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Abstract: Purpose: The aim of this study was to evaluate the influence of different SARS-CoV-2 strains
on the functional capacity of athletes. Methods: In total, 220 athletes underwent cardiopulmonary
exercise testing (CPET) after coronavirus infection and before returning to sports activities. Eighty-
eight athletes were infected by the Wuhan virus, and 66 were infected during the Delta and Omicron
strain periods of the pandemic. Results: The CPET results showed significantly decreased maximal
oxygen consumption, ventilatory efficiency, and oxygen pulse in athletes who were infected with
Wuhan and Delta strains compared to athletes who suffered from Omicron virus infection. An early
transition from aerobic to anaerobic metabolic pathways for energy production was observed in the
Wuhan and Delta groups but not in athletes who were infected with the Omicron strain. There were no
differences in the obtained results when Wuhan and Delta virus variants were compared. Conclusion:
These results suggest that the Wuhan and Delta virus strains had a significantly greater negative
impact on the functional abilities of athletes compared to the Omicron virus variant, especially in
terms of aerobic capacity and cardiorespiratory function.

Keywords: SARS-CoV-2; functional capacity; professional athletes; respiration; aerobic endurance

1. Introduction

The pandemic of the SARS-CoV-2 virus has left enormous consequences for the lives
and health of ordinary people, as well as athletes [1]. The virus has created a major health
problem worldwide, and the most common symptoms initially reported were respiratory
and cardiovascular [2], but SARS-CoV-2 infection was later shown to be a multisystemic
disease [3]. Since 2020, the coronavirus pandemic has changed the entire organization
of all sports events, including training sessions themselves, especially when it comes to
professional sports [4]. After the lockdown period and the two-month home isolation
in 2020, athletes returned to training and competitions, but under different circumstances,
in closed balloons and with constant polymerase chain reaction (PCR) testing for the virus.
Quarantine itself left its mark on their fitness levels because, except for at home, they did
not have the opportunity to train or compete [5].

At first, it was assumed that older people and those with underlying medical condi-
tions were more likely to become infected and develop serious illnesses. Considering that
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athletes belong to a young and healthy population, at the beginning of the pandemic, the
recommendations for returning to sports activities included only a physical examination
and electrocardiogram (ECG) in rest, with basic laboratory analyses, following a minimum
of fourteen days of home isolation [6,7]. Over time, it became clear that even young, healthy,
and physically active individuals could end up with clinically serious symptoms and life-
threatening forms of the disease. Frequent cases of myocarditis, pericarditis, exercise
intolerance, and dyspnea on exertion, even after mild forms of the infection, indicated the
need for more detailed diagnostic procedures, such as more extensive laboratory analyses
(inflammatory and cardiac biomarkers), echocardiography, and cardiopulmonary exercise
testing [7–11]. More detailed medical examinations were necessary to preserve the athlete’s
health and avoid the possibility of sudden cardiac death.

Since the beginning of the pandemic in March 2020, the SARS-CoV-2 virus has mutated
over time, resulting in genetic variations in the population of circulating viral strains.
These mutations may impact virus transmission or the severity of symptoms in infected
individuals [12]. According to the official data of the national body for infectious diseases,
in the period between 2020 and 2022, three dominant strains of SARS-CoV-2 virus were
recorded in Serbia: the Wuhan, Delta, and Omicron strains [13]. Scientific research on the
topic of various strains of the virus is primarily based on the impact of mutations in the
SARS CoV-2 spike on viral infectivity and antigenicity [14,15]. On the other hand, some
studies have investigated the effects of the vaccine against new variants of the virus [16,17].
There is currently a lack of scientific research regarding the impact of a particular strain
of coronavirus on the severity of infection, clinical symptoms, and the development of
cardiorespiratory and other forms of diseases, both in the general population and in
athletes. With regard to athletes, the latest studies indicate a decline in functional abilities
after SARS-CoV-2 infection, with increased respiratory and metabolic demands [18–20].
Furthermore, different forms of inflammatory heart diseases (myocarditis and pericarditis),
decreased lung capacity, and aerobic endurance have been reported as a result of SARS-
CoV-2 infection [9,21–24]. However, there is no research regarding the impact of different
virus strains on these parameters. Even though it is now known that SARS-CoV-2 infection
can impair athletes’ health and sports performance, it remains unclear to what extent
different strains of the coronavirus affect their functional ability. The question arises
whether different variants of the virus affect the cardiorespiratory fitness of athletes in the
same way or whether the potential of the virus to impair these abilities is slowly weakening
as the pandemic continues. Considering all of the above, the aim of this study was to
evaluate the impact of different strains of the coronavirus on the overall functional capacity
of professional athletes during the ongoing pandemic.

