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Abstract: Purpose: This study aimed to assess the value of radiomic features derived from the
myocardium (MYO) and papillary muscle (PM) for left ventricular hypertrophy (LVH) detection
and hypertrophic cardiomyopathy (HCM) versus hypertensive heart disease (HHD) differentiation.
Methods: There were 345 subjects who underwent cardiovascular magnetic resonance (CMR) ex-
aminations that were analyzed. After quality control and manual segmentation, the 3D radiomic
features were extracted from the MYO and PM. The data were randomly split into training (70%)
and testing (30%) datasets. Feature selection was performed on the training dataset. Five machine
learning models were evaluated using the MYO, PM, and MYO+PM features in the detection and
differentiation tasks. The optimal differentiation model was further evaluated using CMR param-
eters and combined features. Results: Six features were selected for the MYO, PM, and MYO+PM
groups. The support vector machine models performed best in both the detection and differentiation
tasks. For LVH detection, the highest area under the curve (AUC) was 0.966 in the MYO group.
For HCM vs. HHD differentiation, the best AUC was 0.935 in the MYO+PM group. Comparing
the radiomics models to the CMR parameter models for the differentiation tasks, the radiomics
models achieved significantly improved the performance (p = 0.002). Conclusions: The radiomics
model with the MYO+PM features showed similar performance to the models developed from the
MYO features in the detection task, but outperformed the models developed from the MYO or PM
features in the differentiation task. In addition, the radiomic models performed better than the CMR
parameters’ models.

Keywords: radiomics; papillary muscle; hypertrophic cardiomyopathy; hypertensive heart disease;
cardiac magnetic resonance

1. Introduction

Among the various causes of left ventricular hypertrophy (LVH), hypertrophic car-
diomyopathy (HCM) and hypertensive heart disease (HHD) are the most-common. How-
ever, the detection of LVH and the differentiation between HCM and HHD are often
clinically challenging, especially when the hypertrophy is mild to moderate [1]. Meanwhile,
the prognosis of patients with HCM varies. In severe and untreated HCM patients, compli-
cations include heart failure or even sudden cardiac death [2,3]. For HHD patients, LVH is
typically observed in those with long-term poorly controlled hypertension, and without
proper treatment, this can progressively develop into heart failure [4]. More importantly,
the treatments for these two diseases are quite different [5]. Therefore, based on accurate
LVH detection, the early and precise differential diagnosis between HCM and HHD is
crucial for treatment plan decisions and prognosis improvement [2].

Diagnostics 2023, 13, 1544. https://doi.org/10.3390/diagnostics13091544 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13091544
https://doi.org/10.3390/diagnostics13091544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7928-4557
https://orcid.org/0009-0001-4996-2820
https://orcid.org/0009-0005-7953-5810
https://doi.org/10.3390/diagnostics13091544
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13091544?type=check_update&version=1


Diagnostics 2023, 13, 1544 2 of 15

Compared to other imaging modalities, cardiac magnetic resonance (CMR) offers a
noninvasive and multiparametric approach to evaluating cardiac morphology, function,
and tissue characteristics [6–8]. Its high-resolution cine images also benefit the analysis
of both the myocardium (MYO) and small myocardial structures, such as the papillary
muscle (PM) [9]. Although small, the PM plays an important role in the maintenance of
the mitral valve and left ventricle function [10,11]. Till now, several CMR studies have
stressed the importance of the PM on LVH-related diseases: Kozor et al. demonstrated
disproportionate hypertrophy of the PM in Fabry disease (FD) and HCM. They also found
that the PM mass contributes 8%, 7%, 10%, and 13% to the total weight in healthy subjects,
hypertensive patients, HCM patients, and FD patients, respectively [12]. Hoigne et al.
confirmed that an abnormal PM was the only significant parameter to diagnose non-
obstructive HCM [13]. Despite the morphological differences in the PM in various forms of
LVH, the PM’s characteristics have been proven to provide prognostic prediction value for
patients with HCM based on image complexity [14].

Despite the direct visual inspection and parameter calculation of CMR images, ra-
diomics provides a “microscopic” approach to analyze CMR morphology and texture
characteristics [15]. Radiomics has been developed and researched for over a decade, and
its practical applications have been evaluated in many CMR studies [16,17]. We noticed
that most studies focused on the MYO features; only recently have some studies extracted
the LV features for disease classification [16,18,19]. However, no radiomics studies have
attempted to extract the PM features.

