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Abstract: Traumatic brain injury (TBI) is one of the major causes of disability and mortality worldwide.
Rapid and precise clinical assessment and decision-making are essential to improve the outcome
and the resulting complications. Due to the size and complexity of the data analyzed in TBI cases,
computer-aided data processing, analysis, and decision support systems could play an important role.
However, developing such systems is challenging due to the heterogeneity of symptoms, varying
data quality caused by different spatio-temporal resolutions, and the inherent noise associated with
image and signal acquisition. The purpose of this article is to review current advances in developing
artificial intelligence-based decision support systems for the diagnosis, severity assessment, and
long-term prognosis of TBI complications.

Keywords: traumatic brain injury; artificial intelligence; decision support systems; diagnosis; severity
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1. Introduction

Traumatic Brain Injury (TBI), often referred to as the silent epidemic [1–3], is an under-
recognized and prevalent public health problem [4,5], with an estimated 64–74 million
individuals diagnosed with TBI each year [3]. Motor vehicle crashes, falls, firearm-related
suicides, assaults, and high-intensity sports are among the most common causes of TBI [6–8].
According to the United States Centers for Disease Control and Prevention (CDC) report
in 2020, an estimated 176 Americans die from TBI-related causes every day [9]. Depending
on the extent of brain injury, survivors may experience short- to long-term complications
including physical, psychological, and cognitive impairments. Changes in the decision-
making process, attention deficiency, memory concern, lack of impulse control, increased
aggregation, and higher suicidality are observed in individuals with a history of TBI [5,10–12]
and are heightened if the injury happens during childhood [13–16].

Despite the remarkable progress in understanding brain injury, the development of TBI
remains complex which makes the assessment of the patient upon admission and during
their hospital stay challenging. The pathophysiology of TBI is often divided into two phases.
After the initial physical insult to the brain, irreversible lesions known as the primary injury
occurs [17,18]. Then, a series of molecular, metabolic, and inflammatory responses can
cause secondary injury that is directly mediated by intracranial hypertension, midline shift
(MLS), ischemia, herniation, infarction, and cerebral vasospasm [19–21]. Unlike primary
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injuries, the extent of secondary injuries can be decreased or delayed by rapid and precise
injury evaluation, maintaining patient homeostasis, and appropriate medical interventions
during the “golden hours” of treatment after the initial brain lesion [22,23].

The injury assessment of TBIs relies on clinical examinations based on the Glasgow
Coma Scale (GCS) and pupillary reactivity as well as brain imaging, primarily computed
tomography (CT) scans [24,25]. The difficulty with TBI assessment is two-fold. First, in
practice, clinicians only use traditional manual measurements derived from CT slices.
These examinations are tedious, subject to inter- and intra- observer variability, and fail to
completely and accurately extract and quantify important characteristics of the injured area.
On the other hand, TBI is a complex, heterogeneous event that, unlike other neurological
disorders, may not produce predictable clinical symptoms. Therefore, in order to address
both of these difficulties, automated systems that can analyze the massive data associated
with TBI patients [23] to quickly and efficiently estimate the extent of brain injury [26]
and provide prognostic information are highly in demand. Such systems can potentially
standardize the management of TBI patients, reduce the chance of human error, speed up
the decision-making process, and personalize medical management based on individual
patients’ pathophysiological symptoms and complications. This may be particularly useful
in small rural hospitals that often lack expertise in neurosurgery and neurological intensive
care, and where there is both a higher incidence of TBI and increased mortality due to
TBI [27,28].

The purpose of this paper is to review the past two decades’ efforts in developing
computer-aided decision support systems for TBI diagnosis and prognostication and
discuss the limitations of current methods that have not allowed them to be implemented
into the daily practice of clinicians. The future research direction for advancing such
systems is also discussed in the last sections.

