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Abstract: Polycystic ovary syndrome (PCOS) has been classified as a severe health problem common
among women globally. Early detection and treatment of PCOS reduce the possibility of long-
term complications, such as increasing the chances of developing type 2 diabetes and gestational
diabetes. Therefore, effective and early PCOS diagnosis will help the healthcare systems to reduce
the disease’s problems and complications. Machine learning (ML) and ensemble learning have
recently shown promising results in medical diagnostics. The main goal of our research is to provide
model explanations to ensure efficiency, effectiveness, and trust in the developed model through
local and global explanations. Feature selection methods with different types of ML models (logistic
regression (LR), random forest (RF), decision tree (DT), naive Bayes (NB), support vector machine
(SVM), k-nearest neighbor (KNN), xgboost, and Adaboost algorithm to get optimal feature selection
and best model. Stacking ML models that combine the best base ML models with meta-learner are
proposed to improve performance. Bayesian optimization is used to optimize ML models. Combining
SMOTE (Synthetic Minority Oversampling Techniques) and ENN (Edited Nearest Neighbour) solves
the class imbalance. The experimental results were made using a benchmark PCOS dataset with two
ratios splitting 70:30 and 80:20. The result showed that the Stacking ML with REF feature selection
recorded the highest accuracy at 100 compared to other models.

Keywords: polycystic ovary syndrome; machine learning; explainable machine learning; ensemble
learning

1. Introduction

Polycystic ovary syndrome (PCOS) affects pregnant women and current mothers.
PCOS affects the health of women by causing hormonal imbalances and metabolism
problems. It is a disease that primarily affects women’s fertility, as 5 to 10% of females
suffer from this disease in their childbearing years (15-45) [1]. It is a hormonal disorder
that causes problems with the ovaries. In the normal state, the ovaries produce hormones
(chemicals that control the functions of the body), namely estrogen (female hormone) and
androgens (male hormones), for normal health [2]. In affected women, the hormones
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are imbalanced, with higher androgens or less estrogen than normal. This causes lumps
(fluid-filled sacs) to grow on the ovaries. These lumps gradually enlarge and then obstruct
the ovulation process. This disruption of ovulation in women with PCOS reduces their
chances of becoming pregnant [3]. Women with PCOS are more likely to develop diabetes,
heart disease, high blood pressure, endometrial thickness, sleep apnea, depression, anxiety,
eating disorders, and endometrial cancer [4]. In addition to genetic factors, environmental
factors may also contribute to PCOS development. In addition to early diagnosis, treatment,
and weight loss, long-term complications can be reduced [5].

Artificial intelligence (AI) has revolutionized the detection and treatment of diseases,
specifically PCOS [6]. Al-based technologies such as machine learning (ML) algorithms
and deep learning networks (DL) have enabled the development of automated systems for
the accurate and reliable detection of heart disease [7,8]. Al-based methods can identify
patterns in medical data, such as hormone levels, to distinguish PCOS patients from those
without the disorder. This improved accuracy could lead to earlier, more accurate diagnoses
and better overall outcomes for PCOS patients. Furthermore, Al-based systems can be used
to monitor patients over time, providing clinicians with valuable insights into potential
treatments and enabling more precise interventions. In short, Al-driven technology has
the potential to revolutionize PCOS detection and treatment, providing more effective and
efficient care for those suffering from the condition.

Feature selection [9] reduces the number of input variables when developing a predic-
tive model. The goal of feature selection approaches in ML [10] is to find the best features
to build effective models of the studied phenomena. It involves automatically selecting
features for your ML model pertinent to the problem you are attempting to solve. We
accomplish this by adding or removing significant features without altering them. It assists
in minimizing the amount of noise in our data and the quantity of our input data. A hybrid
model combines two or more different models or strategies to address a challenge or ac-
complish a goal [11]. A hybrid model can be used in machine learning to combine various
algorithms or strategies to increase a model’s performance and accuracy [12]. For instance,
a hybrid model can improve both the accuracy and efficiency of neural networks and
decision trees by combining both qualities. Combining statistical and rule-based models is
another illustration of a hybrid model.

In ML, there is always a tradeoff between the complexity and performance of the
developed model. A simple model (i.e., linear regression) could be more interoperable
and provide a more understandable explanation than complex ML and DL models [13].
Therefore, providing a clear explanation of such a complex model is a significant point in
increasing trust in the developed model. Explainability is motivated by the lack of model
transparency of complex (black-box) models that lack model trust [14]. Explainable Al
(XAI) techniques improve model predictions” understanding, interpretability, and reliability.
Explainability has two primary levels, i.e., local explainability and global explainability.
Global explainability explains the final decision at the level of all data points. It provides
casual analysis in terms of global fidelity. It only explained the instance level with the
importance of such a level [15]. Local allegiance could explain in terms of all samples. It
provides a more accurate explanation.

