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Abstract: Aims: Identifying patients who may benefit from mechanical circulatory support (MCS)
after out-of-hospital cardiac arrest (OHCA) and return of spontaneous circulation (ROSC) remains
challenging; thus, a search for helpful biomarkers is warranted. We aimed to evaluate phosphate
and lactate levels on admission regarding their associations with survival with and without MCS.
Methods: In 224 OHCA patients who achieved ROSC, the initial phosphate and lactate levels were
investigated to discriminate in-hospital mortality by receiver operating characteristic (ROC) curves.
According to the Youden Index (YI) from the respective ROC, the groups were risk stratified by
both biomarkers, and 30-day mortality was analyzed in patients with and without MCS. Results:
Within the entire collective, MCS was not associated with a better chance of survival. Both phosphate
and lactate level elevations showed good yet comparable discriminations to predict mortality (areas
under the curve: 0.80 vs. 0.79, p = 0.74). In patients with initial phosphate values > 2.2 mmol/L
(>YI), 30-day mortality within the MCS cohort was lower (HR 2.3, 95% CI: 1.4–3.7; p = 0.0037). In
patients with lower phosphate levels and groups stratified by lactate, 30-day mortality was similar in
patients with and without MCS. Conclusions: We found a significant association between survival
and MCS therapy in patients with phosphate levels above 2.2 mmol/L (Youden Index), and a similar
discrimination of patient overall survival by lactate and phosphate. Prospective studies should assess
the possible independent prognostic value of phosphate and its clearance for MCS efficiency.

Keywords: phosphate; mechanical-circulatory-support; out-of-hospital cardiac arrest; survival; ROSC

1. Introduction

Out-of-hospital cardiac arrest (OHCA) remains a frequent cause of death in western
countries, with an incidence of 1 per 1000 [1]. While the return of spontaneous circula-
tion (ROSC) is mandatory for survival, several factors, such as bystander CPR, an initial
shockable rhythm, or a high chest compression fraction, are key features previously asso-
ciated with a higher chance of ROSC [2,3]. Following OHCA and after achieving ROSC,
a severe complication shown by numerous patients is a deteriorating hemodynamic sit-
uation, ultimately worsening the chance of survival and neurological outcome [4,5]. To
date, algorithms to predict the overall outcome are imprecise in light of a possible threat of
hemodynamic instability following ROSC. Whereas several parameters, such as time to
ROSC, initial rhythm, bystander CPR, or cause of CA, were associated with survival [6,7],
forecasting an immediate cardio-circulatory deterioration remains challenging.

The Society for Cardiovascular Angiography and Interventions (SCAI) recently re-
leased an updated shock stage classification in an attempt to stratify patients correctly

Diagnostics 2023, 13, 1523. https://doi.org/10.3390/diagnostics13091523 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13091523
https://doi.org/10.3390/diagnostics13091523
https://doi.org/10.3390/diagnostics13091523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-1098-9284
https://orcid.org/0000-0002-1734-6177
https://orcid.org/0000-0002-6352-2565
https://orcid.org/0000-0001-8325-250X
https://orcid.org/0000-0002-3373-652X
https://doi.org/10.3390/diagnostics13091523
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13091523?type=check_update&version=1


Diagnostics 2023, 13, 1523 2 of 11

according to their clinical symptoms, biochemical markers, and hemodynamics [8]. The
classification mentioned Mechanical Circulatory Support (MCS) as a bail-out strategy to
restore stable circulation by assisting cardiac function. In OHCA patients under ongoing
CPR, MCS seems highly valued as it might counteract metabolic derangements induced
by long-lasting CPR and circulatory instability, which is also mirrored by the fact that it is
recommended in the 2021 ERC Guidelines as a rescue therapy [9–11].

Whereas the SCAI scale facilitated a shock stage categorization, clear criteria for
physicians to decide which patients should receive MCS are missing. Clinically used scores
for risk stratification in patients with cardiogenic shock after OHCA show only moderate
accuracy in patients treated with MCS [12]. The American Heart Association (AHA)
currently recommends an individual decision for every shock patient after consulting with
the shock team based on the best existing information at the time of the decision [13].
However, an evidence-based, generally available recommendation for physicians to use
MCS is currently open for question [5]. Identifying prognostication parameters that are fast
and feasible to determine might improve the treatment algorithms, as they would augment
the best existing information at the time. Even in light of the benefits of circulatory support,
MCS remains an invasive procedure, and several trials showed no benefit from MCS in
cardiogenic shock (CS) patients [14–16], reflecting that MCS should not be routinely used
in all patients with CS.