2. Hematoma Detection and Quantification

Hematoma is one of the most common sequelae of TBI. Based on its location within
or outside of the brain parenchyma, a hematoma can be classified as intra-axial or extra-
axial. Extra-axial hematomas include subdural hematomas (SDH), epidural hematomas
(EDH), and subarachnoid hemorrhage (SAH). An intra-axial hematoma can variably be
termed intraparenchymal hemorrhage (IPH), intracerebral hemorrhage (ICH), or cere-
bral contusion [29,30]. Previous studies have shown the importance of hematoma type
and volume in predicting TBI outcomes [31,32]. Delayed management of the hematoma
can lead to raised intracranial pressure, focal neurological dysfunction, unconsciousness,
and death. Hematoma quantification on CT slices is classically done by the ABC/2 vol-
ume estimation technique which often overestimates the actual hematoma volume [33,34].
Another common approach is computer-assisted planimetric analysis which is very time-
consuming [33,34]. Computer-aided image processing techniques can help clinicians to
assess hematoma shape and size and speed up the physicians’ decision-making process.
Common challenges with these methods are the inherent noise associated with CT scans,
obstructions from the skull, ventricles, or soft tissue edema, and variability in hemorrhage
location, size, brightness, and pixel intensity. In this regard, a number of brain hemorrhage
segmentation, classification, and quantification algorithms have been proposed. The major-
ity of brain hematoma segmentation algorithms can be classified as thresholding, region
growing, level-set, active contour, fuzzy c-means (FCM) as well as deep-learning (DL)-
and neural-network (NN)-based algorithms. These segmentation algorithms are usually
coupled with established classifiers such as support vector machine (SVM), decision tree,
k-nearest neighbor (KNN), and the k-means clustering model to classify hematoma versus
non-hematoma regions or distinguish different hematoma types. Shahangian et al. [35]
used thresholding to segment and detect candidate hematoma regions. In this technique,
each pixel of the hemorrhage region is segmented based on the segmentation thresholds
that are defined by image intensity distribution. Bardera et al. [36] used a semi-automated
approach by manual adjustment of the initialization seed points and threshold values. An
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intensity-based region-growing method was then used to segment the entire region. This
technique detects the hematoma region by identifying the neighboring pixels that have
similar grayscales as the starting point. Liao et al. [37] used adaptive thresholding and
connectivity information to locate hematoma voxels. A multi-resolution binary level set
segmentation algorithm was then applied to distinguish the intracranial hematoma from
soft brain tissue. In another approach, Farzaneh et al. [38] used distance regularized level
set evolution (DRLSE) to develop an automated SDH segmentation model considering
variations in intensity, size, shape, and location of the hematoma region. In order to re-
duce the complexity of the DRLSE method due to reinitialization, Shahangian et al. [39]
proposed a modified distance regularized level-set evolution (MDRLSE) method to detect
the hematoma regions. The extracted shape and texture features from the segmented
region were then used to detect four different hematoma subtypes. A combination of FCM
clustering and a region-based active contour model was employed by Bhadauria et al. [40]
to detect ICH. A framework integrating the Gaussian mixture model (GMM) and parameter
estimation using expectation maximization was implemented to find the hematoma compo-
nent [41]. The above-mentioned methods either rely only on intensity values for selecting
the region of interest at the first step or are sensitive to the initialization mask. However,
due to the variations in imaging protocols and patient conditions, hematoma intensity
varies and, in some cases, overlaps with that of normal brain tissue or other anatomical
structures such as the straight sinus.

More recently, deep learning techniques have been applied to acute brain hematoma
segmentation and quantification. Nag et al. [42] used an autoencoder network to generate
an initialization mask, combined with an active contour Chan-Vase model to segment
acute intracranial hematoma. Jain et al. [43] implemented 2D and 3D U-net-based CNN
algorithms for brain extraction, hematoma segmentation, and volumetric quantification
of intracranial lesions. Chilamkurthy et al. [44] applied a natural language processing
(NLP) algorithm on head CT scans combined with clinical reports to detect five different
hematoma subtypes. Patel et al. [45] used the Long-Short Term Memory (LSTM) model
to extract features from multiple stacked CT slices and detect ICH. This method provides
more spatial information compared to models that are based on the single 2D slice analysis.
In a similar approach, Grewal et al. [46] implemented a Recurrent Attention DenseNet
(RADnet) framework for hemorrhage detection from 3D scans. Chang et al. [47] designed a
customized 2D/3D mask region of interest (ROI)-based Convolutional Neural Network
(CNN) framework to segment and detect SDH/EDH, SAH, and IPH. Farzeneh et al. [48]
used a combination of hand-crafted features and U-net-extracted features [49] to specif-
ically detect and quantify SDH. The proposed model was generalizable to various SDH
types with greater than 25 cc of blood. Yao et al. [50] proposed a modified U-net in which
dilated convolution was introduced while down-sampling and up-sampling layers were
removed. Furthermore, low-level features and high-level features were also combined.
The efficiency of this model in improving the prediction resolution and the final segmenta-
tion performance over GMM [41] and previous U-net models was demonstrated. Nijiati
et al. applied a U-net-based Sym-TransNet framework to segment five hematoma sub-
types [51]. Inkeaw et al. [52] adopted a three-dimensional CNN approach [53] to detect
three hematoma subtypes. Monterio et al. [54] used a two-step training strategy to develop
a CNN-based model to segment, detect, and quantify three different brain hemorrhages.
Mansour et al. [55] used optimal image segmentation with the Inception v4 network and
developed a DL-based model for ICH detection and classification. One of the major limita-
tions in training hematoma segmentation models is the manual labeling of a huge number
of CT scans. In order to overcome this problem, Yao et al. [56] developed a fully automated
acute hematoma segmentation model combining active learning and active contour models.
Statistical and textural features extracted from superpixels were used to train the proposed
model which could achieve a similar outcome with five times less annotated data compared
with that of established machine learning (ML) models. Table 1 summarizes the discussed
methods for hematoma detection and quantification.
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Table 1. Summary of different models for hematoma detection and quantification.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[36] ML
Intensity-based,
region growing