Our research aims to provide model explanations to ensure efficiency, effectiveness,
and trust in the developed model through local and global explanations. Feature selection
methods with different types of ML models and proposed are proposed to predict PCOS.
The following are the main contributions of the suggested work:

* A combination of SMOTE (Synthetic Minority Oversampling Techniques) and ENN
(Edited Nearest Neighbour) solves the class imbalance.

¢  Applying feature selection (FS) to reduce data dimensionality and select the optimal
feature set.

*  Applying Bayesian Optimization with cross-validation to optimize ML algorithms
and enhance accuracy.
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¢  Proposing stacking ML and comparing it with different ML models using evaluation
methods, including accuracy (Acc), precision (P), recall (R), F1 score (F1), and area
under the receiver operating characteristic (ROC) (AUC) curve.

*  Increasing the model trust by clearly explaining the final prediction using global and
local explainability terms.

This paper is organized as follows, Section 2 summarizes the related work in the PCOS
domain. The dataset and proposed methodology can be described in Section 3. Section 4
shows the results. Section 5 shows the discussion, including a comparison with related
work and model explainability. The paper concludes in Section 6.

2. Related Work

The authors applied ML models to PCOS from Kaggle to predict PCOS. For example,
in [16], the authors applied gradient boosting, RF, LR, and a hybrid RFLR model that
integrated RF with LR with a univariate feature selection (UFS) algorithm from the PCOS
dataset. They split the dataset using holdout and cross-validation methods to train and test
models. The result showed that RFLR with UFS achieved the highest performance.

In [17], the authors reduced the number of features using Principal Component Analy-
sis (PCA). They applied NB, KNN, LR, RF, and SVM with selected features to predict PCOS.
The result showed that RF achieved the highest accuracy. In [6], the authors used correlation
feature selection methodology to select a subset of features from the database. They applied
different ML models: SVM, LR, RF, DT, KNN, Quadratic Discriminant Analysis (QDA),
Linear Discriminant Analysis (LDA), GB, AdaBoost (AB), XGBoost (XB), and CatBoost,
and obtained the optimal model based on correlation thresholds. The result showed that
RF was the optimal model.

In [18], the authors compared different models, i.e., CNN, ANN, SVM, DT, and KNN,
and applied feature selection methods to diagnose PCOS. RF achieved the best-performing
model. In [19], the authors utilized Pearson correlation to determine the best features.
The applied SVM, RE, and XG boost multi-layer perceptron with selected features to detect
the accuracy rate of their SVM have the highest rate. In [20], the authors proposed a hybrid
feature selection approach using filters and wrappers to reduce the number of features.
Furthermore, they applied different ML models with selected features to predict PCOS.
SVM achieved the highest accuracy.

In [21], they applied SVM, LR, NB, and KNN to detect whether a woman was suffering
from PCOS. They used chi-square feature selection methods to select the top 30 features.
The accuracy of RF has achieved the highest rate. In [16], the authors used RF, DT, SVM,
LR, KNN, XGBREF, and CatBoost Classifier to detect whether a woman was suffering from
PCOS. The result showed that CatBoost recorded the highest accuracy.

In [22], the authors used Gini importance to select features. They applied different
ML models: KNN, DT, SVM, LR, and NB, to detect PCOS. Based on the accuracy, DT
recorded the highest rate. In [23], the authors applied CatBoost, RF, LR, NB, DT, SVM,
and DT. Furthermore, they compared their outcomes in terms of the evaluation matrix.
CatBoost has the highest accuracy in predicting whether a woman should seek medical
help for PCOS. In [24], the authors applied Chi-Square, ANOVA, and Mutual Information
to identify insignificant features from the data. They used selected features to detect PCOS
by applying SVM, LR, DT, NB, XGBRE, RF, and CatBoost. The CatBoost classifier performed
with the best accuracy.

In [25], the authors used ML models: LR, DT, RF, SVM, NB, KNN, AdaBoost, XGBoost,
and Extratrees and DL and proposed multi-stacking ML to predict PCOS. They used
Explainable AI (XAI) techniques to make model predictions understandable, interpretable,
and trustworthy. The result showed that multi-stacking ML recorded the best performance.
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3. Methodology

We applied different ML models: SVM, NB, LR, KNN, RF, DT, XGboost, and AdaBoost,
with FS methods to predict PCOS. We proposed Stacking ML models that combine the best

ML models. Figure 1 shows the phases of prediction PCOS.