According to our clinical experience and observation of CMR images, the PM showed
different morphologies, distribution patterns, and signal intensities between patients with LVH
and healthy controls (HCs). In this study, we aimed to determine the value of the PM-derived
radiomic features in subjects with LVH and HC. Specifically, we sought to develop LVH
detection and HCM vs. HHD differentiation models in addition to the PM-derived features.

2. Materials and Methods

Figure 1 presents the flowchart of the study.

Figure 1. Schematic view of this study. (a) CMR data were collected from HCM, HHD, and HC
subjects, and typical mid-ventricle cine images are shown; (b) examples of the volume of interest
(VOI) for the MYO, PM, and MYO+PM together in an HC subject (visualization was performed with
a 3D slicer); (c) described methods used in the feature selection; (d) shows how the data partition was
performed; (e) described ML pipeline: selected MYO and PM features were evaluated for detection
and differentiation performance with different ML methods; (f) results were compared between
different groups and ML methods, and the evaluation was performed with the ROC curve, calibration
curve, and decision curve. HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease;
VOI, volume of interest; LASSO, least absolute shrinkage and selection operator; ML, machine
learning; MYO, myocardium; PM, papillary muscle; LVH, left ventricular hypertrophy.
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2.1. Study Population

In this retrospective study, patients with LVH were consecutively enrolled in Renji
hospitals from August 2018 to December 2021, and HC subjects were randomly selected
from our database.

The HCM group inclusion criteria were as follows: (1) genetic determination of an
HCM mutation; (2) LVH (end-diastolic wall thickness > 15 mm) in the absence of a clinical
condition known to cause hypertrophy; (3) hypertrophy in a recognizable pattern, i.e.,
apical-variant HCM (AHCM) [2].

The inclusion criteria for the HHD group were as follows: (1) echocardiogram (ECG)
demonstration of a hypertrophic LV (maximal LV wall thickness > 11 mm or LV-mass-to-
body-surface area > 115 g/m2 for men or > 95 g/m2 for women) in the absence of other
cardiac or systemic diseases) [20]; (2) diagnosis of arterial hypertension [21].

The HC group consisted of healthy volunteers who demonstrated normal cardiac
dimensions and volumes, normal cardiac function, and the absence of late gadolinium en-
hancement. None of the control subjects had a history of known cardiac disease, including
cardiac surgery or interventions.

Exclusion criteria for all subjects were an established diagnosis of FD, cardiac amyloi-
dosis, severe valvular disease, aortic stenosis, iron deposition, evidence of inflammatory
processes in the myocardium or pericardium, history of ST segment elevation myocardial
infarction, and LVH caused by athlete’s heart [22].

2.2. Image Acquisition and Analysis

CMR examinations were performed in Renji hospital with a 3T MR scanner (Ingenia,
Philips). Cine images were acquired using a balanced steady-state free-precision (bSSFP)
sequence [23]. Other typical cine parameters were: slice thickness = 6–8 mm, echo time
(TE) = 1.4 ms, repetition time (TR) = 3.0 ms, flip angle = 45°, in-plane resolution = 0.8–1.2 mm ×
0.8–1.2 mm, bandwidth = 1900 Hz/pixel, number of cardiac phases = 30. For all participants,
the cine stack was covered from the base to the apex.

The CMR data were exported in the Digital Imaging and Communications in Medicine
(DICOM) format. Anonymization and CMR function analyses were performed on a work-
station with dedicated post-processing software cvi42 (Version 5.13.0, Albert, Canada). All
images were subjected to manual quality control to exclude those of inadequate quality
before further assessment. Basic CMR parameters that summarize LV function (including
LV mass, LV end-diastolic volume (LVEDV), and LV ejection fraction (LVEF)) were obtained
using the cvi42.

2.3. Definition of Volume of Interest

Limited by copyright, we were not able to export contours directly from the cvi42
software. To export the MYO and PM contours, an open-source software itk-snap (Version
3.8.0) was used for the following analysis. All images were segmented simultaneously
by two cardiologists (>4 years of CMR experience) in consensus. After that, another
experienced cardiologist (>5 years of CMR experience) checked the contours and made
adjustments if necessary. In this study, only ED cine images were considered for analysis
due to ambiguous border between the endocardium and PM in end systole. The VOI
of the MYO was defined as the area between the LV endocardium and epicardium [24].
For the VOI of the PM, we delineated the PM contours according to anatomical charac-
teristics, movement pattern, and previous segmentation examples [12,25]. non-PM struc-
tures (e.g., papillary muscle variants, apical–basal muscle bundle etc.), and trabeculations
were excluded [9,26].