2. Material and Methods
2.1. Participants and Study Design

Two hundred and twenty (N = 220) elite athletes from Serbia participated in this
prospective cohort study. In total, 112 soccer players (age 23.05 + 4.64) from five pro-
fessional senior Serbian teams (The Serbian First League; UEFA Europa League) and
108 basketball players (age 24.52 + 4.80) from six professional Serbian teams (Euroleague
and ABA League) were involved in the study. This research was conducted during the
period from September 2020 to September 2022. The criteria for inclusion in the study were
prior SARS-CoV-2 infection, which had been confirmed by a polymerase chain reaction
test. There were two indications for conducting the PCR tests. The first referred to athletes
who had clear symptoms of infection. Another indication for conducting the PCR test was
the mandatory testing of athletes before every official match, according to the proposals of
domestic and European competitions. The Genome Sequencing Center within the Institute
of Molecular Genetics and Genetic Engineering of Serbia conducted sequencing of the
coronavirus genome to identify new coronavirus strains. Genome sequencing was carried
out when a new strain was suspected and continued until the point when it was evident
that the dominance of a new variant of the virus had emerged. Accordingly, study subjects
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were divided into three groups depending on the period of the pandemic during which
they had been infected by SARS-CoV-2 and the dominance of one of the three strains of the
virus in that time interval (the Wuhan, Delta, or Omicron strain).

The first group of participants consisted of athletes who were infected with the SARS-
CoV-2 virus in the period between September 2020 and July 2021 (n = 88). Genome
sequencing at the beginning of this period indicated the dominance of the Wuhan strain.
The second group of athletes were subjects who were thought to have been predominantly
infected with the Delta strain (n = 66). These participants had PCR positive tests in the
period from August 2021 to January 2022. The third research group consisted of athletes
tested from February 2022 to September 2022 (n = 66). By sequencing the genome of the
virus during this period of the pandemic, it was concluded that the Omicron strain was
dominant. Table 1 summarizes group criteria selection for participation in this research.

Table 1. Division of study participants into groups depending on the period in which they had a
PCR-positive test.

SARS-CoV-2 Strain Wuhan Delta Omicron

Period of infection September 2020–July 2021 August 2021–January 2022 February 2022–September 2022

N◦ of participants 88 66 66

All study participants reported asymptomatic or mild to moderate forms of infection.
Athletes with symptomatic complaints mostly reported fever, mild shortness of breath,
weakness, headache, ageusia, and anosmia. None of the subjects were hospitalized. They
were home treated and kept in isolation for 14 to 30 days (an average of 22.3 days).

After the cessation of symptoms of SARS-CoV-2 infection and/or a negative control
PCR test, study participants underwent medical examinations with the aim of deciding
on their capacity to return to sports activities. The medical examination included an
electrocardiographic examination at rest, blood pressure measurement, and auscultation
of the heart and lungs (physical examination). Additionally, laboratory analyses were
performed with the aim of evaluating inflammatory and cardiac biomarkers, such as C-
reactive protein (CRP), D-Dimer, NT-proB-type Natriuretic Peptide (nt-pro BNP), and
high-sensitivity cardiac troponin T (hs-cTnT). Along with laboratory analyses, transthoracic
2D echocardiography was done to ensure that there was no ongoing acute inflammatory
process and/or underlaying myo/pericarditis as absolute contraindications for performing
cardiopulmonary exercise testing (CPET), which was the final medical exam prior to the
decision of whether or not to return to play.