Machine Learning modsls

SIS . .| Sampling data
PCOS ]—) Data cleaning *| using SMOTEENN
| dataset | :
Feature selection methods
RFE Mutual_info Tree based
Splitting dataset > §
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5 XGboost RF RF
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e
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Figure 1. The phases of prediction PCOS.

3.1. Database Description

We used the PCOS dataset from Kaggle [26], which includes 541 instances and 41 at-
tributes. There are 178 instances of the positive class (1) and 363 instances of the negative
class (3). The dataset has a mismatched distribution of classes. The dataset includes
two files—we merged two files: PCOS_infertility and PCOS_data_without_infertility,
and deleted redundant columns. Table 1 shows the details of the database features.
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Table 1. Dataset features description details.

Feature Name Abb Description
Patient File No. Patient file number (unique identifier)
Polycystic Ovary Syndrome  PCOS Class label (determine if the patient has this syndrome or not)
Age AGE Patient’s age in years
Weight WEIGHT Patient’s weight in KG
Height HEIGHT Patient’s height in CM
Body Mass Index BMI Body mass index of the patient (height/weight)
Blood Group BG Patients belong to which blood group
(A+, A-, B+, B-, O+, O-, AB+, AB-)
Pulse Rate PR Heartbeat per minute
Respiration Rates RR Respiration rates per minute
Hemoglobin HB Number of red blood cells in patient’s body
Cycle CYCLE Length of the menstrual cycle
Cycle Length CL Number of days of a cycle
Marriage Status MS Number of years since marriage
Pregnant p Pregnant status
No. of Abortions AB No. of abortions
I Beta-HCG BETA_I Amount of human chorionic gonadotropin
Beta Healthy Singleton BETA 1I Beta HCG level is indication of 100 mIU/ml
Pregnancy a about 16 days after ovulation,
Follicle-Stimulating FSH Attributes ranging from 0.3 to 10.0 mIU/mL
Hormone indicate if are still menstruating or have undergone menopause
Luteinizing Hormone LH Chemical agitator that stimulates the reproductive system

Follicle-Stimulating Hormone/ pspy /1 H

Luteinizing Hormone

Ratio of FSH and LH

Hip Size HIP Size of hip in inches

Waist Size WAIST Size of waist in inches

Waist-Hip Ratio HIP_RATIO Waist size proportion to hip

I"I:Il;};lr‘gf)i—(ftimulating TSH Amount of TSH in the blood

Anti-Mullerian Hormone AMH Plays a key role in developing a baby’s sex organs
while in the womb

Prolactin levels PRL Prolactin levels in women’s bodies

Vitamin D VIT_D3 Vitamin D levels

Progesterone Levels PRG Progesterone levels

Random Blood Sugar RBS Value of random blood sugar (RBS) test

Weight Gain WG Test to check if the patient gains weight

Hair Growth HG Test to check if a patient has hair growth

Skin Darkening SD Test to check the appearance of darkness in skin
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Table 1. Cont.

Feature Name Abb Description

Hair Loss HL Test to check hair loss

Pimples PIMPLES Pimple issues

Fast Food FF Check if fast food part of the diet
Reg.Exercise RE Check if patient exercises on a regular basis

Blood Pressure Systolic

BP_SYSTOLIC: Amount of pressure in the arteries when the heart is contracting

Blood Pressure Diastolic BP_ Diastolic Amount of pressure in the arteries while
the heart is resting in between heart beats
Follicle No. FN Follicle number in the left side

3.2. Data Processing

This stage aims to enhance the quality of the utilized dataset, as it include several
missing values and outliers. Medical datasets commonly suffer from such issues due
to various causes, including device failure, network loss, irregular time recording, etc.
Unfortunately, Several ML models are sensitive to outliers; most cannot handle missing
values. Data preprocessing include filling in missing data and data encoding.

Filling Missing Values

Many statistical approaches exist to deal with missing data, but it mainly depends
on how much data are missing and the importance of the feature missing [27]. When the
fraction of the missing data is between 5% and 10%, traditional statistical approaches, such
as mean, max, and mode, work exceptionally well. When the fraction of missing values is
20-50%, sophisticated approaches, such as hot-deck [28] and expectation maximization [29],
are appropriate. To ensure data reliability in our used data, we choose to remove features
with more than 30% missing values. Features with missing values that are less than 30%
are imputed using feature means. Remove columns that include many null values: BMI,
FSH/LH, and Waist:Hip Ratio. Furthermore, we drop Sl. No, Patient File No. Columns.
Filling NA values with the median of that feature: Marraige Status (Yrs), Il beta-HCG
(mIU/mL), AMH (ng/mL), and Fast food (Y/N).