Supplementary Figure S1 shows a representative apical–basal muscle bundle, which
is hard to distinguish from the PM with short-axis cine images solely in our datasets.



Diagnostics 2023, 13, 1544 4 of 15

2.4. Feature Extraction and Feature Selection

Image filters (wavelet, Laplace of Gaussian (LOG), and gradient) were applied to our
datasets, and 3D radiomic features were extracted for both the MYO and PM VOIs using
Pyradiomics [27]. The detailed description and calculation equation are available on the
Pyradiomics official website: https://pyradiomics.readthedocs.io/en/v3.0.1/radiomics.
html, accessed on 1 October 2022.

After feature extraction, the data were randomly split into training and testing datasets
in a 7:3 ratio.

Feature selection was performed on the training dataset with 3 steps: (1) The Pear-
son correlation coefficient (ρ) was calculated for each feature; features with ρ > 0.8 were
excluded; (2) a least absolute shrinkage and selection operator (LASSO) regression algo-
rithm was employed to select important features [28]; (3) features were ranked using the
Boruta method [29].

2.5. Model Development

Five machine learning classifiers were evaluated: AdaBoost (AB), K-nearest neighbor
(KNN), support vector machine (SVM), random forest (RF), and decision tree (DT). A five-
fold cross-validation (CV) with a grid search was performed within the training dataset
to determine the best combination of model parameters. The performance of the different
models was compared based on the area under the curve (AUC), accuracy, precision, recall,
and calibration curve.

2.6. Evaluation of MYO and PM Features

For the multi-feature analysis, we aimed to assess the value of the PM features. There-
fore, three radiomics groups were designed: (1) the MYO group, including the best 2 × N
MYO features; (2) the PM group, including the best 2 × N PM features; (3) the MYO+PM
group, including the best N MYO and N PM features. Subsequently, different machine
learning (ML) models were tested and evaluated in the three groups.

2.7. Comparison of Radiomic Models and Clinical Data Models

To compare our proposed radiomics models with clinical data models, an optimal ML
model was selected and developed using CMR parameters (LVEF, LVEDV index, and LV
mass index). We also combined the CMR parameters and radiomic features to examine
the possible synergistic effects between CMR parameters and radiomics information. The
development and evaluation processes were the same as those previously described.

2.8. Statistics

All statistical analyses were performed using SPSS (Version 26) and Python (Version
3.7). To compare the means, Student’s T-test, the paired T-test, and the Mann–Whitney
U-test were conducted as appropriate. Statistical significance was set at p < 0.05. Model
performance was evaluated using the receiver operating characteristic (ROC) curves and
AUC, accuracy, precision, and recall, and a comparison between the AUCs was performed
with the Delong test [30]. The Hosmer–Lemeshow test was used for the calibration curve
evaluation [31]. Weights were calculated for the HC, HCM, and HHD groups, where
appropriate, to compensate the unbalanced datasets [32].

3. Results
3.1. Demographic and CMR-Based Clinical Characteristics

The detailed inclusion and exclusion pipeline is shown in Figure 2.
A total of 230 LVH (NHCM =158, NHHD = 72) patients who satisfied the inclusion

criteria and passed quality control were included. Subjects in the HC group were matched
with patients with LVH in terms of age and sex (p = 0.866 and 0.364, respectively) at a
1:2 ratio. Table 1 shows the demographic and CMR data of the cohort.

https://pyradiomics.readthedocs.io/en/v3.0.1/radiomics.html
https://pyradiomics.readthedocs.io/en/v3.0.1/radiomics.html
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For the CMR parameters, subjects with LVH showed a significantly increased LV mass
(144.3 g vs. 83.2 g, p < 0.001) and LV mass index (80.0 g/m2 vs. 46.3 g/m2, p < 0.001).
However, for the HHD group, we found that their LVEFs were lower than those in the HCM
and HC groups (55% vs. 68% and 65%, respectively, p < 0.001 for both groups), whereas the
LVEDVs were higher than those in the HCM and HC groups (163 mL vs. 130 mL and 126 mL,
respectively, p < 0.001 for both groups). This phenomenon could be partly explained by
the fact that HHD patients usually have had hypertension for many years; therefore, some
patients already had an enlarged left ventricle.

