
Citation: Velu, M.; Dhanaraj, R.K.;

Balusamy, B.; Kadry, S.; Yu, Y.;

Nadeem, A.; Rauf, H.T. Human

Pathogenic Monkeypox Disease

Recognition Using Q-Learning

Approach. Diagnostics 2023, 13, 1491.

https://doi.org/10.3390/

diagnostics13081491

Academic Editor: Leandro Donisi

Received: 25 January 2023

Revised: 15 March 2023

Accepted: 12 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Human Pathogenic Monkeypox Disease Recognition Using
Q-Learning Approach
Malathi Velu 1, Rajesh Kumar Dhanaraj 2 , Balamurugan Balusamy 3, Seifedine Kadry 4,5,6 , Yang Yu 7,*,
Ahmed Nadeem 8 and Hafiz Tayyab Rauf 9

1 School of Computer Science and Engineering, Panimalar Engineering College, Poonamallee,
Chennai 600123, India

2 School of Computing Science and Engineering, Galgotias University, Greater Noida 203201, India
3 Associate Dean-Student Engagement, Shiv Nadar Institution of Eminence, Delhi-National Capital

Region (NCR), Gautam Buddha Nagar 201314, India
4 Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
5 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
6 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
7 Centre for Infrastructure Engineering and Safety (CIES), The University of New South Wales,

Sydney, NSW 2052, Australia
8 Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University,

P.O. Box 2455, Riyadh 11451, Saudi Arabia
9 Centre for Smart Systems, A.I. and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
* Correspondence: yang.yu12@unsw.edu.au

Abstract: While the world is working quietly to repair the damage caused by COVID-19’s widespread
transmission, the monkeypox virus threatens to become a global pandemic. There are several
nations that report new monkeypox cases daily, despite the virus being less deadly and contagious
than COVID-19. Monkeypox disease may be detected using artificial intelligence techniques. This
paper suggests two strategies for improving monkeypox image classification precision. Based on
reinforcement learning and parameter optimization for multi-layer neural networks, the suggested
approaches are based on feature extraction and classification: the Q-learning algorithm determines
the rate at which an act occurs in a particular state; Malneural networks are binary hybrid algorithms
that improve the parameters of neural networks. The algorithms are evaluated using an openly
available dataset. In order to analyze the proposed optimization feature selection for monkeypox
classification, interpretation criteria were utilized. In order to evaluate the efficiency, significance, and
robustness of the suggested algorithms, a series of numerical tests were conducted. There were 95%
precision, 95% recall, and 96% f1 scores for monkeypox disease. As compared to traditional learning
methods, this method has a higher accuracy value. The overall macro average was around 0.95, and
the overall weighted average was around 0.96. When compared to the benchmark algorithms, DDQN,
Policy Gradient, and Actor–Critic, the Malneural network had the highest accuracy (around 0.985).
In comparison with traditional methods, the proposed methods were found to be more effective.
Clinicians can use this proposal to treat monkeypox patients and administration agencies can use it
to observe the origin and current status of the disease.

Keywords: deep Q-learning network; policy gradient; Actor–Critic; optimization; monkeypox; deep
convolutional neural network

1. Introduction

Monkeypox reports for 2022 indicate yet another worldwide virus following the
COVID-19 epidemic that shook the world in 2020 [1]. Smallpox and cowpox viruses are
closely related to this one. The main carriers of the disease are rats and monkeys. However,
it is also common human-to-human transmission [2]. The virus was originally found in
monkeys at a laboratory in Copenhagen, Denmark, in 1958 [3]. Monkeypox was reported in
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the Democratic Republic of the Congo in 1970 at a time when efforts to eradicate smallpox
were intensifying [4]. It is well known that the extremely infectious monkeypox virus affects
a large number of residents of tropical rainforests in Central and West Africa. The infection
can spread by physical communication with the diseased person. Saliva, nasal secretions, or
respiratory droplets can spread an infection [5]. Animal bites might also spread it. A variety
of symptoms, such as fever, aches, fatigue, and red skin bumps over time, are experienced
by patients with monkeypox [6]. Monkeypox is not closely as spreadable as COVID-19 has
been, despite the fact that the count of cases that have been documented is increasing [7]. In
the year 1990, only fifty persons in West and Central Africa had monkeypox [8]. However,
5000 documented incidents were reported by the year 2020. It was previously thought
that monkeypox outbreaks only occurred in Africa, but in 2022, a number of non-African
countries, including Europe and the U.S., stated the identification of monkeypox infections
among individuals. As a result, there is increasing dread and alarm among the general
public, and many people are expressing their worries online. There is currently no cure
for the monkeypox virus, according to the CDC’s recommendations [9]. Nevertheless,
vaccination offers a potent defence against the monkeypox virus. Despite the fact that there
are FDA-approved vaccines against the monkeypox virus, no individuals have received
them in the U.S. In other nations, monkeypox treatment often entails immunization against
smallpox [10]. The medical history of the patient and the unique characteristics of the skin
lesions themselves are used to identify monkeypox. The gold standard for determining if a
skin lesion is viral in nature is electron microscopy testing. Additionally, polymerase chain
reaction (PCR) [11], a method frequently used to detect COVID-19 patients [12], can be used
to confirm the monkeypox virus. Machine Learning (ML) is a young subject of artificial
intelligence [13] that has shown considerable promise in a range of applications, including
helping people make decisions, industrial applications [14], medical imaging, and sickness
detection [15]. ML-enabled imaging systems have been discovered by medical practitioners
to be important tools for making rapid, accurate, and safe judgments. Medical experts have
discovered that the safe, precise, and rapid imaging solutions enabled by ML are priceless
tools for making wise choices. For instance, the authors of [16] developed CAD systems
based on fuzzy logic for the goal of diagnosing breast cancer. Fuzzy logic is preferable to
classical ML because it can speed up computing processes while imitating the cognitive
strategy of an expert radiologist. If the user enters details such as contour, density, and
shape, the cancer detection algorithm will produce a result depending on the approach they
choose [17]. The authors evaluated ten kinds of DL models and attained 99.1% accuracy
for 108 patients with COVID-19 and 86 non-COVID-19 patients [18]. The authors created
an improved inception model with the help of 453 CT scan images, increasing its accuracy
to 73.1% [19]. Skin conditions such as psoriasis, melanoma, lupus, and chickenpox are
just a few that may be identified using the CNN recommended [20]. They showed that
using picture analysis and an already-built VGGNet, skin disease can be identified 71%
of the time. The suggested method performed the best, with an accuracy of roughly 78%.
The authors created a technique for identifying skin disorders using mobile nets and cell
phones [21]. They claimed that when detecting people with chickenpox symptoms, their
accuracy was 94.4%. Currently, there is little research that indicates the potential for the
use of ML techniques to image processing-based monkeypox diagnosis. The absence of
a publicly accessible data repository for training and testing purposes was caused by the
virus’s recent significant introduction in many countries, which made it impossible to
establish a model for the identification of monkeypox.