algorithm
18

Hematoma
segmentation

and
quantification

Mean matching
ratio: 0.80

Mean
correspondence

ratio: 0.74

Proposing a semi-automated
method for hematoma

detection and voxel-wise
volume estimation

[37] ML
Multiresolution
binary level set

method
15

Hematoma
segmentation

and
quantification

Mean Sen: 0.87
Mean precision: 0.89

Automated method, Using
adaptive threshold as initial
values for binary level set

method

[40] ML
FCM clustering,

region based active
contour

20 ICH
segmentation

Dice coefficient:0.87
Jaccard index: 0.78

Sen: 0.79
Spec: 0.99

The level-set method used
by active contour does not
need re-initialization and

converges faster.

[35] ML

Thresholding for
segmentation,

GA-based feature
selection, NN
classification

_ EDH, ICH,
SDH detection

Segmentation Acc:
EDH: 0.96
ICH: 0.95
SDH: 0.90

ICH detection and
classification Acc:

0.90

Proposing independent
hematoma segmentation and

classification approach

[41] ML
GMM, expansion

maximization
algorithm

11 ICH
segmentation _

Developing a GMM-based
model to remove skull and
image’s artifacts and detect

hematoma

[39] ML

MDRLSE,
hierarchical classifier
(using pixel intensity

and then SVM
classifier)

627
ICH, SDH,
EDH IVH
detection

Segmentation Acc
First classifier: 0.9
Second classifier:

0.94

Using a hierarchical classifier
to first classify the IVH from

the normal class and then
SDH, ICH, and EDH

[38] ML DRLSE,
Tree bagger classifier 42 SDH detection

AUC: 0.87
Sen: 0.85
Spec: 0.73

Proposing a method for 3D
segmentation of SDH
considering geometric,
textural, and statistical

features

[50] DL Dilated CNN 62 Hematoma
segmentation

Dice: 0.62
Acc: 0.95

Hematoma detection using
an FCN model combined
with dilated convolutions

[44] DL NLP

313,318
(Qure25k

dataset); 491
(CQ500

dataset) as
validation

set

SDH, SAH,
IVH, IPH and

extradural
hematoma
detection

AUC
ICH: 0.94

Intraparenchymal:
0.95

Intraventricular:
0.93

SDH: 0.95
Extradural: 0.97

Subarachnoid: 0.96

Developing a DL model to
detect five different subtypes

of intracranial hematoma,
cranial vault fractures, mass

effect, and midline shift

[46] DL
Original DenseNet,

attention mechanism,
RNN

329
Acute

hematoma
detection

Acc: 0.818
Recall: 0.886

F1-score: 0.847

A combination of CNN and
LSTM was used to model 3D

CT labeling for brain
hemorrhage detection that
was benchmarked against

specialist clinician.
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Table 1. Cont.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[47] DL
Custom 2D/3D mask

Region of
interest-based CNN

11,021

IPH,
EDH/SDH,

SAH detection
andquantifica-

tion

Dice:
EDH/SDH: 0.86

IPH: 0.93
SAH: 0.77

Pearson correlation
coefficient for

volume estimation:
EDH/SDH: 0.98

IPH: 0.99
SAH: 0.95

A custom model, extracted
from the feature pyramid

network [57] was
implemented for hematoma
segmentation, classification,
and volume measurement

[56] ML
Active learning to

train SVM classifier,
active contour

62 Hematoma
segmentation

Dice: 0.55
Acc: 0.97

The proposed model could
achieve a comparable result
with 5 times less labeled data
compared with established

ML models.