Lactate, a known marker for tissue hypoxia [17], has previously been associated with
survival following OHCA [18]. Its inclusion in the shock group stratification by the SCAI
highlights its importance in hemodynamic alterations [8], making it probably the most
important prognostic biomarker in intensive care. Additionally, lactate levels seem to reflect
30-day mortality in patients with cardiogenic shock treated with MCS [19,20], suggesting
their prognostic value for MCS implementation.

We previously found a moderate correlation between lactate and phosphate levels in
CA patients [21]. In addition, we and others found initial serum phosphate level elevations
associated with a higher risk of mortality after CA [21–23]. Serum phosphate plays a
crucial role in cellular energy production [24], and it maintains mitochondrial membrane
potential [25]. However, it contributes to the acidosis following CA [26,27], making it a
surrogate biomarker for microperfusion and tissue vitality. In this retrospective study, we
hypothesized that initial phosphate level elevations might discriminate similarly well as
lactate those patients after ROSC, in whom MCS would be associated with a greater chance
of survival.

2. Methods
2.1. Study Design and Population

This study was a retrospective observational cohort, single-center study performed
at the University Hospital in Duesseldorf. The analysis screened 388 OHCA patients
who were treated between 2016 and 2019. Inclusion criteria were non-traumatic OHCA
with ROSC, aged ≥18 years, and with recorded serum phosphate at admission. Data
were collected from the clinical data information systems (Medico (Cerner GmBh Berlin,
Germany) and PEGASOS (Nexus/Marabu GmBh Berlin, Germany)).

This study was approved by the ethics committee of the Medical Faculty of the
Heinrich-Heine-University in Duesseldorf, Germany, with the reference number 2018-153-
KFogU. Due to the retrospective nature of our study, informed consent was waived by the
ethics committee.

Based on the entire collective, we first analyzed the relationship between initial phos-
phate levels and the risk of mortality using receiver operating characteristic (ROC) curves.
We and others have previously shown that phosphate can act as a prognostic marker in CA
patients achieving ROSC [21,22]. Based on the initial analysis, we stratified OHCA patients
into low- and high-risk groups with the respective cutoffs from the overall cohort, according
to the Youden Index (YI). The primary endpoint of the study was the risk of mortality in
high- and low-risk patients (stratified by phosphate) with and without MCS. We compared
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these analyses with the mortality of risk-stratified groups based on the calculated YI of
lactate within the overall cohort as a known and established prognostic marker [18,19,28]
routinely used in intensive care.

2.2. CPR and Mechanical Circulatory Support

Cardiopulmonary resuscitation was performed according to the 2015 guidelines of the
European Resuscitation Council [29]. MCS was used if indicated by the individual decision
of the attending physician. Two different types of MCS were used: Impella CP (Abiomed,
Danvers, MA, USA) and Sorin Lifebox (Sorin Group, Munich, Germany). Subsequently, the
patients were transferred to an intensive care unit, where target temperature management
with a target of 34 ◦C was established for 24 h, followed by 72 h of normal body temperature.

2.3. Statistical Analysis

Demographic data were presented as means ± standard error of the mean (SEM).
Differences between the groups were investigated by unpaired t-tests (normally distributed
data, as indicated by the Kolmogorov–Smirnov test) or the Mann–Whitney test (non-
normally distributed data). ROC analyses with the initial phosphate and lactate levels were
performed to identify their prognostic value for in-hospital mortality. From the ROC curve,
the YI of phosphate and lactate could be derived, which facilitated the classification of low-
and high-risk patients. Survival was assessed by Kaplan–Meier analyses using the log-rank
(Mantel–Cox) test to assess 30-day mortality. Significance was assumed if p < 0.05. The
statistical analyses were performed in GraphPad Prism 9.3.0 for macOS/Windows.

3. Results
3.1. Study Population

Of the initially screened 388 OHCA patients, 125 did not reach ROSC, 23 received MCS
before ROSC, and 16 had no recorded serum phosphate on admission. These patients were
excluded a priori. The remaining 224 OHCA patients were included in the retrospective
analysis (Figure 1).
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Figure 1. Flowchart representing screened and included OHCA patients with exclusion reasons.
Stratification was performed according to the Youden Index.

Overall and within the entire collective, MCS was not associated with a greater chance
of survival (Figure 2).