In light of these possibilities, it is required to create a fresh strategy for accurately
identifying monkeypox photos in order to close this gap. In order to fill it, this study
suggests two novel techniques that will enhance both the performance of classifiers and
the selection of the optimal collection of features. The Al-Biruni Earth radius (BER), the
sine cosine algorithm (SCA), and particle swarm optimization are the foundations for these
two techniques (PSO). A series of tests were carried out to demonstrate the efficacy of the
suggested algorithms, and the outcomes are contrasted with those of rival feature selection
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and parameter optimization techniques. The suggested algorithms’ stability was tested
statistically, and the findings supported the intended result.

The major contribution of the work is as follows:

1. The detailed survey relevant to the classification of monkeypox diseases was carried
out. The authors’ contribution, limitations, and future scope are discussed;

2. The proposed work is developed to recognize the Monkeypox Virus with respect to
four classes;

3. The performance of the model can be measured with the help of evaluation met-
rics, namely, AUC, CA, F1, precision, and Recall. The DQN approach achieves a
classification accuracy (C.A.) of 0.975;

4. The comparison of the proposed work with the benchmark mark algorithms, namely,
DQN, DDQN, Policy Gradient, and Actor–Critic. Compared with other state-of-the-
art methods, the proposed DQN outperforms others with higher accuracy and AUC.

The organization of the paper is as follows: Section 2 explains the literature review
and the main contribution of the work; Section 3 describes the proposed work, and the
subsection includes the dataset, pre-processing, and reinforcement method; Section 4
describes the results and discussion of the proposed method; and Section 5 explains the
conclusion and future work.

2. Related Works

Deep learning and machine learning have shown themselves to be quite helpful
in the diagnosis and treatment of medical conditions. To forecast illnesses, researchers
have developed systems using ML and DL. For Alzheimer’s disease, there is presently no
accurate diagnostic procedure. The authors searched EEG epochs for characteristics that
would distinguish Alzheimer’s patients from controls with the help of an ML technique
called the Support Vector Machine (SVM) [22]. The accuracy of the research was good since
it took into account how each patient’s diagnosis was made.

One of the top five leading causes of transience in the world nowadays is heart disease.
One of the biggest problems in medical detection is predicting cardiovascular disease.
Machine learning has been shown to be capable of sifting information generated by the
healthcare sector to find relevant information. A number of studies have just begun to
scratch the surface of the potential applications of ML to heart disease prediction. The
authors of [23] proposed a technique to advance cardiovascular disease identification by
identifying key variables using ML techniques. The prediction model examined a diversity
of feature arrangements and well-known classification techniques [24]. Parkinson’s disease
(P.D.) diagnosis is frequently reached following extensive medical evaluation and examina-
tion of clinical indications [25]. To finish this assessment, a range of motor symptoms must
frequently be defined. However, conventional diagnostic techniques rely on the subjective
estimation of gestures that could be challenging to spot [26]. By using machine learning
algorithms, we may be able to identify relevant traits that are underused in the medical
analysis of Parkinson’s disease and which may be used to identify P.D. Liver disease is
prevalent in medical settings and is linked to a higher risk of death (FLD). The ability to
progress a practical strategy for anticipation, initial analysis, and treatment is provided by
early analysis of FLD patients. The authors proposed a machine learning system to forecast
the beginning and course of the illness to help with the identification of at-risk people, the
diagnosis itself, and FLD prevention and care. For the purpose of predicting FLD, a number
of classification models, including logistic regression (L.R.), random forest (R.F.), I Bayes
(N.B.), and an artificial neural network (ANN), have been created. The effectiveness of the
four models was evaluated using the receiver operating characteristic curve area (ROC).
Four categorization algorithms that accurately diagnose fatty liver disease were created
and researched by the authors of [27]. However, the R.F. performed better as compared
with the classification methods. The help of a random forest model in the clinical setting
may be advantageous for the early treatment of patients’ liver wellness.
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A severe danger to health and well-being, chronic kidney disease (CKD), affects an
alarmingly rising percentage of people worldwide. Early-stage CKD frequently has no
symptoms; hence, its presence is frequently disregarded. The CKD-slowing medication
works best when it is administered with patients’ diagnoses. ML models’ quick and precise
detection skills can help therapists achieve this goal in a big way. The authors suggested an
ML approach for diagnosing CKD [28]. The machine learning repository at UCI provided
the CKD data repository, which is severely biased by missing values [29]. For a variety of
reasons, patients could forget or were unable to give some metrics. As a result, it is typical
for data gaps to be discovered in clinical practice. When the missing data were included,
six ML algorithms were utilized to create the models. As compared with other models, the
R.F. model’s diagnostic accuracy was the greatest (99.75%). It was suggested to utilize a
hybrid model that included logistic regression and a random forest using a perceptron after
examining the flaws of the earlier models, reaching an accuracy of 99.83%.