[42] DL

Fuzzy-based
intensifier,

Autoencoder, active
contour Chan-Vase

model

48 Hematoma
segmentation

Dice similarity score:
0.70±0.12

Jaccard index:
0.55±0.14

Implementing unsupervised
NN-based method for acute

hematoma segmentation

[43] DL U-net based CNN

144 subjects
from

CENTER
-TBI and

NCT02210221
datasets
[58,59]

Hematoma
segmentation,

volume
estimation

Segmentation Dice:
0.697

Volume estimation
correlation

coefficient: 0.966

Proposing a novel
Multi-view CNN with a
mixed loss forhematoma

segmentation and
quantification

[48] ML/DL Level set method,
U-net, RF 110

SDH
segmentation
and severity

estimation by
hematoma

volume
classification
(0–25 cc vs.

>25 cc)

Sen: 0.78
Precision: 0.76

DSC: 0.75

Integrating classical image
processing methods and DL

model to improve the
average performance of

hematoma detection
andquantification

[54] DL CNN

937
(CENTER
-TBI and

NCT02210221)
[58,59];

Validation:
500

IPH, EAH, IVH,
and perilesional

oedema
segmentation,
detection, and

volume
quantification

AUC for
classification of

lesions greater than
0 mL:

IPH: 0.87
EAH: 0.89
IVH: 0.89

Perilesional oedema:
0.89

Proposing a CNN-based
algorithm for voxel-wise

segmentation, detection, and
quantification of various TBI

lesions and perilesional
oedema

[60] DL Multi-view CNN 120
ICH detection

and volumetric
quantification

Dice coefficient:
0.697

ICC: 0.966

Developing a multi-view
CNN with dilated

convolution and mixed loss
to reduce the model

sensitivity to the noise and
minor shape changes.
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Table 1. Cont.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[55] DL

Kapur’s thresholding,
EHO algorithm,

Inception v4 network,
multilayer perception

82
ICH detection

and
classification

Acc: 0.941
Precision: 0.944

Spec: 0.948
Sen: 0.926

Developing DL-ICH model
for image preprocessing,

ICH segmentation, feature
extraction andclassification

[51] DL Sym-TransNet 1357
IPH, IVH, EDH,
SDH and, SAH
segmentation

Dice coefficient:
IPH: 0.78
IVH: 0.68

EDH: 0.359
SDH: 0.534
SAH: 0.337
Five-class:

0.716±0.031

Proposing a U-net based
model to detect five different

hematoma subtypes

[45] DL LSTM

Training and
testing: 1554,

validation:
386

ICH detection AUC: 0.96

Combining CNN and RNN
to form a bidirectional LSTM

model for intracranial
hemorrhage

detection

[52] DL

3D CNN,
region

growing
algorithm

153 SDH, EDH, IPH
segmentation

Median DSC
SDH: 0.48
EDH: 0.71
IPH: 0.37
ICH: 0.59

Developing a hematoma
segmentation approach
using DL model with 4

different parallel pathways

3. Intracranial Pressure

According to the Guidelines for the Management of Severe Traumatic Brain Injury [61],
increased intracranial pressure (ICP) resulting from edema or hematoma is one of the
important causes of secondary brain injury and is associated with poor outcomes in TBI
patients. Raised ICP causes reduced cerebral perfusion pressure, brain tissue compression,
deformation, and herniation, further complicating the injury [62,63]. Pathologically, clinical
interventions are required when ICP persistently rises above 22 mmHg, because values
above this level are correlated with an increased risk of mortality [64]. Currently, ICP is
assessed invasively by direct measurement of ventricular or parenchymal pressure which
could increase the risk of bleeding, infection, and brain tissue damage [65–68], with current
guidelines recommending placement of an invasive ICP monitor for all patients with an
abnormal head CT and GCS less than eight. Hematoma volume and shift of the brain’s
midline, typically measured at the level of the ventricles, are associated with a higher
likelihood of ICP elevation. Since these manual estimations are slow and susceptible to
human error, automated non-invasive methods that can quickly, precisely, and consistently
predict ICP are preferred. During the past years, several non-invasive methods to estimate
ICP have been suggested, which may allow refinement of the selection criteria for invasive
monitor placement [65]. These methods can be grouped into physiological-, morphological-,
and textural-based methods. Physiological-based methods are based on the physiological
changes that are associated with raised ICP such as the arterial blood pressure (ABP) and
flow velocity (FV) of major cerebral arteries [69,70]. Morphological-based methods often
use imaging techniques to quantify morphological changes, such as optic nerve sheath
diameter (ONSD) [65]. The optic nerve is the extension of the central nervous system and
is in touch with the brain subarachnoid space. Recently, estimating the increased ICP from
measuring the optic nerve has gained interest because it can non-invasively be measured
by CT and Magnetic Resonance imaging (MRI) as well as ultrasounds methods [71–75].
Nevertheless, these methods are still based on manual measurement and have not been
automated yet. In a different morphological-based approach, Pappu et al. [76] developed a
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semi-automated method that segments brain parenchyma from cerebrospinal fluid (CSF)
and computes the ratio of CSF volume to whole intracranial volume (csfv/icvv) to estimate
ICP. However, the efficiency of this model was limited to cases with csfv/icvv > 0.034 and
could not distinguish between high and low ICP when the csfv/icvv ratio was smaller than
0.034. Textural-based methods assess subtle changes in tissue density and image texture
that are sometimes hidden from human eyes to automate ICP prediction. A combination of
features extracted from Fourier analysis, Gray Level Run Length Matrix (GLRLM), Dual
Tree Complex Wavelet Transform (DT-CWT), and histogram analysis have been used for
ICP level classification in TBI patients [77–81]. It was demonstrated that the energy of
different sub-band images of 2D fully anisotropic Morlet wavelet transformations could be
used to determine the dominant textural orientation of the brain tissue in TBI patients and
was later shown to be more competent than DT-CWT in ICP prediction [82,83].

4. Midline Shift

MLS is the measurement of horizontal displacement in the brain structure via imaging
modalities. The amount of MLS is correlated with increased ICP [84] and is one of the
most informative features in CT classification scoring systems including Marshall and
Rotterdam scores [85,86]. Clinicians typically use the attachment of falx cerebri to the skull
to determine the ideal midline (iML) [84]. The distance between the iML and a pertinent
point on the brain scan such as the septum pellucidum (SP), a narrow boundary between
two lateral ventricles, is used to calculate the MLS. However, this subjective measurement
of MLS on a single slice is prone to human error and does not account for head rotation
and overall tissue displacement.

Over the past years, a great number of MLS estimation models have been proposed.
Liao et al. classified these models into symmetry-based models and landmark-based
models [84]. In symmetry-based models, a line connecting all displaced and deformed
structures, called the deformed midline (dML), is identified and its distance from the iML
is considered the MLS. Liao et al. [87] proposed a symmetry-based method to identify the
dML at the Foramen of Monro (FM) level. In this model, the dML consists of the lower
and upper straight segments of falx cerebri and a central quadratic Bezier curve-shaped
segment reflecting the deformed brain tissue. This method was based on the manual
selection and rotation of the single selected brain CT scan and has a lower success rate of
MLS measurements in severe cases. Liu et al. [88] used a linear regression-based algorithm
(H-MLS) to model the relationship between the hematoma and midline deformation. Visual
symmetry information was then used to adjust the predicted deformed midline. Wang
et al. [89] developed a model based on the calculation of the MLS ratio over the maximum
width of the intracranial space. In this method, a higher weight was assigned to the darker
pixels of pre-selected CT scans and used to plot the weighted midline (WML). The distance
between the WML and the iML was then used to estimate the brain shift.

In landmark-based algorithms, specific anatomical structures, often parts of the lateral
ventricles, are selected as landmarks to assess MLS. Chen et al. [79] proposed a method
for automated iML detection in which a vertical line is passed through the centroid of the
image mass then the image is rotated to yield the best symmetry. The falx cerebri and
anterior bone protrusion locations are also considered to make the rotation more precise
and determine the iML. Hooshmand et al. [90] developed a fully automated approach for
CT slice selection, rotation, and ventricular segmentation. A level-set method was then
used to quantify the mean distance between the iML and actual midlines on all selected
images. However, a major limitation of this method is that by measuring the MLS as a linear
shift, other clinically important information, such as shape, volume, and location of the
displaced tissue, is ignored. To solve this issue, a volumetric measurement of shifted brain
tissue, namely mid-surface shift (MSS), was suggested to quantify the area between the iML
and the dML in all selected slices [91]. Using this method, the ratio between the mid-surface
volume and the brain volume was calculated and shown to have a significant correlation
with patient outcomes at discharge. Recently, a number of DL-based approaches to assess
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MLS in the injured brain have been suggested. Wei et al. [92] used a regression-based line
detection network (RLDN) to assess MLS in the severely deformed brain. Chilamkurthy
et al. [44] used the NLP algorithm to detect tissue shifts larger than 5 mm. Nag et al. [93]
applied a U-Net algorithm to segment left/right hemispheres. The junction between these
two segments was then traced to form the dML. The summary of AI-based methods for
ICP estimation and MLS detection/quantification is presented in Table 2.