3.3. Data Encoding

Categorical and numeric features are combined in the utilized dataset. Numeric
features perform better with ML and DL than categorical ones, unfortunately. Therefore,
we encoded all categorical features using the label encoder module of the Scikit-learn
library.

3.4. Sampling Data

We used SMOTEENN to re-sampling data. The SMOTE-ENN method combines the
SMOTE and ENN techniques. SMOTE is an oversampling method, and ENN is an edited
closest neighbor undersampling method (ENN). In the ENN approach, the observation
and its KNN are removed from the dataset if the majority class of the observation’s KNN
and the observation’s class are different. Due to this, information about the minority class
in the majority class is lost. By doing this, the bias towards the majority class is lessened,
which enhances the performance of machine learning models [30].

3.5. Feature Selection Techniques

An optimal feature subset is determined by feature selection (FS), which removes
irrelevant features to increase learning accuracy [31,32]. The feature subset is chosen from
the original feature set based on feature relevance and redundancy. As shown in Figure 2,
FS is categorized into three main types according to the interaction with the utilized model:
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filter approach, wrapper approach, and embedded approach. The following subsection
details the different approaches of FS. Our study used one method of each type, such as
mutual information-based, REF, and tree based (RF).

< All Features >

Feature selection ey Feature selection Feature selection
Learning Algorithms | 2 Learning Algorithms £ Learning Algorithms
l Yes Yes
Performance
Evaluation —
Filter Approach Performance
Evaluation Embded Approach
Wrapper Approach

Figure 2. The different types of feature selection methods.

3.5.1. Filter Approach

The filter approach utilizes statistical tests to score all features and select the best,
independent of the learning algorithm a mutual information-based [33], correlation coeffi-
cient [34], and the Chi-square test (Chi2) [7].

3.5.2. Wrapper Approach

The wrapper approach mainly depends on the performance of the learning algorithm.
The chosen feature subsets estimate the model performance. According to the model
performance, the algorithm adds or removes features until the optimal feature subset is
reached. It is more computationally expensive than the filter approach because it repeats
the learning and evaluation process. However, it is considered to be more accurate and
efficient than the filter approach. The best feature subset is mainly chosen based on the
classifier performance. Sequential feature selection [35] and recursive feature elimination
(RFE) [36] is an example of this approach.

3.5.3. Embedded Approach

The third method is the embedded approach. This approach uses both ensemble and
hybrid learning to make FS. It works by choosing the best features during the learning
process. Selecting the optimum feature subset chosen during the training process takes
advantage of enhancing computational cost. Since it depends on a collective decision, its
performance is better than the filter and wrapper approach regarding computational cost
and classification accuracy. Several techniques developed in terms of embedded FS include
tree based (RF) and Relevant Sample-Feature Machine (RSFM).

3.6. Splitting Dataset

The PCOS was split into two sets using a stratified sampling method, i.e., a ratio of 80%
training set and 20% testing sets and a ratio of 70% training set and 30% testing set. Training
sets are used to train and optimize models; the testing sets are used to evaluate models.



Diagnostics 2023, 13, 1506

8 of 21

3.7. Models Optimization and Training

Bayesian Optimization (BO) is used to optimize diffident ML models using training
sets and cross-validation.

3.7.1. ML Models

We used different ML models, namely logistic regression (LR) [37], random forest
(RF) [38], decision tree (DT), naive Bayes (NB) [39], support vector machine (SVM) [40],
k-nearest neighbor (KNN) [41], Xgboost [42], and the Adaboost algorithm [43].

3.7.2. Bayesian Optimization

Hyperparameter optimization techniques aim to find the optimum hyperparameter
that gives the best performance on a validation set [44]. It can be represented with the
following Equation [44]:

x* = argmin f(x) (1)
cex

where x* is the optimum hyperparameter list that will give the best performance, f(x) is
the objective that needs to be minimized, such as the error rate evaluated based on the
validation set, and ¢ represents any value in the x domain [44].

Using uniform hyperparameter optimization such as grid search and random search
gives enhanced performance over a manual search. It starts with a list of values for each
hyperparameter and runs a train-predict-evaluate loop. The problem with this approach is
that it is completely uniform and does not consider the previous evaluation. Therefore, it
could take significant time to evaluate bad hyperparameters. In contrast, BO considers past
performance when building a probability model of the objective function [45].

This model is known as a “surrogate” that could represent (p(Y | X). This model works
by finding the next list of hyperparameters that perform best according to the surrogate
function.