The authors suggested a ground-breaking ML method to accurately detect coronary
artery disease (CAD). Ten tried-and-true machine-learning methods were taken into ac-
count. The use of data standardization and pre-processing increased the efficacy of these
tactics [30]. The authors combined stratified ten-fold cross-validation and particle swarm
optimization, a type of genetic algorithm, allowing for simultaneous optimization of feature
selection and classifier parameters. The recommended technique significantly improved
the accuracy of the machine learning models employed in medical and scientific research,
according to experimental data. There are currently 75 nations outside of Africa where
there are verified occurrences of monkeypox, making it a serious global health problem.
Due to the virus’s resemblance to measles and chickenpox, it can be difficult to diagnose
monkeypox early in the course of the illness. Deep learning systems have been found to
be successful in automatically detecting skin lesions when given enough training data.
Because monkeypox is so uncommon, there was already a knowledge gap across the globe
prior to the current epidemic. In their quest to solve this puzzling problem, researchers are
encouraged by the accomplishments of supervised machine learning in the identification
of COVID-19. However, the scarcity of monkeypox skin photographs makes it difficult
to use machine learning to identify the disease from patient skin scans. The authors pro-
vided the largest archive of images of monkeypox skin. A comprehensive image library of
both healthy and unhealthy skin may now be located and used thanks to web scraping.
Symptoms of measles, cowpox, chickenpox, smallpox, and monkeypox can be seen in
photographs of afflicted skin [31]. The Monkeypox Skin Lesion Dataset was assembled
by the authors of [32] using images of measles, chickenpox, and monkeypox skin lesions
(MSLD). Most of these images originated from web pages that were open to the public.
Initial approaches included a 3-fold cross-validation experiment and increased the model
size with new data. The second stage involved categorizing ailments using pre-trained
deep learning models, including VGG-16, ResNet50, and InceptionV3 (e.g., monkeypox).

ResNet50 achieved the highest level of overall accuracy. The authors suggested a DL
model for identifying monkeypox illness that depends on picture data acquisition and
execution using a modified version of VGG16 [33]. Since the data repository is created by
assembling images from many open-source publications and websites, it is safer to use and
distribute it for creating and installing any machine learning model. The VGG16 model
with the modifications was utilized in two distinct research. According to the results of
both studies, this model may successfully identify individuals who have monkeypox. The
model’s capacity to anticipate and extract such properties enables the development of a
greater understanding of the characteristics of the monkeypox virus. In the existing system,
there is a lack of a system that can detect A.D. diseases in prior knowledge; sometimes,
the model fails to converge properly. The proposed approach can reduce the convergence
problem by tuning the neurons and can be used to find meaningful patterns within the
data, eventually helping identify patterns for diseases other than A.D. Our conclusions are
supported by our explainable artificial intelligence (XAI) techniques.
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Table 1 illustrates the data analysis for the detection of monkeypox disease detection for
the feature extraction model; here, the DenseNet-169 model obtained an accuracy of around
84.24%, which is higher as compared to the remaining approach. Similarly, the f1 score
value is higher, around 83.83 %, as compared to the other models. Table 2 illustrates the
data analysis for the detection of monkeypox disease detection for the classification process,
and the reinforcement learning models are compared; the resultant value shows that the
Actor–Critic learning model obtained the highest accuracy, around 89%, as compared to
the other approach.

Table 1. Data analysis for detection of monkeypox disease detection for feature extraction model.

Reference Techniques Datasetcount Recall (%) Accuracy (%) F1 Score (%) Precision (%)

[34] VGG-16 1428 81.0 81.48 83.01 85.01

[34] ResNet 50 1428 83.0 82.96 84.01 87

[34] Inception v3 1428 81.0 74.07 78 74.10

[35] DenseNet-169 1784 83.00 84.24 83.83 83.12

Table 2. Data analysis for the detection of monkeypox disease detection for the classification process.