Table 2. Summary of different approaches for ICP estimation and MLS quantification.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[77] ML ReliefF feature
selection, SVM 17

ICP > 15
vs.

ICP ≤ 15

Acc: 81.79 ± 2.3
Sen: 82.25 ± 1.7

Spec: 81.20 ± 0.04

Textural-based ICP
estimation using Histogram

analysis, GLRLM, DWPT,
Fourier Transform, and

DT-CWT

[80] ML SVM 17I
ICP > 12

vs.
ICP ≤ 12

Acc: 70.2 ± 4.5
Sen: 65.2 ± 8.6
Spec: 73.7 ± 4.6

Textural-based ICP
estimation using Histogram

analysis, GLRLM, DWPT,
Fourier Transform, DT-CWT

as well as hematoma
volume, manual MLS

measurement, age, and ISS

[81] ML‘ SVM 17
ICP > 12

vs.
ICP ≤ 12

Acc: 73.7
Sen: 68.6
Spec: 76.6

Textural-based; improving
previous model [80] by
adding intracranial air
cavities, ventricle size

related feature

[83] ML

GA-SVM and
GA-KNN based

feature
selection,

SVM classification
method

59
ICP > 15

vs.
ICP < 15

Acc: 86.5

Textural-based; using
anisotropic complex wavelet

as textural feature for ICP
classification

[82] ML

GA-SVM based
feature selection,
SVR classification

method

59
ICP > 15

vs.
ICP < 15

Acc: 0.94
MAE: 4.25 mmHg

Textural-based; comparing
anisotropic complex wavelet
transform extracted features

vs. DT-CWT extracted
features in ICP classification.

[76] Hounsfield units
thresholding 20

ICP > 20
vs.

ICP < 20
Acc: 0.67

Morphological-based; brain
parenchyma segmentation,

ICP estimation based on
csfv/icvv ratio

[69] ML Black box model 11 ICP MAE: 4.0 ± 1.8
mmHg

Physiological-based;
non-invasive prediction of
ICP using ABP and FV of

major cerebral arteries.

[70] ML SVM 446 ICP Mean ICP error: 6.7
mmHg

Physiological-based;
noninvasive measurement of

ICP using ABP and FV of
major cerebral arteries

[71] ML Linear
regression 74

ICP > 20
vs.

ICP ≤ 20
AUC: 0.94

Morphological-based;
estimating the probability of
increase ICP by measuring

MRI-based ONSD
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Table 2. Cont.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[80] ML Gaussian mixture
model 57

ICP > 12
vs.

ICP ≤ 12
Acc: 0.70

Textural-based ICP
estimation; using tissue

textural features, manual
MLS quantification, ISS, and

age

[79] ML
Information gain
ratio, GA feature
selection, SVM

57
ICP > 12

vs.
ICP ≤ 12

Acc: 0.70
Sen: 0.65
Spec: 0.73

Textural-based ICP
estimation; automated iML

detection; using textural
features, MLS, and blood

amount to
estimate ICP

[87] Bezier curve, GA 81 MLS Acc: 0.95

Symmetry-based; detecting
dML at the foramen of

Monro level; Low
performance in case of

severe TBI

[88] ML

H-MLS (Linear
Regression based),
visual symmetry

information

11 MLS -
Symmetry-based; tracing
dML based on the brain
hemorrhage detection

[89] Weighted midline,
maximum distance 41 MLS Acc: 0.92

Symmetry-based; estimating
MLS based on the maximum

distance
between WML and iML

close to the
foramen of Monro

[94] ML
CT density, spatial

filtering, cluster
analysis

273 MLS Sen:1
Spec: 0.98

Landmark-based; using
spatial filtering, CT density

thresholds, and cluster
analysis to segment blood
and CSF. The symmetry of

CSF pixels in the lateral
ventricles is used to assess

MLS

[90] ML Level-set 170 MLS Acc: 0.68

Landmark-based;
automating CT slice

selection, rotation, and
segmentation

[91] ML Active contour,
Logistic regression 48

MSS
vs.