Figure 2. This figure shows the inclusion and exclusion of LVH and HC subjects. All subjects
were obtained from our datasets between 2018 and 2021. For the LVH group, firstly, images with
inadequate quality were excluded. Secondly, subjects with myocardial infarction, systemic diseases,
or cardiac surgery were further excluded. For the HC group, images with satisfactory quality were
matched to the LVH group by sex and age at a 1:2 ratio.

Table 1. Demographic and CMR characteristics.

Clinical Data Entries Overall (N = 345) LVH (N = 230) HCM
(N = 158) HHD (N = 72) HC (N = 115) p-Value 1

Demographic and Clinical Features
Age, year 51.1 ± 15.7 51.4 ± 15.3 51.6 ± 15.3 50.9 ± 15.4 50.6 ± 16.6 0.634

Male, n (%) 245 (71) 165 (72) 109 (69) 56 (78) 80 (70) 0.171
Weight, kg 71.5 ± 14.3 72.4 ± 14.0 70.2 ± 12.8 77.3 ± 15.4 69.8 ± 14.7 0.001
Height, cm 168.5 ± 9.0 168.3 ± 8.4 168.5 ± 8.3 170.0 ± 8.5 169.1 ± 9.9 l0.048

BMI, kg/m2 25.1 ± 3.9 25.4 ± 3.8 24.9 ± 3.5 26.6 ± 4.2 24.3 ± 3.8 l0.205
BSA, m2 1.79 ± 0.22 1.80 ± 0.21 1.77 ± 0.20 1.87 ± 0.23 1.77 ± 0.23 l0.003

CMR Parameters
LVEF, % 64.1 ± 10.6 63.5 ± 11.9 67.5 ± 7.4 54.8 ± 15.0 65.4 ± 7.2 l < 0.001

LVEDV, mL 135.3 ± 40.7 140.2 ± 42.3 130.1 ± 29.6 162.5 ± 55.7 125.5 ± 35.5 l < 0.001
LVEDV index, mL/m2 75.2 ± 19.0 77.7 ± 20.3 73.8 ± 15.6 86.2 ± 26.2 70.2 ± 14.8 l0.002

LV mass, g 123.9 ± 53.2 144.3 ± 52.1 146.4 ± 54.4 139.7 ± 46.6 83.2 ± 24.0 l0.515
LV mass index, g/m2 68.8 ± 27.9 80.0 ± 27.3 82.7 ± 29.1 74.1 ± 21.9 46.3 ± 9.5 l0.031

Values are the mean ± standard deviation or number (percentage). 1 p-values were calculated between the HCM
and HHD groups. p-values < 0.05 are shown in bold. BMI = body mass index; BSA = body surface area;
CMR = cardiac magnetic resonance; HC = healthy control; HCM = hypertrophic cardiomyopathy;
HHD = hypertensive heart disease; LV = left ventricular; LVEF = left ventricular ejection fraction.
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3.2. Feature Extraction and Selection

A total of 2632 features (NMYO = 1316 and NPM = 1316) were extracted; the detailed
feature information is available in Supplementary Table S1. After correlation and LASSO
feature selection, 60 features (NMYO = 28, NPM = 32) survived; meanwhile, for the detection
task, 20 features (NMYO = 8, NPM = 12) survived, and the features were ranked using relative
importance calculated from the Boruta method. Table 2 shows the six most-important
features for the differentiation tasks derived from the MYO and PM. The gradient gray-
level co-occurrence matrix (GLCM) correlation was the most-important in the MYO group,
and the shape maximum 2D diameter slice was the most-important in the PM group.
Complete lists of the detection and differentiation tasks are provided in Supplementary
Tables S2 and S3.

Table 2. The 6 most-important features selected in the MYO and PM groups for HCM vs. HHD
according to the Boruta method.

MYO (N = 6) Relative Importance PM (N = 6) Relative Importance

gradient GLCM correlation 37.5 original shape maximum 2D
diameter slice 10.4

original shape sphericity 4.9 log-sigma-5-0-mm-3D
first-order kurtosis 3.6

original shape elongation 3.5 original GLSZM
ZoneEntropy 3.2

wavelet-LHL GLCM Imc1 3.0 wavelet-HLL GLCM IMC2 3.0

log-sigma-5-0-mm-3D glszm
ZoneEntropy 1.3 log-sigma-2-0-mm-3D GLCM

correlation 2.9

wavelet-LHH GLCM MCC 1.2 gradient GLCM IDMN 2.4

The three most-important features in the MYO and PM groups were selected to construct the MYO+PM group.
GLCM = gray-level co-occurrence matrix; GLSZM = gray-level size zone matrix; IDMN = inverse difference
moment normalized; IMC = informational measure of correlation; MCC = maximal correlation coefficient; the
detailed calculation method for each feature can be found on Pyradiomics’ official website.