Reference Techniques Datasetcount Precision (%) Accuracy (%) Recall (%) F1 Score (%)

[34] DQN 1428 84 79.26 79.0 81.1

[36] DDQN 1000 79.2 84.0 79.0 81.0

[37] Policy Gradient 1200 80.8 85.1 91.1 76.5

[38] Actor–Critic 89.0 63.0 92.0 74.0 90.0

3. Materials and Methods
3.1. Dataset

This major spate of monkeypox infections has raised concerns about public health be-
cause of its rapid expansion in over 65 nations. Timely diagnosis identification is essential to
halting its rapid progression. However, significant amounts of Polymerase Chain Reaction
(PCR) tests and other biochemical assays are not easily accessible [4]. Monkeypox detection
from skin lesion photos using computer vision techniques may be useful in this situation.
However, no such information is currently accessible. As a result, the “Monkeypox Skin
Lesion Dataset (MSLD)” is made by gathering and analyzing pictures from various web-
sites, news portals, and publicly available case reports. The “Monkeypox Image Lesion
Dataset” was produced with the primary goal of separating monkeypox patients from
related non-monkeypox instances. As a consequence, to produce a classifier, we introduced
lesion pictures of “Chickenpox” and “Measles” to the “Monkeypox” category because
of their similarity to the monkeypox rash and initial state pustules. It has a maximum
of 228 photos, of which 102 are under the “Monkeypox” label and the remaining 126 are
under the “Others” label, which include cases of non-monkeypox (such as chickenpox and
measles) (https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset).
Figure 1 illustrates the sample raw data.

https://www.kaggle.com/datasets/nafin59/monkeypox-skin-lesion-dataset
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Figure 1. Sample dataset.

3.2. Data Preprocessing
3.2.1. Augmented Images

Numerous image enhancement techniques, including rotation, translation, reflection,
shear, hue, saturation, contrast and brightness jitter, noise, scaling, etc., were implemented
with the help of MATLAB R2020a to help with the classification problem. Although Image
Generator and other image augmenters make this simple to perform, the augmented images
are placed in this folder to ensure the reproducibility of the results. The number of photos
rose around 14-fold after enhancement. There are 1428 and 1764 photos, respectively, in the
classifications “Monkeypox” and “Others”.

3.2.2. Fold1

Three-fold cross-validation was carried out in order to remove the bias from the
training process. With patient independence preserved, the original photos were divided
about 70:10:20 into training, validation, and test sets. As per the widely accepted method of
data preparation, only the training and validation sets of pictures were enhanced. Users can
choose to use the folds directly or to use the original data and add other algorithms to it.

3.2.3. Reinforcement Learning

The main focus of this paper is the detection of the monkeypox diseases using the
Q-learning approach. This paper suggests two strategies for improving monkeypox image
classification precision. Based on reinforcement learning and parameter optimization for
multi-layer neural networks, the suggested approaches are based on feature extraction
and classification. The Q-learning algorithm determines the rate at which an act occurs
in a particular state. Malneural networks are binary hybrid algorithms that improve the
parameters of neural networks.

Reinforcement learning comes under the subgroup of machine learning. The agent
read the fine-tuned policy with the help of the trial-and-error method. In real-time, this
kind of approach is utilized in robotics, self-driving cars, etc. The agent learns the policy by
communicating with the environment. Markov decision process is carried out by using a
conditional probability distribution. Here, the future output completely depends upon the
current state. The action and reward are introduced in the Markov process, called MDP.
Figure 2 illustrates the framework of reinforcement learning. Figure 3 represents the data
creation for the various model. In the MDP, the output obtained not only depends on the



Diagnostics 2023, 13, 1491 7 of 23

current state but also on the action that tends towards the future state of S. The trajectory
distribution can be denoted as:

Wπ = ∏t π

(
bt

qt

)
T
(

qt+1

qt
, bt

)
. (1)
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Here, W represents the length, bt, qt, q t + 1 are the probability of observations,
and t represents the transition probability function. The aim of the Rl is to identify the
optimal policy.

Z =
r−1

∑
t=0
ϑtZt+1 (2)

The expected reward maximization can be calculated by using a formula wherein π
represents the policy. The discounted expected reward can be written as Equation (4)

ET ∑r−1
t=0 rt+1 → maxπ; (3)

D(π) = ETϕ∑T+1
t=0 ϑ

tZt+1. (4)

The target of the R.L. is to recognize the optimal policy:

D(π) = Maxπ. (5)

The Bellman expectation equation can be written as Equation (5), where q represents
the state, π represents the policy, and val(q(t)) represents the state value function. The
transition probability can be written in Equation (7):

val (qt) = E(rt+1 + γ valπ
(
qt+1

)
); (6)

Val(qt) = ∑b∈B π

(
bt

st

)
∑qt+1εq

T
(

qt+1
qt

, bt

)
[Z

(
qt, qt+1

)
+ ϑ valπ

(
qt+1

)
]. (7)
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The above equation is known as the Bellman equation. The agent’s choice of action
depends upon the optimal policy. The Bellman equation is represented as follows:

val∗(qt) = maxbt ∑qt+1∈Q T(qt+1 /qt,
bt)[Z

(
qt, qt+1

)
+ ϑval∗

(
qt+1)

]
maxQ(qt, bt). (8)

val* states the optimal value function. The quality function can be written as

Qπ(qt, bt) = ∑qt+1
T
(

qt+1
qt

, bt

)[
R
(
qt, qt+1

)
+ ϑ valπ

(
qt+1

)]
. (9)

Figure 2 illustrates the framework of the reinforcement learning approach. Here,
environment plays an important role in extracting the features and performing the surgical
data sequence. The agent acts in the policy network. Based on the situation, the actions are
taken. The functions of the action are to move and classify. The policy is updated from the
environment to the policy network. Figure 3 illustrates the data creation for the various
model, the training dataset contains s0 up to an. The mini batch contains the st to st + 1.