MLS

AUC: 0.71
Acc: 0.79

Landmark-based; volumetric
measurement of displaced

brain mass was
significantly correlated with

GOS on discharge

[44] DL NPL

313, 318
(Qure25k

dataset); 491
(CQ500

dataset) as
validation

set

MLS
AUC: 0·969
Sen: 0.938
Spec: 0.907

Detecting mass effect which
consists of MLS, ventricular

effacement,
herniation, or local mass

effect
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Table 2. Cont.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[92] DL RLDN

189 (CQ500
dataset [44]

and local
resources)

MLS F1-score: 0.78

Developing a multi-scale
bidirectional FCN based
method [95] for midline

delineation in severe brain
deformation

[93] DL U-Net 45 MLS Acc: 0.94

Deformed right and left
hemispheres were

automatically segmented.
The junction of these two

segments was then traced to
forms dML.

[43] DL U-Net based FCN 38
MLS < 5 mm

vs.
MLS > 5 mm

Acc: 0.89

MLS estimation at all levels
between the lateral

ventricles roof and foramen
of Monro was performed.

The greatest MLS score was
considered the final MLS.

5. Electroencephalogram (EEG)-Based Methods

EEG refers to the standard digital recording of the brain’s electrical activity. Quan-
titative interpretations of EEG signal (qEEG) and identification of slight changes in the
patterns or type of EEG activity have been suggested to be an indication of mild TBI
(mTBI) [96–98]. One challenge with using EEG recordings in the emergency room or ICU is
that these signals are blended with environmental and physiological artifacts and noises
such as electrode displacement, muscle and cardiac activity, and blinking that can affect the
accuracy of signal detections [96]. The existing preprocessing methods for removing the
EEG artifacts have limited performance, mainly due to the oversimplifying assumptions of
stationarity of the brain signals and additivity of EEG noises which can adversely affect the
quality of features extracted from EEGs such as qEEG [96,97]. Another important limitation
in using these signals is the lack of a universal index for TBI diagnosis which makes the
qEEG mapping with severity index very challenging [96]. Several predictive models using
quantitative EEG parameters have been proposed, but these models all require validation
in much larger and more diverse data sets before their use can be considered in routine
clinical practice [99].

6. TBI Prognostication

Because the majority of patients with traumatic brain injury die as a result of the
withdrawal of life-sustaining treatments due to perceived poor prognosis, accurate prog-
nostication of TBI outcomes is extremely important in determining outcomes and making
individualized treatment decisions [100,101]. While outcome prediction is clinically impor-
tant for the personalized management of TBI, a sufficiently accurate scoring system that
captures the heterogeneity of traumatic brain injury remains unavailable. There are several
well-validated scoring systems, but they are overly simplistic and fail to incorporate a wide
variety of data, particularly imaging data. Advanced computer-aided prognostic ML tech-
niques have been proposed to help clinicians predict early mortality as well as long-term
outcomes in patients admitted with TBI. Wang et al. [32] assessed the relative importance
of hematoma shape, size, ICH score, and GCS score in predicting 30-day mortality in TBI
patients. Abujaber et al. [102] showed that logistic regression (LR) is more efficient than arti-
ficial neural networks (ANN) in predicting in-hospital mortality in intubated patients with
moderate to severe TBI. Voormolen et al. [103] compared the survival prediction efficiency
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of the LR algorithm and 22 ML models. Although the AUC of Linear SVM, Quadratic SVM,
and Cubic SVM were higher than that of LR in this study, the outcomes were not verified
on an external dataset. In another study, Wang et al. [104] demonstrated that XGBoost
(XGB) provides better performance than LR algorithms in predicting early mortality in TBI
patients. However, considering the higher tendency of XGB to overfit, the generalizability
of the selected model needs to be tested on an external dataset. Adil et al. [105] compared
shallow neural networks (SNN), deep neural networks (DNN), and elastic-net regularized
logistic regression (LRnet) models for TBI prognostication which showed similar prediction
performance. In this case, the simpler model, LRnet, would be preferable for its reduced
risk of overfitting and also the ease of interpretability and deployment that is critical for
the prognostic models. Yao et al. [60] used ICH shape and volumetric-distribution-related
features that were obtained from a multi-view CNN model, combined with clinical ob-
servations to predict 6-month mortality. The proposed model used a random forest (RF)
algorithm and achieved better performance compared to the widely used IMPACT model.
Gravesteijn et al. [106] compared the discriminative performance, calibration, and gen-
eralizability of established ML models with traditional regression algorithms to predict
mortality and unpredictable outcomes using CENTER-TBI and IMPACT-II datasets. It was
shown that these outcome performances varied between datasets rather than between the
algorithms. According to the above-mentioned studies, no clear difference in performance
was observed between regression-based models and ML models and most likely, using
novel, more sophisticated algorithms will not improve outcome prediction. Therefore,
future studies need to focus on characterizing and incorporating the most informative TBI
prognostic predictors. In addition to neuroimaging data, incorporating measures of clinical
severity, vital signs, and continuous sensor signals from cardiac telemetry, arterial blood
pressure, and ICP monitoring may improve the prediction of neurological deterioration and
overall outcomes [107]. One major limitation of integrating ML-based prognosis models
in healthcare applications is their lack of interpretability which has greatly affected their
adoption in TBI management. To address this issue, Farzaneh et al. [108] proposed a
framework for an intelligible prognostic model for TBI outcome prediction six months from
hospitalization in which (SHapley Additive exPlanations) SHAP contribution values were
used to select the most relevant features followed by clinical expert validation of selected
variables. Using this model, each feature returns a contribution at the individual level, and
aggregation of all feature contributions determines the ultimate predicted score for each
person. In a more recent study, Minoccheri et al. [109] developed a human interpretable
neural network model based on tropical geometry and fuzzy logic. Using available in-
formation at the time of admission, this model could predict negative outcomes in TBI
patients six months after hospitalization. Not only was the classification performance of
this intelligible model comparable with established ML models such as SVM, XGB, and
RF, but it also allowed extracting rules that only involve a few factors that can be used in
isolation if some of the variables are not available. Table 3 shows the summary of reviewed
computer-aided decision support systems for TBI prognostication.