CPET, as a maximal symptom-limited exercise test, was performed to evaluate the
health status and functional capacity of athletes. Maximal exercise testing was performed
on a treadmill. Subjects were equipped with a facemask, heart rate monitor (COSMED
Wireless HR Monitor, Rome, Italy), and portable ECG device (Quarck T 12x, Wireless
12-lead ECG, Rome, Italy) to perform the test. According to the protocol for professional
athletes, the initial speed and inclination were set at 6 km/h and 3◦, respectively. Every
40 s, the treadmill speed was increased by 1 km/h, while the inclination remained constant
throughout the test. Oxygen consumption kinetics were measured continuously using a
breath-by-breath analysis technique (Quark CPET system and Omnia software manufac-
tured by Cosmed, Rome, Italy). Heart rate was monitored by a portable ECG device. A
test was considered maximal if participants achieved 90% or more of predicted maximal
heart rate for age and gender (220–age), a plateau in oxygen consumption despite increased
workload (plateau < 150 mL O2/min), and a respiratory exchange ratio greater than 1.10,
together with reached volitional exhaustion. All tests were performed by medical doctors,
and the test equipment was routinely calibrated with both volume and gas calibration
before each testing procedure.
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2.2. Electrocardiographic Monitoring and Respiratory Function

Continuous ECG monitoring with 12-lead Stress ECG was performed to detect possible
rhythm and conduction disturbances, as well as changes in the ST-T segment. The same
device was used to obtain the maximal heart rate and assess the three-minute heart rate
recovery after the maximal exhaustion test (Figure 1). Oxygen pulse (O2/HR), as an indirect
indicator of left ventricular function (the volume of oxygen ejected from the ventricles
with each cardiac contraction), was measured and assessed by a Wasserman 9-Panel Plot
(Figure 2, Panel 2). In addition to the evaluation of the maximum value of the oxygen pulse
at the end of the test, the kinetics of the O2/HR curve during CPET was monitored all the
time with the aim of evaluating the contractility of the left ventricle in terms of meeting
the body’s metabolic needs for oxygen. With an increase in heart rate and intensity of
effort, the exponential growth of the O2/HR curve was expected to be a normal response
during the test. The plateau of the curve growth occurred in the final stages of the CPET, at
maximum intensity.
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A Wasserman 9-Panel Plot was used to monitor the response of ventilatory equivalents
for oxygen and carbon dioxide during CPET (VE/VO2 and VE/VCO2). The efficiency of
the ventilatory pump at various workloads was continuously evaluated using Panel 4 of
the Wasserman 9-Panel Plot (Figure 2). Overall ventilatory efficiency was calculated by
the VE/VCO2 index using the breath-by-breath analysis technique at the end of the test.
This was done by excluding data points after the onset of maximal hyperventilation at
the maximal effort. The VE/VCO2 slope, as the relationship between minute ventilation
and carbon dioxide production, is usually a hallmark characteristic of pulmonary vascular
diseases or exercise intolerance and disability, which is why it was evaluated by Omnia
software to assess lung function and exercise tolerance.

2.3. Aerobic Capacity and Metabolic Response to Effort

Maximal oxygen consumption (VO2 max), as an objective and accurate indicator of
cardiorespiratory fitness and aerobic endurance, was evaluated at the end of the CPET.
The plateau in oxygen consumption was considered when determining the final VO2 max
value (Figure 3). The oxygen consumption at the first ventilatory anaerobic threshold
was obtained to evaluate aerobic economy, which is a measure of energy utilization when
running at an aerobic intensity.
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Figure 3. Plateau in oxygen consumption in the final stages of CPET. Changes in oxygen consumption
are <150 mL O2/min despite increased workload.