3.3. Proposed Methodology
3.3.1. System Model
DQN

Deep Q-learning network reads the input image from the higher dimensional. Taking
regression into an account, m represents the target of regression, input is (q,b), and target is
(q,b). The loss function can be written as

m(qt, bt) = Z
(
qt, qt+1

)
+ ϑmaxbt+1Q∗(qt, bt+1, θt), (10)

ODQN = O(m(qt, bt), Q∗(qt, bt, θt)), (11)

ODQN = ||m(qt, bt)−Q∗(qt, bt, θt)||2 , (12)

where θ represents the vector and θ ∈ z|q||z| is the sample. The loss function can be
minimized using

θt+1 = θt = αt
∂ODQN

∂O
. (13)

Figure 4 illustrates the framework of the DQN model. The genetic samples consist
of the dataset, so it is represented as st up to st + 1. The genetic samples are connected
to prediction, rewards, and policy. Based on the policy, the rewards are measured. The
prediction Q helps to predict the value based on the training data. The loss value is
measured and backpropagated to reduce the error value.
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DDQN

The limitation of the deep Q-learning network is that rate of Q* enhanced due to
minimum value in Equation (10). The double deep Q-learning network overcomes the
overestimation of Q. It produces the better performance as compared with the deep Q-
learning network.

m1 = Z
(
qt, qt+1

)
+ ϑQ∗1

(
qt+1, argmaxb+1Q∗2

(
qt+1, bt+1; θ1

)
; θ1

)
(14)

m2 = Z
(
qt, qt+1

)
+ ϑQ∗2

(
qt+1, argmaxb+1Q∗2

(
qt+1, bt+1; θ1

)
; θ2

)
(15)

Figure 5 illustrates the framework of DDQN model. The genetic samples consist of the
dataset, so it is represented as st upto st+1. The genetic samples are connected to prediction,
rewards, and policy. Based on the policy, the rewards are measured. The prediction Q
helps to predicts the value based on the training data. The loss value is measured and
backpropagated to reduce the error value. In this deep process, the neural network is
designed in a detailed manner to predict the value.
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Policy Gradient

The Policy Gradient DRL optimizes the objective function:

D(θ) = ET∼πθ∑t=1 γ
t−1Z (Qt−1, qt)→ maxθ. (16)

The gradient of the objective function can be written as

∇θD(θ) = ET∼πθ∑t=0 ϑ
tQπ(qt, bt)∇θlogπθ(

bt

qt
). (17)

Figure 6 illustrates the Framework of the Policy Gradient model. Here, the genetic
trajectory consists of st up to st+1. It is connected to the policy prediction and the reward;
the set of functions are loaded in the policy prediction. The sample values are calculated
based on the probability distribution. The vectors values are generated from the reward.
The loss function helps to generate the loss value; the gradient values are updated by
backpropagating the network.
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Actor–Critic

Actor–Critic executes the policy gradient with the help of value-based function. The
concept of Actor–Critic is to divide the model into two parts: (i) executes an action depends
on state; and (ii) generates the q value. The advantage of the Actor–Critic network is that it
consists of two networks, namely, actor network and critic network.

Dθ
π = ET∅ ∑t=0 log(πθ(

bt

qt
)ϑt (18)

Dπ(qt, bt)− valπt (19)

It can be written as
Z
[
qt−1, qt

]
− valπt+1 − ϑπt . (20)

Figure 7 illustrates the framework of the Actor–Critic model. Initially, the policy is
predicted, then the probability distribution function is given; later, the process leads to
training policy and the loss value are measured. The model is repeated until the loss value
reduced. The loss value should be as low as possible; the model is executed repeatedly
until the loss value becomes sufficiently low. Later, the model is moved to the next phase;
here, the models are predicted and trained accordingly.

Figure 8 illustrates the proposed framework. Initially, the “Monkeypox Image Lesion
Dataset” was produced with the primary goal of separating monkeypox patients from
related non-monkeypox instances. As a consequence, to conduct classifier, we introduced
lesion pictures of “Chickenpox” and “Measles” to the “Monkeypox” category because
of its similarity to the monkeypox rash and the initial state pustules. It has a maximum
of 228 photos, of which 102 are under the “Monkeypox” label and the remaining 126
under the “Others” label, which include cases of non-monkeypox. The count of the
dataset is enhanced further by using image enhancement techniques, including rotation,
translation, reflection, shear, hue, saturation, contrast and brightness jitter, noise, scaling, etc.
These were implemented with the help of MATLAB R2020a to help with the classification
problem. After augmentation, the numbers of images were 1428 and 1764, respectively,
in the classifications “Monkeypox” and “Others”. The next process is three-fold cross
validation; it was carried out in order to remove any bias from the training process. The
dataset was divided about 70:10:20 into training, validation, and test sets. The next process
is feature extraction; the given features are extracted using fine-tuned Efficient-B3. Once
the features are extracted, they proceed to the next phase, the classification phase. The
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images are classified by using two different approaches, namely, the reinforcement learning
approach and the hybrid approach. In the first approach, the individual methods, namely
DQN, DDQN, Policy Gradient, and the Actor–Critic Model, are applied over the extracted
features. In the second approach Algorithm 1, the hybrid model called the Malneural
network is developed. In this approach, the deep neural Q-learning and Policy Gradient
models are tuned.
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Algorithm 1: Malsneural algorithm

