537.

36. Radiopaedia. COVID-19. 2021. Available online: https://radiopaedia.org/articles/covid-19-4 (accessed on 1 November 2021).
37. Gunraj, H.; Sabri, A.; Koff, D.; Wong, A. COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19 from

Chest CT Images Through Bigger, More Diverse Learning. Front. Med. 2022, 8, 3126. [CrossRef]
38. Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al

Emadi, N. Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]
39. Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.;

Khan, M.S. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Comput. Biol.
Med. 2021, 132, 104319. [CrossRef] [PubMed]

40. Rahman, T.; Khandakar, A.; Chowdhury, M.E.H. COVID-19 Radiography Database. Available online: https://www.kaggle.com/
datasets/tawsifurrahman/covid19-radiography-database (accessed on 14 March 2023).

41. Tiwari, S.; Jain, A. A lightweight capsule network architecture for detection of COVID-19 from lung CT scans. Int. J. Imaging Syst.
Technol. 2022, 32, 419–434. [CrossRef] [PubMed]

42. Saha, P.; Sadi, M.S.; Islam, M.M. EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural
network and ensemble of machine learning classifiers. Inform. Med. Unlocked 2021, 22, 100505. [CrossRef] [PubMed]

43. Apostolopoulos, I.D.; Mpesiana, T.A. COVID-19: Automatic detection from x-ray images utilizing transfer learning with
convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [CrossRef]

44. Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional
neural networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [CrossRef]

45. Sethy, P.K.; Behera, S.K.; Ratha, P.K.; Biswas, P. Detection of Coronavirus Disease (COVID-19) Based on Deep Features and Support
Vector Machine. Preprints.org 2020, 2020030300. Available online: https://www.preprints.org/ (accessed on 27 February 2023).

46. Alqudah, A.M.; Qazan, S.; Alqudah, A. Automated systems for detection of COVID-19 using chest X-ray images and lightweight
convolutional neural networks. Res. Sq. 2020, in press.

47. Dimeglio, N.; Romano, S.; Vesseron, A.; Pelegrin, V.; Ouchani, S. COVID-DETECT: A deep learning based approach to accelerate
COVID-19 detection. In Proceedings of the Advances in Model and Data Engineering in the Digitalization Era: MEDI 2021
International Workshops: DETECT, SIAS, CSMML, BIOC, HEDA, Tallinn, Estonia, 21–23 June 2021; Proceedings 10. pp. 166–178.

48. Chakraborty, S.; Paul, S.; Hasan, K.M.A. A transfer learning-based approach with deep cnn for COVID-19-and pneumonia-affected
chest X-ray image classification. SN Comput. Sci. 2022, 3, 17. [CrossRef]

https://doi.org/10.1007/s10140-020-01886-y
https://doi.org/10.1016/j.asoc.2022.109401
https://doi.org/10.1177/20552076221092543
https://doi.org/10.1038/s41598-021-93832-2
https://doi.org/10.1007/s40747-020-00216-6
https://www.ncbi.nlm.nih.gov/pubmed/34777955
https://doi.org/10.3390/ijerph20032035
https://doi.org/10.1007/s42979-020-00209-9
https://www.ncbi.nlm.nih.gov/pubmed/33063048
https://doi.org/10.1016/j.cell.2020.04.045
https://www.ncbi.nlm.nih.gov/pubmed/32416069
https://wiki.cancerimagingarchive.net/display/Public/CT+Images+in+COVID-19
https://wiki.cancerimagingarchive.net/display/Public/CT+Images+in+COVID-19
https://doi.org/10.1016/j.bspc.2021.102588
https://doi.org/10.1038/s41551-020-00633-5
https://radiopaedia.org/articles/covid-19-4
https://doi.org/10.3389/fmed.2021.729287
https://doi.org/10.1109/ACCESS.2020.3010287
https://doi.org/10.1016/j.compbiomed.2021.104319
https://www.ncbi.nlm.nih.gov/pubmed/33799220
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://doi.org/10.1002/ima.22706
https://www.ncbi.nlm.nih.gov/pubmed/35465213
https://doi.org/10.1016/j.imu.2020.100505
https://www.ncbi.nlm.nih.gov/pubmed/33363252
https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.1007/s10044-021-00984-y
https://www.preprints.org/
https://doi.org/10.1007/s42979-021-00881-5


Diagnostics 2023, 13, 1484 28 of 28

49. Sharma, P.; Arya, R.; Verma, R.; Verma, B. Conv-CapsNet: Capsule based network for COVID-19 detection through X-ray scans.
Multimed. Tools Appl. 2023, 1–25. [CrossRef]

50. Heidarian, S.; Afshar, P.; Mohammadi, A.; Rafiee, M.J.; Oikonomou, A.; Plataniotis, K.N.; Naderkhani, F. Ct-caps: Feature
extraction-based automated framework for COVID-19 disease identification from chest ct scans using capsule networks. In
Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, ON, Canada, 6–11 June 2021; pp. 1040–1044.

51. Mohammad, R.; Abolfazl, A. A new modified deep convolutional neural network for detecting COVID-19 from X-ray images.
arXiv 2020, arXiv:2004.08052.

52. Rahimzadeh, M.; Attar, A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest
X-ray images based on the concatenation of Xception and ResNet50V2. Inform. Med. Unlocked 2020, 19, 100360. [CrossRef]
[PubMed]

53. Kim, H.W.; Capaccione, K.M.; Li, G.; Luk, L.; Widemon, R.S.; Rahman, O.; Beylergil, V.; Mitchell, R.; D’Souza, B.M.; Leb, J.S. The
role of initial chest X-ray in triaging patients with suspected COVID-19 during the pandemic. Emerg. Radiol. 2020, 27, 617–621.
[CrossRef] [PubMed]

54. Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases
from chest X-ray images. Sci. Rep. 2020, 10, 1–12. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11042-023-14353-w
https://doi.org/10.1016/j.imu.2020.100360
https://www.ncbi.nlm.nih.gov/pubmed/32501424
https://doi.org/10.1007/s10140-020-01808-y
https://www.ncbi.nlm.nih.gov/pubmed/32572707
https://doi.org/10.1038/s41598-020-76550-z
https://www.ncbi.nlm.nih.gov/pubmed/33177550

	Introduction 
	Related Studies 
	Methodology 
	Dataset 
	Standard Dataset 
	Augmented Datasets 

	Performance Measures 

	Results and Discussion 
	Performance of CapsNetCovid for Binary Classification 
	Performance of CapsNetCovid on Augnemted Dataset for Binary Classification 
	Comparative Analysis of CapsNetCovid with CNN-Based Techniques on Binary Classification 
	Performance of CapsNetCovid on Multi-Class Classification 
	Comparative Analysis of CapsNetCovid with CNN-Based Techniques on Multi-Class Classification 
	Performance of CapsNetCovid on Augmented Dataset for Multi-Class Classification 
	Comparative Analysis of CapsNetCovid with CNN-Based Techniques on Multi-Class Classification 
	Comparison of CapsNetCovid with Related Studies 
	Summarized Results and Deductions 

	Conclusions 
	References