3.8. Stacking Machine Learning

The ensemble model builds on combining decisions from several models to improve
the model’s overall performance. This approach enhances performance over a single
model [46,47]. Bagging, boosting, and staking are the most popular ensemble techniques.
Stacking is an ensemble technique that combines different classifications through a meta-
classifier [48]. The base model (base classifiers) is trained on the dataset, after which it
meta-learns the features that are out of the base classifiers. Therefore, stacking is considered
to be one of the more sophisticated heterogeneous classifiers. The architecture of the
stacking model includes two or more base models called base-learning, and level-2 is the
meta-learning layer that combined the base model’s prediction. Figure 1 shows the general
architecture of the stacking ensemble model.

3.9. Evaluating Models

As illustrated in Equations (1)—(4), the models are evaluated using four methods:
accuracy, precision, recall, and F-score, where TP indicates true positive, TN indicates true
negative, FP indicates false positive, and FN indicates false negative:

TP+ TN

Accuracy = TP+ EP+ TN £ EN’ (2)
. TP
Precision = TP+ P 3)
TP
R = 4
ecall = 75 FN @
2. ision -
Foscore — 2. Precision recall 5)

precision + recall
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Furthermore, the models evaluated by the ROC [49] curve is a graphical representation
of the performance of a binary classification model. FPR is shown at different classification
thresholds. A positive TPR represents the percentage of positive cases that are correctly
classified as positive, while a negative FPR represents a percentage of negative cases that
are incorrectly classified as positive; AUC (Area Under the Curve) [49] is a measure used
to evaluate the performance of a binary rating model, and measures the area under the
receiver operating characteristic (ROC) curve, with different rating thresholds, i.e., TPR
versus FPR.

4. Experimental Results
4.1. Experiment Setup

This section presents and discusses the experimental results. Scikit-learn was used to
develop the ML models. Google Colab was used to conduct the experiments. Furthermore,
the stacking ML models were compared with different ML models based on various feature
selection methods (RFE, tree based, and mutual_info). The performance of the models is
recorded with two ratios of 20:80 and 30:70 training and testing sets.

4.2. Feature Selection Methods

These experiments investigate the essential features of feature selection methods
applied to the PCOS dataset.

4.2.1. Scores of Selected Features by Mutual_Info

After applying mutual_info to the dataset, the score of each feature is shown in Figure 3.
We can see that FL_R has the highest score at 0.33584, and FN_L has the second-highest
score at 0.317744. Beta_I, MS, and Cycle have approximately scores of 0.1447437, 0.143511,
and 0.1412555, respectively. Vit_D3, PRL, RE, HL, Waist, and TSH have the lowest scores.
Aborptions and Pregnant have zero sores. We selected the 30 highest features for applying
ML models.

0.35
03
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0.2
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HB m——
SD
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RE mm
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BP_Systolic n——
Endometrium m——

Features

Figure 3. Scores of selected features by mutual_info.

4.2.2. Importance of Selected Features by Tree Based

Figure 4 shows importance of features that are selected features by based tree. FL_R
has the highest importance at 0.189997, and FN_L has the second-highest score at 0.176050.
CL and AMH have approximate importance of 0.067357 and 0.06720, respectively. RE,
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Pregnant, HL, and Pimples have the lowest score. We selected the 30 highest features to
apply to the ML models.

0.2

Importance
o o o o
o i i i i
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o
o
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beta_| m—m
PRG mmmm

FN_L

Vit_D3 m—
beta_|l mm

Endometrium m—

Features

Figure 4. Sores of selected features by based tree.

4.2.3. Ranking of Selected Features by RFE

Figure 5 shows REF’s ranking of features; 30 top features have a ranking of 1, such as
Age, Weight, Height, BG, PR, HB, Cycle, CL, and MS. The worst features are aborptions
and BP_Diastolic, which have a ranking of 5.

4.5
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Features

Figure 5. Ranking of the selected features by RFE.

4.3. Performance of the Classifiers with Selected Features Using Splitting 80:20

This subsection presents the experimental results of selected features by mutual_info,
RFE, and tree based, which are used to train and evaluate the various classifiers with 80:30
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splitting. These results are summarized in Table 2. The different classifiers” AUC values
and ROC curves are shown in Figure 6.

Table 2. Performance of the classifiers with selected features using splitting 80:20.