1. Procedure Augmentation(image, pro)
2. prob pro:
3. image← Rotate (image, (−5, +5))
4. prob pro:
5. image← Translate (image, (0.8, 1.2))
6. prob pro:
7. image← Saturation(image)
8. prob pro:
9. image← Scaling(image, (0.7, 1.2))
10. prob pro:
11. image← hue(image)
12. Return image
13. Adaptive median filter
14. Level 1:
15. image 1 = Zmedian − Zmin
16. image 2 = Zmedian − Zmax
17. If image 1 > 0 and image 2 < 0 go to the next level
18. Else the size of the window increased
19. If windoe size <= size max redo the level 1
20. Else return zxy
21. Level 2:
22. image 3 = Zxy − Zmin
23. image 4 = Zxy − Zmax
24. If image 3 > 0 and image 4 < 0 return zxy
25. Else return zmedian
26. End if
27. Load replay memory M to the capacity C
28. Load the function action Q along with arbitrary weight W
29. Load destination value function Q along with weight W- = W
30. For iteration = 1,N do
31. Load sequence t = {y1} and preprocessed φ1 = φ(t1)
32. For q = 1, Q do
33. The random action choosen bQ
34. Orelse choose bq = argmaxb P(φ(tq),b;W)
35. Compile bq in emulator and notice reward rq and yq + 1 of input
36. Set t q + 1 = tq, bq, y q + 1 and process φq + 1 = φ(tq + 1)
37. Save the transition (φq, bq,rq,φq + 1) in M
38. Minibatch (φi, bi, fi,φi + 1 ) from M
39. If it stops at i + 1
40. Initialise fj
41. Else
42. Yj = {fi + ϑmax d P(φi + 1,bq,W)
43. Execute gradient descent by updating the gradient value (yi-P(φi,bi; W))2
44. Reset ó = P
45. End for
46. End for

4. Experiment and Analysis
4.1. Experimental Setup

In this section, the experimental analysis is discussed. Initially, the fine-tuned Efficient-
Net B3 model was build and executed. The fine-tuned layers are listed below, and add a
0.5 dropout layer. The reason to add drop out is to reduce the overfitting problem. One flat-
tened layer, two dense, and two dropout layers are added. The fine-tuned model reduces
the model generalization problem. The parameters include the follows: the optimizer is the
Adam optimizer, the learning rate set to 0.001, the loss value is set to Binary cross entropy,
and the epoch value set to 200, along with batch size 32 as represented in the Table 3.
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Table 3. Fine-tuned hyperparameters.

Parameters Values

Optimizer Adam

Learning rate 0.001

Loss Binary_crossentropy

epoch 200

Batch size 32

4.1.1. Precision

Precision asks the question of what percentage of all the optimistic predictions is
genuinely positive.

precision = True positive/True positive + False positive (21)

The precision value lies between 0 and 1.

4.1.2. Recall

Recall states the proportion of the total is anticipated to be positive.

Recall = True positive/True positive + False negative (22)

4.1.3. F1 Score

F1 Score combination of precision and recall. It takes both false positives and false
negatives into account. As a result, it performs well with a dataset that is unbalanced.

F1score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (23)

4.1.4. Recall and F1 Score Are given Equal Weighted values

There is a weighted F1 score that allows us to assign different weights to recall and pre-
cision. Recall and precision are assigned different weights in different issues, as described
in the previous section.

Fβ =
(

1 + β2
)
∗ (Precision ∗ Recall)/

(
β2∗Precision

)
+ Recall (24)

Beta is the number of times recall is more important than precision. If recall is twice as
important as precision, the value of Beta is 2.

Table 4 represents the training and validation performance to epoch count. In this
work, the model is executed up to epoch 200. Initially, at epoch 10, the training accuracy
was 0.817, training loss was 1.0625, validation accuracy was 0.738, and validation loss was
0.880. The performance gradually increases in every epoch count. The training accuracy
keeps on increasing and testing loss keeps on decreasing. Finally, at the epoch 200, the
model obtained a training accuracy of 0.9907, training loss of 0.0528, validation accuracy of
0.8571, and validation loss of 0.9906. Figure 9 represents the learning curve of training and
validation accuracy; in the learning curve, the generalization gap does not increase. The
training and validation learning curve decreases at a point of stability.

Figure 9 represents Training and validation learning curve and Figure 10 represents
the learning curve of training loss; in the learning curve, the generalization gap does not
increase; the training and validation learning curve decreases at a point of stability. Figure 11
represents the validation loss learning curve; the learning curve keeps on decreasing and
attains the stable value.