The mean age of the OHCA patients was 65.6 (±0.98) years, with a higher proportion
of males (65.9%, Table 1). In 39.8%, the interventionalist deemed acute myocardial infarction
(AMI) the cause of CA. Bystander CPR was performed in 44%, and the mean time to ROSC
was 27 ± 1.71 min. In total, 34 patients received MCS (15%). Patients surviving hospital
discharge showed a lower time to ROSC (p < 0.0001) and higher proportions of an assumed
AMI (52.6 vs. 27.1%, p = 0.0001), a witnessed CA (65.4 vs. 82.5%, p = 0.0061), and an initial
shockable rhythm (73.6 vs. 38.9%, p < 0.0001) than deceased patients. The complete baseline
characteristics of the entire collective are shown in Table 1.
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Figure 2. Comparison of survival in OHCA patients achieving ROSC with the following MCS.
Kaplan–Meier curve representing the 30-day survival of OHCA patients ± MCS. All patients: n = 224,
of which w/o MCS: n = 190 and with MCS: n = 34. Log-rank (Mantel-Cox) test: OHCA patients ± MCS
p = 0.0611.

Table 1. Baseline characteristics of the studied population of OHCA patients achieving ROSC.

Mean ± SEM, N = 224 Total

Study Population

age [years] 65.4 ± 0.99
gender [% male] 65.6
survival [%] 42.4

Initial Laboratory Values

phosphate [mmol/L] 2.34 ± 0.07
creatinine [mg/dL] 1.5 ± 0.07
lactate [mmol/L] (n =154) 8.15 ± 0.47
potassium [mmol/L] 4.5 ± 0.07
LDH [U/L] 646.5 ± 57.8
NSE [µg/L] (n = 193) 103.6 ± 7.87

CPR Data

MCS [%] 15.2
AMI [%] 37.1
bystander CPR [%] 44.8
initial rhythm (VT/VFib) [%] 49.6
time to ROSC [min] 25.2 ± 1.7
witnessed arrest [%] 71.9
compression-only CPR [%] 41

3.2. Initial Phosphate and Lactate Level Elevations in Deceased OHCA Patients

Patients who died had a 1.6-fold higher average phosphate level than survivors
(Figure 3A, p < 0.0001). In contrast, the average initial phosphate levels did not dif-
fer between patients with MCS (2.46 ± 0.16 mmol/L (SEM)) and those without MCS
(2.3 ± 0.08 mmol/L, p = 0.2559). Similarly, the lactate levels of OHCA patients who died
during the hospital stay were twice as high as the ones of surviving patients (Figure 3B,
p < 0.0001).
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Figure 3. Initial serum phosphate and lactate level elevations identify OHCA patients with a higher
risk of mortality following ROSC. Average phosphate (A) and lactate (B) levels in patients depending
on the overall outcome during the hospital stay. (C) Comparison of ROC curves of serum lactate and
phosphate levels to predict mortality. (D) Correlation between the initial serum lactate and phosphate
levels (95% CI: 0.54–0.73, R2 = 0.41); ns p > 0.05, **** p < 0.0001.

ROC analyses on in-hospital mortality revealed good discriminations with compa-
rable AUCs for both biomarkers (phosphate: AUC of 0.80, 95% CI: 0.73–0.86, p < 0.0001;
lactate: AUC of 0.79, 95% CI: 0.71–0.85, p < 0.0001). However, among themselves, none
of the parameters proved superior in mortality prediction (p = 0.74). Moreover, we could
determine a moderate relationship between the two parameters by correlation analysis
(Pearson r = 0.64, Figure 3D, p < 0.0001). The YI for phosphate and lactate were 2.2 mmol/L
and 5.3 mmol/L, respectively, which we set as a cutoff for the risk stratification of the
group comparison.