The heart rate was obtained at the first ventilatory anaerobic threshold (VAT) and
second ventilatory anaerobic threshold (or respiratory compensation point (RCP)) to deter-
mine the intensity of effort at which the transition from aerobic to anaerobic energy sources
occurs. VAT and RCP were measured by using the “thresholds” panels of the Wasserman
9-Panel Plot (Panels 4, 7, and 8 in Figures 2 and 4). The V-slope method and VE/VO2 curve
kinetics were the methods of choice to obtain VAT. The V-slope method was used to visu-
ally determine the first point of departure from linearity of carbon dioxide output plotted
against oxygen uptake. A sudden and continuous increase in the ventilatory equivalent for
oxygen (VE/VO2) was also a sign of reaching the first threshold. Respiratory exchange ratio
(RER), as a quotient of metabolic production of carbon dioxide and the uptake of oxygen
(CO2/O2) was used to evaluate the point of RCP, or second ventilatory anaerobic threshold.
The onset of absolute anaerobic metabolism was determined by measuring the heart rate
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at RER = 1. Furthermore, the simultaneous sudden increase in ventilatory equivalents for
oxygen and carbon dioxide, as well as the sudden drop in the end-tidal partial pressure
for carbon dioxide (PetCO2) indicated reaching the second ventilatory threshold. At this
point, ventilatory requirements for delivering oxygen to the muscle cells and the removal
of carbon dioxide into the external environment are extremely high. Additionally, the RER
value was calculated at the end of the test (maximal value) to assess the metabolic response
to the maximal effort and level of achieved anaerobic exertion. Figure 4 shows all the
methods described above for determining thresholds.
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2.4. Statistical Analysis

To describe parameters of importance, depending on their nature, the following were
used: frequency, percentages, sample mean, sample median, sample standard deviation,
rank, and 95% confidence intervals. To test the normality of the distribution, Shapiro–Wilk
tests were used, as were graphs, both histogram and normal KK plot. To test the differ-
ences in functional parameters between athletes infected with different strains, analysis of
variance (one-way ANOVA) was used, as was the Post Hoc Bonferroni test for multiple
comparisons. Statistical data processing was performed using the statistical package SPSS
20.0 for Windows. Differences were considered significant when the p value was less
than 0.05.

3. Results

Table 2 shows the results of the medical examination at rest. Heart rate at rest, blood
pressure values, and average values of echocardiographic parameters were within normal
limits for age, gender, and sports discipline.

The results of laboratory analyses that were a prerequisite for conducting CPET are
shown in Table 3. The values of inflammatory and cardiac biomarkers were within the
normal range for all three groups of participants.
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Table 2. Average values of heart rate, blood pressure, and echocardiographic parameters at rest, prior
to CPET.

Wuhan Delta Omicron

HR (bpm) 59.4 ± 11.60 57.72 ± 10.68 55.82 ± 10.65

SBP (mmHg) 117.8 ± 7.80 119.4 ± 8.26 116.5 ± 7.60

DBP (mmHg) 73.5 ± 8.10 74.4 ± 7.43 73.8 ± 7.68

RVd (mm) 24.1 ± 3.58 23.8 ± 3.81 24.3 ± 3.60

IVSd (mm) 10.1 ± 2.0 9.6 ± 1.89 10.4 ± 1.79

LVDd (mm) 51.4 ± 5.78 51.7 ± 5.81 52.1 ± 5.16

LVPWd (mm) 9.7 ± 1.50 9.8 ± 1.46 10.0 ± 1.56

LVSD (mm) 34.8 ± 4.72 35.1 ± 4.23 35.8 ± 4.18

EF (%) 60.7 ± 7.51 60.2 ± 6.65 61.8 ± 6.46
SBP = systolic blood pressure; DBP = diastolic blood pressure; RVd = right ventricle end-diastolic di-
ameter; IVSd = interventricular septal end-diastole thickness; LVDd = left ventricle end-diastolic diameter;
LVPWd = end-diastolic left ventricular posterior wall thickness; LVSD = left ventricle end-systolic diameter;
EF = ejection fraction.

Table 3. Inflammatory and cardiac biomarkers after SARS Cov-2 infection.