Figure 12 represents the analysis of precision value for deep learning algorithms;
here, four different algorithms are taken, namely, VGG-16, ResNet 50, inception v3, and
DenseNet 169. These algorithms are kept as a benchmark and compared with the proposed
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method called fine-tuned EfficientNet B3. VGG 16 obtained a precision value around
92.1%, ResNet 50 obtained a precision value around 89.12%, Inception v3 obtained a
precision value around 90.1, and DenseNet 169 obtained a precision value around 92.8%.
Here, the proposed method obtained a higher accuracy (around 95.01), which is higher
compared with the remaining approach. Table 5 represents the performance evaluation of
monkeypox detection.

Figure 13 represents the analysis of accuracy value for deep learning algorithms;
here, four different algorithms are taken, namely VGG-16, ResNet 50, inception v3, and
DenseNet 169. These algorithms are kept as a benchmark and compared with the proposed
method called fine-tuned EfficientNet B3. VGG 16 obtained an accuracy value around
90.1%, ResNet 50 obtained an accuracy value around 85.12%, Inception v3 obtained an
accuracy value around 91.1, and DenseNet 169 obtained an accuracy value around 92.8%.
Here, the proposed method obtained a higher accuracy (around 96.01), which is higher
compared with the remaining approach. Table 6 represents the performance evaluation of
monkeypox detection.
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Table 4. Performance evaluation of fine-tuned EfficientNet B3 with respect to accuracy and loss.

Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss

10 0.8179 1.0625 0.7381 0.8807
20 0.9519 0.3025 0.8524 0.6117
30 0.9534 0.2310 0.8095 1.0032
40 0.9631 0.1515 0.7881 1.4253
50 0.9701 0.1502 0.7238 1.7884
60 0.9720 0.1743 0.9626 0.8833
70 0.9757 0.1239 0.8381 1.1028
80 0.9753 0.1242 0.8595 0.9159
90 0.9795 0.1258 0.8310 1.3588
100 0.9823 0.0971 0.8524 0.9706
110 0.9841 0.0676 0.8405 1.5409
120 0.9771 0.1351 0.8095 1.4022
140 0.9925 0.0320 0.8310 1.3769
150 0.9851 0.0806 0.8429 1.2375
160 0.9893 0.0393 0.8405 1.0522
170 0.9916 0.0394 0.8476 1.1742
180 0.9874 0.0470 0.8571 1.5278
190 0.9897 0.0476 0.8119 1.1780
200 0.9907 0.0528 0.8571 0.9906

Table 5. Precision calculation for detection of monkeypox disease detection.

Techniques Precision (%) Dataset Count

VGG-16 92.1

3192

ResNet 50 89.12

Inception v3 90.1

DenseNet-169 92.8

Proposed model (fine-tuned EfficientNet B3) 95.01
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Table 6. Accuracy calculation for detection of monkeypox disease detection.

Techniques Accuracy (%) Dataset Count

VGG-16 90.1

3192

ResNet 50 85.12

Inception v3 91.1

DenseNet-169 92.8

Proposed model (fine-tuned EfficientNet B3) 96.01Diagnostics 2023, 13, x FOR PEER REVIEW 17 of 24 
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Figure 14 represents the analysis of recall value for deep learning algorithms; here, four
different algorithms are taken, namely, VGG-16, ResNet 50, inception v3, and DenseNet 169.
These algorithms are kept as a benchmark and compared with the proposed method called
fine-tuned EfficientNet B3. VGG 16 obtained a recall value around 85.1%, ResNet 50
obtained a recall value around 85.12%, Inception v3 obtained a recall value around 84.1,
and DenseNet 169 obtained a recall value around 90.8%. Here, the proposed method
obtained a higher accuracy (around 96.01), which is higher compared with the remaining
approach. Table 7 represents the performance evaluation of monkeypox detection.

Figure 15 represents the analysis of F1 score value for deep learning algorithms;
here, four different algorithms are taken, namely, VGG-16, ResNet 50, inception v3, and
DenseNet 169. These algorithms are kept as a benchmark and compared with the proposed
method called fine-tuned EfficientNet B3. VGG 16 obtained an F1 score value around
90.1%, ResNet 50 obtained an F1 score value around 90.7%, Inception v3 obtained an F1
score value around 84.1, and DenseNet 169 obtained an F1 score value around 92.8%.
Here the proposed method obtained a higher accuracy (around 95.01), which is higher
compared with the remaining approach. Table 8 represents the performance evaluation of
monkeypox detection.

Figure 16 states that for the monkeypox class the precision value achieved around 0.95,
recall value achieved around 0.95, and f1 score value achieved around 0.95. For other
classes the precision value achieved around 0.96, recall value achieved around 0.96, and f1
score value achieved around 0.96. The overall macro average achieved around 0.95 and
overall weighted average is 0.96.

Figure 17 represents the confusion matrix for the monkeypox disease detection; the
values are generated based on the true positive, true negative, false positive, and false
negative. Here most of the classes are recognized correctly and performs better.

Figure 18 represents the analysis of accuracy value for reinforcement learning algo-
rithms; here, four different algorithms are taken, namely DQN, DDQN, Policy Gradient,
and Actor–Critic. These algorithms are kept as a benchmark and compared with the pro-
posed method called Malneural. DQN obtained an accuracy value around 96.5%, DDQN
obtained an accuracy value around 89.7%, Policy Gradient obtained an accuracy value
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around 78.7%, and Actor–Critic obtained an accuracy value around 80.7%. Here, the pro-
posed method obtained a higher accuracy (around 97.7%), which is higher as compared
with the remaining approach. Table 9 represents accuracy calculation for the monkeypox
disease detection results using the reinforcement learning approach.
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Table 7. Recall calculation for detection of monkeypox disease detection.