Feature Selection Methods Models ACC PRE REC F1
RF 9683 9683 9683  96.83
LR 96.83 9697 9683  96.78
DT 9524 9534 9524 9526
NB 9524 9556 9524  95.14
mutual info KNN 9524 9556 9524  95.14
SVM 9%.83 9710 9683  96.86
XGB 9812 9810 9812  98.12
AdaBoost 9524 9534 9524 9526
Stacking ML 9841 9848 9841  98.42
RF 9841 9845 9841 9840
LR 983 9697 9683 9678
DT 9365 9399 9365 93.72
NB 9841 9845 9841  98.40
RFE KNN 9524 9556 9524  95.14
SVM 96.83 9683 9683  96.83
XGB 9841 9845 9841 9840
AdaBoost 9841 9845 9841 9840
Stacking ML 100 100 100 100
RF 96.83 9683 9683  96.83
LR 9206 9202 9206 9201
DT 9365 9399 9365 93.72
NB 9524 9523 9524 9521
Tree based KNN 93.65  93.65 9365  93.65
SVM 96.83 9683 9683  96.83
XGB 96.83 9683 9683  96.83
AdaBoost 96.83 9683 9683  96.83

Stacking ML 97.41 97.45 97.41 97.4

Overall, Stacking ML with RFE achieved the highest ACC, PRE, REC, F1, and AUC.
For Info_mun, Stacking ML combined the best models to obtain the final prediction and im-
prove performance by 1%, with the highest AUC, ACC, PRE, REC, and F1 of 99, 98.48, 98.41,
98.42, and 98.81, respectively, compared to other models. XGB demonstrated the second-
best performance. As we can observe, NB and KNN performed similarly (ACC = 95.24,
PRE =95.56, REC =95.24 and F1 =95.14, AUC = 92.86).

For RFE, Stacking ML combined the output of the best models: RF, NB, XGB, and Ad-
aBoost, to obtain the final prediction and improve performance by 1.5 with the highest
AUC, ACC, PRE, REC, and F1 of 100, 100, 98.41, 100, and 100, respectively. As we can ob-
serve, REF, NB, XGB, and AdaBoost demonstrate the second-best performance (ACC =98.41,
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PRE = 98.45, REC =98.41, and F1 = 98.40, AUC = 97.62). KNN recorded the lowest perfor-

mance (ACC =93.65, PRE = 93.99, REC =93.65 and F1 = 93.72, AUC = 94.05).
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Figure 6. ROC curves of splitting 80:20.

For tree based, Stacking ML combined the best models, i.e., RF, SVM, XGB, and Ad-
aBoost, to obtain the final prediction and improve performance by 1.5 with the highest
ACC, PRE, REC, F1, and AUC of 97.41, 97.45, 97.41, 97 4, and 97.62, respectively. As we
can observe, RF, SVM, XGB, and AdaBoost demonstrate the second-best performance:
(ACC =96.83, PRE = 96.83, REC =96.83, F1 = 96.83, AUC = 96.43). KNN recorded the
lowest performance (ACC = 93.65, PRE = 93.65, REC = 93.65, F1 = 93.65, AUC = 92.86).

4.4. Performance of the Classifiers with Selected Features Using Splitting 70:30

This subsection presents experimental results of selected features by mutual_info, RFE,
and tree based are used to train and evaluate the various classifiers with 70:20 splitting.
These results are summarized in Table 3. The different classifiers” AUC values and ROC
curves are also shown in Figure 7. Overall, Stacking ML with RFE achieved the highest
ACC, PRE, REC, F1, and AUC.
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Table 3. Performance of the classifiers with selected features using splitting 70:30.

Feature Selection Methods Models ACC PRE REC F1
RF 9468 9466 9468  94.66
LR 9043 9039 9043  90.30
DT 9255 9258 9255 9246
NB 7979 8215 7979  80.24
mutual_info KNN 8404 8501 8404 8429
SVM 9149 9144 9149 9142
XGB 93.62  93.61  93.62  93.56
AdaBoost 9574 9574 9574 9574
StackingML 9681 9681 9681  96.80
RF 9574 9577 9574 9571
LR 93.62  93.61  93.62  93.56
DT 9255  92.83 9255  92.38
NB 8511 8539 8511 8521
RFE KNN 8936 8928 8936  89.27
SVM 9681 9681 9681  96.80
XGB 9468 9466 9468  94.66
AdaBoost 9681 9686 9681  96.82
StackingML ~ 98.87 9800 9887  98.89
RF 9581 9581 9581  95.80
LR 93.62  93.62  93.62  93.62
DT 9255 9258 9255  92.46
NB 8723  87.89 8723  87.40
Tree based KNN 80.85  82.83  80.85  81.25
SVM 9681 9681 9681  96.80
XGB 9255 9263 9255  92.58
AdaBoost 9681 9681 9681  96.80

Stacking ML 97.81 97.81 97.81 97.8

For mutual_info, Stacking ML combined the best models to obtain the final prediction
and improve performance by 1%, with the highest ACC, PRE, REC, and F1 of 96.81,
96.81, 96.81, and 96.80, respectively, compared to other models. AdaBoost obtained the
second-best performance for ACC, PRE, REC, and F1, i.e., 95.74, 95.74, 95.74, and 95.74,
respectively. NB registered the lowest ACC, PRE, REC, and F1, i.e., 79.79, 82.15, 79.79,
and 80.24, respectively.