3.3. Multi-Feature Analysis of MYO, PM, and MYO+PM Groups

For both the detection and differentiation tasks, we used N = 3 for further analysis;
therefore, we had six features in the MYO, PM, and MYO+PM groups. Among the six
features in the MYO+PM group, there were three shape features (MYO: shape sphericity
and shape elongation; PM: shape maximum 2D diameter slice).

For the detection task, different model performances on the training dataset are shown
in Figure 3. After comparing the AUC, accuracy, and calibration curves (Supplementary
Figure S2a), the SVM models were selected. The performance of the SVM models with
the testing dataset is presented in Table 3. Among the MYO, PM, and MYO+PM groups,
the model developed with the MYO features achieved the highest AUC (0.966 vs. 0.944
(MYO+PM) and 0.772 (PM), p = 0.924 and p < 0.001, respectively); however, accuracy,
precision, and recall were slightly higher in the MYO+PM group. The results indicated the
MYO features had a similar efficacy as the MYO+PM features in the detection task.

For the differentiation task, the z-score distribution of the MYO+PM group is shown
in Figure 4. The performances of the different models on the training dataset are shown in
Figure 3, and the calibration curves are shown in Supplementary Figure S2b. Similar to
the detection task, SVM was selected for further analysis. The results of the SVM model
showed that the MYO+PM group had a significantly higher AUC (0.935 vs. 0.875 (MYO)
and 0.716 (PM), p = 0.040 and 0.002, respectively), and the accuracy showed a 4.4% increase
(87.0% vs. 82.6%). The ROC and calibration curves for the differentiation task with the
SVM models are plotted in Figure 5, which shows excellent calibration results (all p > 0.05,
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indicating excellent calibration results) for both the training and testing data. The clinical
usefulness of the MYO, PM, and MYO+PM models is shown as decision curves in Figure 6.

Table 3. Performance of selected models on LVH detection and HCM vs. HHD differentiation with
MYO, PM, and MYO+PM features.

Group Feature
Number AUC 1 Accuracy

(%) Precision Recall F1 Score

LVH detection task (SVM model)
MYO 6 0.966 2 90.4 0.903 0.829 0.853
PM 6 0.772 3 68.3 0.676 0.486 0.507

MYO+PM 3 + 3 0.964 91.3 0.913 0.829 0.866
HCM vs. HHD differentiation task (SVM model)

MYO 6 0.875 4 82.6 0.831 0.773 0.739
PM 6 0.716 5 73.9 0.811 0.182 0.308

MYO+PM 3 + 3 0.935 87.0 0.871 0.818 0.800
1 p-values were calculated comparing the MYO+PM group using the Delong test. 2 p = 0.924. 3 p < 0.001.
4 p = 0.040. 5 p = 0.002.

Figure 3. Performance (AUC, accuracy, precision, and recall) of different models on the detection
and differentiation tasks with 3 radiomics subgroups; (a–c) detection task with different ML methods
using MYO, PM, and MYO+PM groups, respectively; (d–f) differentiation task with different ML
methods using MYO, PM, and MYO+PM groups, respectively. SVM, support vector machine; KNN,
K-nearest neighbor; RF, random forest; DT, decision tree; AB, AdaBoost.
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Figure 4. Box plot for the best 3 MYO and 3 PM features in differentiation task. The pink and blue
boxes represent the range between the first quartile to the third quartile, while the gray dots represent
each single patient in the training dataset. Only features in the MYO+PM group for the differentiation
task are exhibited.

Figure 5. ROC curves and calibration curves for differentiation task with MYO, PM, and MYO+PM
groups using SVM models. Blue, green, and red lines represent the MYO, PM, and MYO+PM
groups, respectively; the AUC for the ROC curves and Hosmer–Lemeshow p-values are denoted
in the figure legends. The first row shows the results on the training dataset: (a) ROC curve and
(b) calibration curve. The second row shows the results on the testing dataset: (c) ROC curve and
(d) calibration curve.
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Figure 6. Decision curves for clinical usefulness evaluation. (a) shows the decision curves for the
training dataset with the MYO, PM, and MYO+PM groups; (b) shows the decision curves for the
training dataset with the radiomics and clinical data groups; (c) shows the decision curves for the
testing dataset with the MYO, PM, and MYO+PM groups; (d) shows the decision curves for the
testing dataset with the radiomics and clinical data groups.