Wuhan Delta Omicron Normal Range

CRP (mg/L) 2.68 ± 1.20 2.72 ± 0.63 3.08 ± 1.05 0.00–10.0

D-Dimer (mg/L FEU) 0.17 ± 0.80 0.22 ± 0.86 0.23 ± 0.60 <0.50

nt-pro BNP (pg/mL) 16.54 ± 5.71 18.40 ± 4.43 17.21 ± 5.68 0–125

hs-cTnT (µg/L) 4.30 ± 3.01 4.59 ± 1.89 4.42 ± 1.40 <10

CRP = C-reactive protein; nt-pro BNP = NT-pro B-type Natriuretic Peptide; (hs-cTnT) = high-sensitivity cardiac
troponin T.

Descriptive statistics for the obtained CPET variables are shown in Table 4.

Table 4. Descriptive statistics of measured variables obtained by performing CPET.

Variable Wuhan Strain
(X ± SD)

Delta Strain
(X ± SD)

Omicron Strain
(X ± SD) p Value

N (number) 88 66 66

Age 23.52 ± 4.53 22.26 ± 4.67 23.21 ± 4.75

VO2 max (mL/kg/min) 47.55 ± 5.09 47.95 ± 4.64 50.63 ± 4.08 * p < 0.001

VO2 at VAT (ml/kg/min) 26.15 ± 4.70 24.90 ± 3.77 30.45 ± 4.41 * p < 0.001

VE/VCO2 slope 26.66 ± 2.57 25.78 ± 2.69 24.55 ± 3.32 * p < 0.001

RER (CO2/O2) 1.18 ± 0.065 1.19 ± 0.048 1.15 ± 0.032 * p < 0.001

O2/HR (mL/beat) 20.10 ± 1.88 19.98 ± 2.1 21.59 ± 2.06 * p < 0.001

HR at VAT (bpm) 141.75 ± 11.42 140.17 ± 9.86 149.86 ± 8.11 * p < 0.001

HR at RCP (bpm) 167.09 ± 10.94 166.92 ± 9.26 175.30 ± 7.95 * p < 0.001

HR max (bpm) 186.49 ± 8.78 186.00 ± 8.31 186.39 ± 9.00 p = 0.939

HR recovery (1st minute) 161.75 ± 11.97 159.27 ± 13.53 161.48 ± 13.25 p = 0.738

HR recovery (2nd minute) 134.57 ± 15.39 131.87 ± 16.22 132.27 ± 15.71 p = 0.836

HR recovery (3rd minute) 121.98 ± 14.35 121.37 ± 14.75 119.63 ± 14.77 p = 0.603

VO2 max = maximal oxygen consumption; VO2 at VAT = oxygen consumption at ventilatory anaerobic threshold;
VE/VCO2 slope = ventilatory efficiency; RER = respiratory exchange ratio; O2/HR = oxygen pulse; HR at VAT =
heart rate at ventilatory anaerobic threshold; HR at RCP = heart rate at respiratory compensation point; HR max =
maximal heart rate. * = The mean difference is significant at the 0.05 level.
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The one-way ANOVA test showed statistically significantly higher VO2 max values in
athletes who were infected with the Omicron virus variant compared to those who had
been infected by the coronavirus disease during the dominance of the Wuhan and Delta
strains (p < 0.01). This result was also confirmed by the Post Hoc Bonferroni test (p < 0.01).
When we compared aerobic capacity between the Wuhan and Delta groups of participants,
there was no statistically significant difference. Despite this fact, Figure 5 shows that a larger
number of athletes, those who were infected with the Wuhan strain, had a lower VO2 max
than the mean calculated value and compared to the same data within the Delta group.
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Figure 5. Distribution of VO2 max values within different SARS-CoV-2 strains. * = The mean
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Oxygen consumption at VAT was also much greater in the Omicron group of par-
ticipants compared to both the Wuhan and Delta groups, which means that the aerobic
economy has improved to a great extent during the later stages of the pandemic. Fur-
thermore, athletes infected with the Omicron virus variant had much better ventilatory
efficiency and higher O2/HR values than those infected with the Wuhan and Delta strains
(Scheme 1 and Figure 6). VE/VCO2 slope values were significantly lower in the later stages
of the pandemic, which indicates that the ventilatory requirements for a certain level of
effort were reduced. The amount of oxygen delivered to the working muscles with each left
ventricular contraction was highest in the Omicron group. The distribution of these data
within different groups of SARS-CoV-2 strains is shown in Figures 7 and 8, respectively.