Techniques Recall (%) Dataset Count

VGG-16 85.1

3192

ResNet 50 85.12

Inception v3 84.1

DenseNet-169 90.8

Proposed model (fine-tuned EfficientNet B3) 96.01

Table 8. F1 score calculation for detection of monkeypox disease detection.

Techniques F1 Score (%) Dataset Count

VGG-16 90.1

3192

ResNet 50 91.12

Inception v3 84.1

DenseNet-169 90.7

Proposed model (fine-tuned EfficientNet B3) 95.01
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Table 9. Accuracy calculation for monkeypox disease detection results using the reinforcement
learning approach.

Reinforcement Learning

Model Accuracy

DQN 96.5

DDQN 89.7

Policy Gradient 78.7

Actor–Critic 80.7

Malneural 97.7

Figure 19 represents the analysis of f1 score value for reinforcement learning algo-
rithms; here, four different algorithms are taken, namely, DQN, DDQN, Policy Gradient,
and Actor–Critic. These algorithms are kept as a benchmark and compared with the pro-
posed method called Malneural. DQN obtained an f1 score value around 97.4%, DDQN
obtained an f1 score value around 91.2%, Policy Gradient obtained an f1 score value around
79.0%, and Actor–Critic obtained an f1 score value around 81.1%. Here, the proposed
method obtained a higher accuracy (around 98.1%), which is higher as compared with
the remaining approach. Table 10 represents the accuracy calculation monkeypox disease
detection results using the reinforcement learning approach.

Figure 20 represents the analysis of precision value for reinforcement learning algo-
rithms; here, four different algorithms are taken, namely DQN, DDQN, Policy Gradient, and
Actor–Critic. These algorithms are kept as a benchmark and compared with the proposed
method called Malneural. DQN obtained a precision value around 94.3%, DDQN obtained
a precision value around 89.4%, Policy Gradient obtained a precision value around 89.4%,
and Actor–Critic obtained a precision value around 92.0%. Here the proposed method
obtained a higher accuracy (around 96.1%), which is higher compared with the remaining
approach. Table 11 represents the accuracy calculation for monkeypox disease detection
results using the reinforcement learning approach.

Figure 21 represents the analysis of precision value for reinforcement learning algo-
rithms; here, four different algorithms are taken, namely, DQN, DDQN, Policy Gradient,
and Actor–Critic. These algorithms are kept as a benchmark and compared with the pro-
posed method called Malneural. DQN obtained an f1 score value around 97.4%, DDQN
obtained an f1 score value around 93.0%, Policy Gradient obtained an f1 score value around
70.6%, and Actor–Critic obtained an f1 score value around 72.5%. Here, the proposed
method obtained a higher accuracy (around 98.1%), which is higher compared with the
remaining approach. Table 12 represents the accuracy calculation monkeypox disease
detection results using the reinforcement learning approach.
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Table 10. F1 score calculation for detection of monkeypox disease detection results using the rein-
forcement learning approach.

Reinforcement Learning

Model F1 Score

DQN 97.4

DDQN 91.2

Policy Gradient 79.0

Actor–Critic 81.1

Malneural 98.1
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Table 11. Precision calculation for detection of monkeypox disease detection results using the
einforcement learning approach.

Reinforcement Learning

Model Precision

DQN 94.3

DDQN 89.4

Policy Gradient 89.8

Actor–Critic 92.0

Malneural 96.1

Table 12. Recall calculation for monkeypox disease detection results using the reinforcement
learning approach.

Reinforcement Learning

Model Recall

DQN 97.4

DDQN 93.0

Policy Gradient 70.6

Actor–Critic 72.5

Malneural 98.1

5. Conclusions and Future Scope

In this work, the classification of monkeypox diseases was identified. Initially, a fine-
tuned EfficientNet B3 model was built and executed. The fine-tuned layers includes the
0.5 dropout layer. The reason to add the dropout layer is to reduce the overfitting problem.
One flattened layer, two dense, and two dropout layers are added. The fine-tuned model
reduces the model generalization problem. The parameters include the following: the
optimizer is the Adam optimizer, the learning rate set to 0.001, loss value is set to Binary
cross entropy, and the epoch value set to 200, along with a batch size of 32. The model
was compared with the reinforcement learning approach, namely, DQN, DDQN, Policy
Gradient, and Actor–Critic. The resultant analysis demonstrates that DQN obtained the
highest accuracy (around 0.975). For the monkeypox class, the precision value achieved
around 0.95, the recall value achieved around 0.95, and the f1 score was around 0.95.
For other classes, the precision value achieved around 0.96, the recall value achieved
around 0.96, and the f1 score value was around 0.96. The overall macro average achieved
around 0.95 and the overall weighted average was 0.96. It is envisaged that transfer learning
models will be developed on this dataset in the future and will perform better than the
present CNN models. We also plan to train the models described in the research with bigger
datasets as well. It is also anticipated that generative adversarial network (GAN)-based
CNN models will be developed and evaluated against the current models. Future work
will incorporate this model in clinics and hospitals.
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