For RFE, Stacking ML combined the best models to obtain the final prediction and
improve performance by 1%, with the highest ACC, PRE, REC, and F1 of 98.87, 98.00, 98.87,
and 98.89, respectively, compared to other models. AdaBoost obtained the second-best
performance for ACC, PRE, REC, and F1, i.e., 96.81, 96.86, 96.81, and 96.82, respectively. NB
registered the lowest ACC, PRE, REC, and F1, i.e., 85.11, 85.39, 85.11, and 85.21, respectively.

For tree based, Stacking ML combined the best models to obtain the final prediction
and improved performance by 1%, with the highest ACC, PRE, REC, and F1 of 97.81, 97.81,
97.81, and 97.8, respectively, compared to other models. AdaBoost and SVM obtained the
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second-best performance for ACC, PRE, REC, and F1, i.e., 96.81, 96.81, 96.81, and 96.80,
respectively. NB registered the lowest ACC, PRE, REC, and F1, i.e., 87.23, 87.89, 87.23,
and 87.40, respectively.
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Figure 7. ROC curves of splitting 70:30.

5. Discussion

A summary of the experimental results is presented in this section. Additionally, we
discuss which model is best for each method of selecting features. The proposed model is
also compared to previous studies. Furthermore, model explainability is discussed.
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5.1. The Best Models

Overall, Stacking ML with RFE achieved the highest ACC, PRE, REC, F1, and AUC.
Figure 8 shows the best models for each of the 20-80 feature selection methods. Stacking ML
with RFE achieves the highest percentages of different evaluation metrics at 100. Stacking
ML with tree based recorded has the lowest ACC, PRE, REC, and F1 performance at 97.41,
97.45,97.41, and 97 4, respectively.

100
99.5
929
97.
9
96.
96
ACC PRE REC F1

M Stacking ML with mutual_info m Stacking ML with RFE m Stacking ML with tree based

Performance
o
© o0
~ (9, ] 00 (%, ]

(]

Figure 8. The best models for 80:20 splitting.

Figure 9 shows the best models for each of the 20-80 feature selection methods.
Stacking ML with RFE achieved the highest percentages of different evaluation metrics at
ACC, PRE, REC, and F1 at 98.87, 98.00, 98.87, and 98.89, respectively. Stacking ML with
mutual_info recorded the lowest performance of ACC, PRE, REC, F1, and AUC at 96.81,
96.81, 96.8, and 96.42, respectively.

99

98.5

95.5
ACC PRE REC F1

B Stacking ML with mutual_info ® Stacking ML with RFE m Stacking ML with tree based
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(-]
© N ©
~ (%) ] (-]

(%]
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)]

Figure 9. The best models for 70:30 splitting.
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5.2. Comparison with Previous Studies

Table 4 compared previous studies and the proposed model. We can see that our work
achieved the highest ACC compared to other studies. In [16], the authors proposed an
RFLR hybrid model, applied it with UFS, and achieved an ACC of 91.01. In [17], PCA with
RF recorded an ACC of 89.02. In [6], RF with correlation recorded an ACC of 92.4. In [19],
SVM with Pearson correlation recorded an ACC of 91.6. In [20], ACC was 91.6 SVM with
hybrid feature selection. In [21], RF with chi-square recorded an ACC of 90.9. In [22], DT
with Gini importance recorded an ACC of 92.59. In [25], multi-stack of ML recorded an
ACC of 98.

Table 4. Comparison with previous studies.

Papers Methods Accuracy
[16] RFLR with UFS 91.01
[17] RF with PCA 89.02
[6] RF with correlation 92.4
[18] RF 96
[19] SVM with Pearson correlation 93
[20] SVM with hybrid feature selection 91.6
[21] RF with chi square 90.9
[22] DT with Gini importance 92.59
[25] multi-stack of ML 98

Our work Stacking ML with RFE 100

5.3. Model Explainability

Explainability has two primary levels, i.e., local explainability and global explainability.
Global explainability explains the final decision at the level of all data points. It provides
casual analysis in terms of global fidelity. It only explained the instance level with the
importance of such a level [15]. Local fidelity could explain in terms of all samples. It pro-
vides a more accurate explanation. To identify causality and description of the best model
(Stacking ML with RFE), in this section, we describe the final decision of the output in terms
of global explainability (at the level of a dataset) and local explainability (instance level).