3.3. MCS Implementation in Low and High-Risk Patients Divided by Phosphate and Lactate

In high-risk patients stratified by phosphate > 2.2 mmol/L, MCS was associated with
a higher chance of survival (Figure 4A, HR 2.3, 95% CI: 1.4–3.7; p = 0.0037). High-risk
patients with MCS were, on average, younger, had a higher proportion of AMI as the
cause of the CA, and presented initially more often a shockable heart rhythm. The other
baseline characteristics of these high-risk OHCA patients after achieving ROSC are shown
in Table 2. In low-risk OHCA patients with initial phosphate levels ≤ 2.2 mmol/L, MCS
was not associated with a greater chance of 30-day survival (assessed by a Kaplan–Meier
test, p = 0.9385).
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Figure 4. Overall outcome of OHCA patients ± MCS, stratified by Youden indices of initial phosphate
and lactate levels. Kaplan–Meier curves representing 30 days survival of high-risk (A) or low-risk
patients (B) assessed by the Youden Index of the initial phosphate levels (>2.2 mmol/L); high-risk
patients: w/o MCS: n = 91; with MCS: n = 16. low-risk patients: w/o MCS: n = 99; with MCS: n = 18.
Kaplan–Meier curves representing 30 days survival of high-risk (C) or low-risk patients (D) assessed
by the Youden index of the initial lactate levels (>5.3 mmol/L); high-risk patients: w/o MCS: n = 83;
with MCS: n = 16. low-risk patients: w/o MCS: n = 41; with MCS: n = 12. ns p > 0.05, ** p < 0.01.

Table 2. Comparison of high-risk OHCA patients stratified by initial phosphate levels > 2.2 mmol/L
(YI) with and without MCS after achieving ROSC.

Mean ± SEM, n = 107 MCS w/o MCS p-Value

Study subpopulation

n 16 91 —
age [years] 55.5 ± 3.5 64.9 ± 1.65 0.0179
gender [% male] 68.75 71.43 0.7749
survival [%] 37.5 12.09 0.02

Initial Laboratory Values

phosphate [mmol/L] 3.3 ± 0.17 3.2 ± 0.09 0.6510
creatinine [mg/dL] 1.3 ± 0.10 1.8 ± 0.14 0.3540
lactate [mmol/L] (n = 85) 9.8 ± 0.79 11.4 ± 0.72 0.3304
potassium [mmol/L] 4.2 ± 0.21 4.7 ± 0.13 0.1835
LDH [U/L] 582 ± 60 905 ± 134 0.5633

CPR Data

AMI [%] 50 23.08 0.0347
bystander CPR [%] 43.75 46.15 >0.9999
initial rhythm (VT/VFib) [%] 81.25 35.16 0.0008
time to ROSC [min] 31.9 ± 5.6 36.1 ± 3.2 0.9983
witnessed arrest [%] 81.25 67.03 0.3806
compression-only CPR [%] 31.25 53.85 0.1110



Diagnostics 2023, 13, 1523 7 of 11

Lactate’s cutoff for risk stratification was 5.3 mmol/L. MCS did not affect the chance
of survival in either low-risk (Figure 4C, p = 0.41) or high-risk OHCA patients (Figure 4D,
p = 0.1345) stratified by the initial lactate levels.

4. Discussion
Main Findings

This study shows evidence that initial phosphate and lactate level elevations following
ROSC are similar in differentiating patients, in whom MCS was associated with a greater
chance of survival. Even though both index biomarkers, lactate and phosphate, presented
good discrimination to predict in-hospital mortality, our data suggested that phosphate
was more suitable for risk stratification. To the best of our knowledge, this is the first
study to investigate survival in OHCA patients with ROSC, who might benefit from MCS
depending on their initial phosphate and lactate levels.

In line with several previous studies [18,19,21,22,28,30], we found that elevation of
initial serum phosphate and lactate levels predicts higher mortality in OHCA patients who
achieve ROSC. In our single-center collective, the initial phosphate levels showed good
discrimination of higher mortality by ROC (Figure 3C, p < 0.0001), similar to the one in
previously published studies on CA [21] and polytrauma patients [31]. The cutoff based on
the YI (phosphate > 2.2 mmol/L) from the ROC analysis isolated high-risk OHCA patients,
as proven by elevated 30-day mortality in this subgroup (Figure 4A, p = 0.0037). These
patients seemed to benefit particularly from MCS implementation. In contrast, in low-risk
patients, MCS showed no changes in the overall outcome (Figure 4B).

The initial lactate levels discriminated in-hospital mortality similarly well (Figure 3C,
p < 0.0001). Several observational studies previously described an association between lactate
levels and 30-day mortality in patients with cardiogenic shock treated with MCS [19,20]. In
a recent Danish multicenter study, high lactate levels were identified as one of the reasons
not to implement MCS in refractory OHCA patients [32], raising the question of whether
their elevations would precisely distinguish between the patients who could profit from
MCS. However, the study included only patients who did not achieve ROSC within the
first 15 min of CPR [32], limiting the comparability to our collective. Surprisingly, we did
not see a trend in the separation done according to the YI of lactate, as neither high-risk
nor low-risk patients benefited from MCS (Figure 4C,D). A low sample size could perhaps
explain this finding.