3.4. Comparison of Radiomics Models to CMR Parameter Models

As shown in Table 4, the radiomics model showed significant improvements compared
with the CMR parameter models (AUC: 0.935 vs. 0.774, p = 0.002), and no significant
improvement was observed when comparing the radiomics + CMR parameter model with
the radiomics model (AUC: 0.935 vs. 0.906, p = 0.117). We also observed that the CMR
parameters group showed biased results (precision = 0.693, recall = 0.409, and F1 = 0.474)
in the differentiation task. The calibration curves for the models developed with the CMR
parameters, radiomics, and radiomics + CMR parameters are exhibited in Figure 7. The
clinical usefulness of the radiomics, CMR, and radiomics+CMR models is shown as the
decision curves in Figure 6.

Table 4. SVM model accuracy of clinical-based features (including demographic and CMR features)
and radiomics-based features on testing dataset.

Evaluation Metrics

CMR Parameters
(LVEF + LVEDV
Index + LV Mass

Index)

Radiomics
(MYO + PM)

Radiomics + CMR
Parameters

AUC 1 0.774 2 0.935 0.906 3

Accuracy (%) 71.0 87.0 85.5
Precision 0.693 0.871 0.860

Recall 0.409 0.818 0.818
F1-score 0.474 0.800 0.783

1 p-values for the AUC were calculated comparing the radiomics group using the Delong test. 2 p = 0.002.
3 p = 0.117.
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Figure 7. ROC curve and calibration curve for differentiation task with radiomics and clinical data
using SVM model. Red, green, and blue lines represent radiomics, CMR parameters, and radiomics
+ CMR parameters groups, respectively. The AUC for the ROC curves and Hosmer–Lemeshow
p-values are denoted in the figure legends. The first row shows the results on the training dataset:
ROC curve (a) and calibration curve (b). The second row shows the results on the testing dataset:
ROC curve (c) and calibration curve (d).

4. Discussion

In this study, we investigated the LVH detection and HCM vs. HHD differentiation
ability of the MYO, PM, and MYO+PM radiomic features; we also compared the MYO+PM
group’s results with CMR parameters group’s results.

4.1. Summary of Main Findings

The main findings of our study were as follows:

• The MYO and MYO+PM groups showed great LVH detection based on the AUC
and accuracy;

• The MYO+PM group outperformed the MYO group on the HCM vs. HHD differentia-
tion task;

• Our proposed radiomics models showed significantly better performance than the
CMR parameter models.

• Our methods showed excellent calibration results and high clinical usefulness, as
shown by the calibration curves and decision curves.

The main findings are summarized in Table 5.
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Table 5. Summary table of main findings in this research.

Task Name Matrices MYO PM MYO+PM CMR MYO+PM+CMR

LVH detection
AUC 0.966 0.772 0.964 0.908 0.965

Accuracy 90.4 68.3 91.3 81.7 91.3

HCM vs. HHD differentiation AUC 0.875 0.716 0.935 0.774 0.906
Accuracy 82.6 73.9 87.0 71.0 85.5

Bold numbers indicate the highest AUC and accuracy with the selected feature group.

4.2. Discussion Based on Results

Radiomics analysis has been widely applied for the differentiation of cardiomy-
opathies. However, to our knowledge, this is the first study focusing on the radiomics of
the PM. Previous radiomics studies on cardiomyopathy classification were mainly based on
the MYO features. Ulf et al. extracted radiomic features from native T1 MYO and selected
six texture features; their final model achieved a 0.80 accuracy and 0.89 AUC on the test
data [24]. Xu et al. combined deep learning (DL) and radiomics methods for ECG-based
LVH aetiology differentiation; their final results showed an AUC of 0.839 for HCM vs.
HHD classification [33]. Izquierdo et al. compared their radiomics models to CMR-index-
based models and found no significant differences [19]. Although the model performance
varied with the datasets, in this study, our models showed satisfactory HCM vs. HHD
classification results (accuracy = 87.0% vs. 80.0%, AUC = 0.94 vs. 0.89) compared with
previous studies. Using the CMR parameter model as the baseline, our radiomics model
showed significant improvement (AUC:0.935 vs. 0.774, P = 0.002). Based on these results,
we demonstrated the effectiveness and superiority of the proposed radiomics models.