5.3.1. Global Explainability

Figure 10a shows the bar plot of the feature importance of each feature with the
developed model; in other words, it displays the collective contribution of the features
and the less critical features. Figure 10b shows the cohort plot, which divides the total
test data into two groups according to the most affected features in all data. As shown
in Figure 4, the total data are divided into two main groups according to the number of
follicles. The total samples were divided into two groups according to the optimal threshold.
Follicles number = 6.5. The bar plot shows that the most affected reason that the instance
belongs to the hormonal disorder class is that FL_R (SHAP = 0.09), cycle (SHAP = +0.14),
and age (SHAP = 0.07). To provide more information, Figure 5 shows the heat map that
shows the importance of the variables in terms of a horizontal bar that shows the rank of
the variables from highest to lowest. This importance explains the global interoperability
of the developed model. Our developed model depends on FN_L, cycle, and FN_R as
the three most important features that affect the overall decision. Sample 32 has a high
prediction, which means that FN_L has a significant effect on the prediction. The heatmap
in Figure 11 shows the number of instances in the test data in the x_axis, and the curve of
F(x) above the plot shows the model prediction for the cases. The observations are also
arranged in a way that colors are collected together.
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Figure 10. Global explainability of the developed model: (a) bar plot (b) Cohort plot.
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Figure 11. Heatmap of the developed model.

5.3.2. Local Explainability

Many methods are utilized to explain the prediction at the instance level. In this
section, we provide several methods to explain the model in terms of instances, such
as force plot, water full plot, and summary plot. First, the waterfall plot clarifies why
the instance receives the developed value prediction. Figure 12 shows the prediction of
the first observation. The prediction for the first observation was 1; this value ranges
from (0.665 + 0.2 + 0.09 + 0.6 — 0.03 + 0.01 + 0.01). The values that bedside the variable
name refer to the value of the instance feature FN_1 = 9, age = 24, etc., and the number in
the arrows shows how these features positively or negatively contribute to the decision
as shown in Figure 12. The same is true in Figure 12b, which shows the prediction for
observation 2 and the values for each feature, and how each feature contributes to the
final decision. Second, the force plot explains the key factors. As shown in Figure 13a,b,
the plot states that the final prediction of the observation’s higher score led the model to
predict 1. In the figure, the bold score was 0.87 for that observation. This means that the
observation is highly correlated with class 1. Features with a red color in the horizontal
line represent the features that push the model towards a high score, while blue represents
features that make the model move towards a low score. Features significantly impacting
the final prediction are closer to the dividing boundary between the red and blue areas.
All features are sorted from more important to less in the horizontal line in red and blue
areas. The same is true for observation 2. The total score was 0. It belongs to class 0 vit_D,
and PRG is the feature that pushes the prediction to a high score, and all other features,
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such as FN_L, FN_R, age, etc., push the prediction to a low score. Figure 14 shows the
collective force plot for the developed model. A collective force plot treats the same way as
an individual force plot; rotate all samples 90 degrees and add them together.

ﬂIX) 1 fix)
2 =hge 90,085 = Weight
1=FLR “FLR
2-Cyle 003 ‘I Cyde 003 'I
158 = Height ’*001 45 = Hip ’ .01
17354 =PRL ) w001 mor-veps 2o
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Figure 12. Full water plot for the first and second observation: (a) first observation; (b) second obser-

vation.
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Figure 13. Individual fore plot for several instances according to the developed model (a) for
observation 1 and (b) for observation 2.

Figure 14. Collective force plot for the developed model.
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6. Conclusions

The main objective of our paper is to provide an early detection model for PCOS.
The early detection of PCOS reduces the possibility of long-term complications. Several
ML utilized to build the proposed stacking ensemble ML model. It combines diverse ML
models (LR, RF, DT, NB, SVM, KNN, xgboost, and Adaboostare) at the base learner level
with RF at the meta-learner level is proposed to improve the performance of a single ML.
The following steps apply to build the proposed model: (1) SMOTEENN is applied to
the PCOS dataset to solve the class imbalance; (2) Feature selection methods (RFE, tree
bases, and mutual info) are applied to select the optimal subset of features; (3) Bayesian
optimization finds the optimum hyperparameter that performs best on a validation set;
(4) Data are split using two ratios, 70:30 and 80:20; (5) The stacking ensemble model is built
with several ML in the base learner level and RF meta learner. The result showed that the
Stacking ML with REF feature selection recorded the highest performance at 100 compared
to other models with 80:20. It achieved the highest percentages of different evaluation
Metrics at ACC, PRE, REC, and F1 at 98.87, 98, 98.87, and 98.89, respectively. To ensure
model trust, efficiency, and effectiveness, our research also provides model explanations
both at the model level (global explanation) and at the instance level (local explanation).
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