Moreover, an early transition from aerobic to anaerobic metabolic pathways for adeno-
sine triphosphate (ATP) production was absent during CPET in the Omicron group when
compared to the Wuhan and Delta strains. Achieved heart rate values at VAT and RCP
were much higher in these participants compared to the athletes from the Wuhan and Delta
groups. On the other hand, there was no statistically significant difference either in terms
of maximal achieved heart rate at the end of CPET or in terms of the three-minute heart
rate recovery among all three study groups. The heart rate analysis and the influence of
different SARS-CoV-2 strains on this data, during the different phases of the maximum
effort test, are shown in Scheme 2.
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The one-way ANOVA and Post Hoc Bonferroni test confirmed a statistically significant
difference between the achieved RER values at the end of the test when we compared
Wuhan and Omicron and Delta and Omicron strains (p < 0.01). Exposure to early and
pronounced metabolic fatigue during the period of dominance of the Wuhan and Delta
strains was recorded by significantly high maximum RER values at the end of the CPET
tests when compared to the Omicron group of athletes. Table 5 shows the connection
between higher RER values and lower ventilatory thresholds. The lower the heart rates
were on VAT and RCP, the higher the RER values achieved at the end of the CPET. In the
Omicron group of study participants, the transition to anaerobic glycogenolysis occurred at
a higher intensity of effort. This means that oxygen, as a source for creating ATP, was used
longer during CPET, which lowered the final RER values and the level of anaerobic fatigue.

Table 5. Connection between maximum RER values and ventilatory thresholds.

Wuhan Delta Omicron p Value

RER (CO2/O2) 1.18 ± 0.065 1.19 ± 0.048 1.15 ± 0.032 * p < 0.001

HR at VAT (bpm) 141.75 ± 11.42 140.17 ± 9.86 149.86 ± 8.11 * p < 0.001

HR at RCP (bpm) 167.09 ± 10.94 166.92 ± 9.26 175.30 ± 7.95 * p < 0.001
RER = respiratory exchange ratio; HR at VAT = heart rate at ventilatory anaerobic threshold; HR at RCP = heart
rate at respiratory compensation point. * = The mean difference is significant at the 0.05 level.

There was no statistically significant difference between athletes who were infected
with the Wuhan and Delta variants of SARS-CoV-2 virus when considering all the evaluated
variables (p > 0.05). During CPET, no malignant disorders of rhythm, conduction, or
pathological changes of the ST-T segment were observed in any of the examined athletes.
All athletes received permission to return to sports activities with a gradual entry into the
training process, especially in the early stages of the pandemic, given that their functional
capacity was significantly compromised.
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4. Discussion

The results showed significantly decreased aerobic capacity of all tested athletes.
Maximal oxygen consumption, as a measure of cardiorespiratory fitness, was much lower
in the participants compared to the values anticipated for professional soccer and basketball
players. Soccer players possess excellent endurance, with VO2 max reported to range
between 55 and 70 mL/kg/min in elite performers [25]. On the other hand, maximal
oxygen consumption in basketball players is, according to some authors, in the range of
42 to 59 mL/kg/min, while some authors in recent research showed VO2 max values
in this type of sport to be between 45 and 65 mL/kg/min [26]. In general, according to
the American College of Sports Medicine, VO2 max above 50 mL/kg/min is a desirable
value for professional athletes who compete in ball sports. According to our results, a
drop in VO2 max values was evident even though participants of our study were members
of professional teams who competed at high levels of competition, both in domestic and
European leagues. It is important to emphasize that most of the performed CPET tests were
carried out during the competitive part of the season, when it is expected for players to be
in peak-level condition. These results coincide with the results of most previous studies
dealing with this topic, which showed that there is a decrease in VO2 max values in athletes
who have overcome SARS-CoV-2 infection [18,19,23]. Even though VO2 max values were
lower than expected for athletes in all three groups (Wuhan, Delta, and Omicron), there
was an obvious increase in both aerobic capacity and aerobic economy as the pandemic
progressed. In other words, athletes who were infected with the Omicron strain had a
significantly higher VO2 max and expended oxygen more economically, delaying the early
onset of anaerobic metabolism and fatigue.