In addition, our models achieved excellent results with limited features (three MYO + three
PM features), and the number of features selected was also consistent with several previous
studies [24,34]. Among the six features selected, three belonged to the shape feature class
(MYO: shape sphericity and shape elongation; PM: shape maximum 2D diameter slice),
which made our concise MYO+PM radiomics model more explainable. Radiologically,
hypertrophy in HCM patients usually show a concentric pattern, while the hypertrophy of
HHD is mainly affected by high blood pressure, which made “MYO sphericity” and “MYO
elongation” more reasonable from a clinical perspective. “PM maximum 2D diameter slice”
represented the largest distance between the surface mesh vertices in the slice level, which
could reflect the different distribution patterns of the PM in HCM and HHD. These results
also validated our observation that the PM’s morphology can facilitate the classification
between HCM and HHD.

From a clinical point of view, no diagnosis relies purely on radiomic features; there-
fore, we also developed CMR parameter models and radiomics + CMR combined models.
Consistent with a previous study, our CMR-parameter-based model showed unsatisfactory
prediction accuracy of only 81.7% and 71.0% on LVH detection and HCM vs. HHD differ-
entiation, respectively [1]. After the incorporation of radiomic features, the performance
improved in both tasks, but for HCM vs. HHD, the AUC and accuracy were still worse
than the models using solely radiomic features (Table 5).

4.3. Technical Perspectives

Despite these promising findings, we considered the possibility of over-fitting. Over-
fitting is a common problem in radiomics studies. Therefore, we implemented calibration
curves for different ML models to facilitate both model selection (Supplementary Figure S2)
and model performance evaluation (Figures 5 and 7). Although the SVM and KNN methods
both showed excellent calibration results, the SVM models showed higher performance
than the KNN models in both the detection and differentiation tasks (Figure 4). Therefore,
the SVM models were selected for further analysis. The following experimental results
validated that the SVM models performed well and did not show an over-fitting tendency
with the six radiomic features as the inputs (Figure 5).
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From a technical perspective, to deal with unbalanced datasets, class weights were
calculated for each group when appropriate. Although we did not compare the performance
of our “balanced” dataset with that of an unbalanced dataset, our results showed the
following: except for the PM group, the MYO and MYO+PM groups exhibited relatively
high precision (all > 0.8) and recall (all > 0.75) on both the training (Figure 3) and testing
(Tables 3 and 4) datasets.

4.4. Clinical Perspectives

The implementation of both the MYO and MYO+PM features showed excellent LVH
detection performance; however, the MYO+PM group outperformed the MYO group on
the HCM vs. HHD differentiation (p = 0.040). We also validated that the incorporation
of the CMR parameters into the radiomic information did not facilitate HCM vs. HHD
differentiation. Our results suggest to clinicians that the PM is a potential useful diagnostic
tool for LVH. In addition, we suggest that the calibration curve should be examined for
every machine learning algorithm, if appropriate.

4.5. Limitations

This study had some limitations.
First is the immature DL-based PM automatic segmentation results of the PM (DSC = 0.79 in

previous studies) [25,35]. In this study, we performed manual segmentation and quality control of
selected VOIs. To increase the segmentation accuracy and minimize interobserver variance,
two cardiologists completed the segmentation together in consensus. Although time
consuming, accurate manual segmentation is crucial for study reliability and repeatability.
We also look forward to developing a precise and stable DL segmentation model for further
implementation of deep PM radiomics studies.

Second, LVH is not a singular disease entity. The different pathologies of LVH exhibit
various clinical behaviors, treatment responses, and prognoses. HCM and HHD are two
most-common causes of LVH. Therefore, only patients with HCM or HHD were included
in this study. If the sample size permits, we would also like to validate our methods using
other available LVH-related disease datasets.

5. Conclusions

To the best of our knowledge, this is the first study on PM-derived radiomic features.
Our results showed that the proposed PM radiomics exhibited excellent performance
in LVH detection and HCM vs. HHD differentiation and outperformed clinical data
models. Moreover, through our experiments, we hypothesized that PM radiomics have
great potential for the classification of other cardiac diseases and could facilitate clinicians’
clinical decision-making.
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