Following CA, several macro- and microcirculatory alterations and metabolic and
coagulation disorders (defined altogether as a post-CA syndrome) [33] occur, mostly based
on a cardio-circulatory imbalance [5]. These can even be worsened by post-CA hemody-
namic instability after achieving ROSC, which is an often-encountered complication [5]. To
countermand these changes and restore hemodynamic equilibrium, MCS devices have been
increasingly used in patients with ongoing CA or predominant CS following AMI [10,34,35].
Evidence-based recommendations for MCS implementation are still imprecise. Especially
the recently published ECMO-CS randomized controlled trial (RCT), which has shown no
beneficial results. The routine use of MCS did not improve the mortality of patients with
severe cardiogenic shock or deteriorating hemodynamics [16]. In line with this study, we
also describe no generalizable benefit of using MCS in patients presenting with persistent
shock after OHCA (Figure 2). However, several currently running RCTs, e.g., DanGer
Shock (clinicaltrials.gov identifier: NCT01633502) or ECLS Shock (NCT03637205), aim to
verify whether routine use of MCS in cardiogenic shock can aid the patient’s chance of
survival as compared to conventional treatment. Currently, precise hemodynamic alter-
ations in patients are measured invasively (e.g., by cardiac output monitoring by pulse
contour analysis or a Swan-Ganz catheter) [13], which can sometimes have serious adverse
effects [36]. Under these circumstances, including the initial serum phosphate levels (as fea-
sible biomarkers) in this decision-making process might increase the precision of patients’
selection for MCS therapy. However, prospective studies must investigate phosphate’s
independent prognostic value for MCS implementation.
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The initial phosphate and lactate levels presented a moderate relationship (Figure 3D,
Pearson r = 0.64, p < 0.0001). It is known that both parameters correlate with the time
of ischemia [22,37,38], and they seem to have partially similar originating mechanisms
for their plasmatic accumulation following CA [17,26] (which can explain this moderate
relationship in our collective). Serum lactate increases due to anaerobic glycolysis as a
source of energy production [17], whereas phosphate levels increase due to inadequate
production of high-energy phosphates due to cell damage and reduced renal clearance.
Since phosphate’s elimination occurs by the kidneys and ongoing ischemia and hypoxia
result in the release of intracellular phosphate, a CPR-related kidney perfusion might
induce a rise in serum phosphate levels, thereby reflecting reduced kidney perfusion.
Future prospective studies should raise the question of whether the phosphate clearance
would accurately reflect stable organ perfusion, as it may then be used as a marker for
therapy monitoring during MCS.

Chronic kidney disease (CKD) may have influenced initial serum phosphate values
and biased our results [39]. Creatinine did not differ between patients with and without
MCS, yet it was higher in non-survivors than survivors. The difference vanished when
calculating mean creatinine levels in patients with >2.2 mmol/L of initial serum phosphate
(Table 2). Therefore, our main results should not be reasonably explained by the different
stages of CKD.

In summary, within our collective, initial phosphate levels > 2.2 mmol/L stratified
the OHCA patients who may have benefited from MCS. Phosphate elevations might more
accurately reflect reduced organ perfusion in OHCA patients as one of the main casual
reasons to implement MCS.

5. Limitations

Our study has several limitations. Due to its retrospective observational nature, no
causal conclusions can be drawn. Second, the interventionalist indicated for or against
MCS on an individual basis, which may have led to a selection bias. Third, some patients
did not have documented lactate levels following hospital admission, which could perhaps
explain why we saw an effect in the subgroup of phosphate but not lactate. On this basis,
interpretations of the results on lactate levels should be analyzed carefully. Fourth, we did
not consider the effect of acute/chronic kidney disease on phosphate elevations. Of note,
other sources of phosphate have to be taken into account as well (e.g., phosphate buffer,
bone marrow). As we cannot distinguish between these sources, their effects cannot be
excluded from our analyses.

6. Conclusions

Our data show evidence for a significant association of survival with MCS therapy in
patients with phosphate levels above 2.2 mmol/L (Youden Index) and for a similar discrim-
ination of survival in OHCA patients following ROSC by lactate and phosphate. Given
the current recommendations, clinicians may benefit from including serum phosphate
levels in decision-making on MCS implementation. Prospective studies should assess the
independent prognostic relevance of phosphate and its clearance (as it might accurately
mirror organ perfusion) in the efficiency of MCS in patients with unstable hemodynamics.
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AMI acute myocardial infarction
AUC area under the curve
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