Even though ventilatory efficiency was within normal values (VE/VCO2 between
20 and 30) [27] in all three study groups, it was observed that athletes who were infected
with the Omicron virus variant had decreased ventilatory requirements for a given level of
exercise when compared to Wuhan and Delta participants. Oxygen delivery to the muscle
cells and carbon dioxide removal were significantly more efficient in the Omicron patients,
which explains the significantly higher VO2 max values in these athletes. Furthermore,
O2/HR values were also within normal values for professional athletes (>20 mL/beat)
throughout the pandemic [28], but significantly higher values of the oxygen pulse were
observed in athletes who had had the Omicron variant infection. A more efficient ejection
fraction of the left ventricle provides a greater amount of oxygen to the muscle cells and
thus more energy for work. Furthermore, athletes who had suffered from a coronavirus
infection during the periods of Wuhan and Delta strain dominance had an early transition
from aerobic to anaerobic metabolic pathways for obtaining ATP. Thresholds were reached
at significantly lower heart rates and levels of physical intensity compared to the athletes
in the Omicron group. This could explain the much higher maximal RER values and
prolonged anaerobic fatigue during CPET.

Hypoxemia-associated changes in external respiration are the first objective indicators
of the clinical signs of respiratory failure after SARS-CoV-2 infection [29]. Given that
ventilatory efficiency and O2/HR were within normal limits, the coronavirus in all three
groups of subjects did not impair external respiration, lung, or cardiovascular function.
Therefore, low values of aerobic capacity and aerobic efficiency in all three groups of
subjects, especially in athletes who suffered from Wuhan and Delta strain infection, can
probably be explained by impaired internal respiration. Oxygen delivery to muscle cells
was apparently adequate, but tissue utilization of oxygen was compromised. This could
potentially be explained by the reduced number of mitochondria at the level of muscle cells
and, thus, the inability to adequately utilize oxygen to produce ATP. The latest research
related to pandemics indicates the potential of the coronavirus to damage mitochondria as
the main oxygen organelles [30,31]. The reduced number of mitochondria at the level of
muscle cells can thus explain the impaired oxidative phosphorylation at the cell level.

Additionally, only a few studies have dealt with the impact of different virus strains
on the relevant clinical parameters in SARS-CoV-2 patients. The results of one such study
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showed that the Wuhan strain had a less favorable effect on the erythropoiesis process
and led to more pronounced hypoxia in SARS-CoV-2 patients compared to other variants
of this virus in later phases of the pandemic [32]. Considering this fact, the significantly
reduced functional capacity in the Wuhan group of athletes, compared to those infected
with Omicron virus variants in our study, could be explained by the lack of oxygen “carriers”
through circulation. Some studies have shown that all the variants of concern (one being
linked to rapid spread in human populations) manifested varied immune escape, especially
the Omicron [15,17]. Although it has been proven that the Omicron strain has a high
transmission potential, according to our results, its potential to impair an athlete’s functional
abilities is obviously weaker. Much higher VO2 max VE/VCO2 slope, and O2/HR values,
together with delayed transition from aerobic to anaerobic metabolism, were observed in
the Omicron group of athletes when compared to other evaluated strains.

5. Conclusions

The main results of the study indicate that the potential of the virus to impair an
athlete’s functional abilities decreases as the pandemic progresses, which greatly facilitates
a safe return-to-play decisions for both sports physicians and coaches. Although no
pathological changes were observed after the SARS-CoV-2 infection, the virus overall
reduced the functional capacity of the athletes, especially in the early stages of the pandemic
during Wuhan and Delta strain dominance. This suggests that a gradual and cautious
return to sports activities is still necessary to avoid exacerbation of potential underlying
accute myo/pericarditis or lung disease.
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