Table 3. Summary of different AI-based methods for TBI prognostication.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[32] ML
Linear Regression,

Binary logistic
regression

106 30-day
mortality

AUC:
Hematoma shape:

0.692
Hematoma size:

0.715–0.786
ICH score:
0.877–0.882

GCS: 0.912–0.922

Hematoma shape and size,
ICH score, GCS score, age,

IVH, presence of
infratentorial location were

used to estimate 30-day
mortality
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Table 3. Cont.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[43] DL 2D U-net based CNN,
3D U-net based CNN 144

Hematoma
segmentation,

volume
estimation,

GOSE
prediction

Segmentation Dice:
0.697

Volume estimation
correlation

coefficient: 0.966
6-month GOSE

prediction AUC:
0.85

Proposing a novel
Multi-view CNN with a

mixed loss for hematoma
segmentation, quantification,

and 6 months mortality
prediction

[102] DL/ML ANN, LR 785 early mortality

LR
Accuracy: 0.87
AUROC: 0.905

ANN
ACC: 0.809

AUROC: 0.875

Trauma registry data
including Injury, CT findings

and demographic
characteristics

[103] DL/ML LR, 22 ML models * 117 Survival
prediction

AUC:
LR: 0.83

ML models:
0.30–0.94

Cubic SVM, Quadratic SVM
and

Linear SVM outperformed
LR

[60] ML RF classifier 828
6 months
mortality

prediction

AUC: 0.853
AUPRC: 0.559

Integrating volumetric
characteristics and shape

features extracted from the
proposed model with
IMPACT without CT

features to predict
six-months mortality

[106] DL/ML
LR, lasso regression,
and ridge regression,
SVM, RF, GBM, ANN

11022
(IMPACT-II),

1554
(CENTER-

TBI)

GOS < 3,
GOSE < 5

Mean AUC (external
validation)

Mortality: 0.82
Unfavorable

outcome: 0.77

Motor GCS score, CT class,
SDH, EDH, hypoxia,

hypotension, demographic,
and some laboratory test

data were used to compare
various model performance

in predicting
patient outcome.

[104] ML XGB,
LR

368 TBI
patients with

GSC<13
Early mortality

XGB:
Acc: 0.955

AUROC: 0.955
LR:

Acc: 0.70
AUROC: 0.805

Data from electronic medical
record system Including

laboratory test data, injury,
and demographic

information, CT finding

[105] ML
DNN,
SNN,

LR-net
2164

GOS 1–3
vs.

GOS 4–5

AUROC
DNN: 0.941
SNN: 0.931

LRnet: 0.919

Using demographic
information, GCS, injury

mechanism, heart rate, blood
pressure and other clinical

data

[108] ML XGB classifier, SHAP
values selection

831
(ProTECT III

data set)

GOSE 1–4
vs.

GOSE 5–8

AUC: 0.80
Acc: 0.74

F1-score: 0.70

Developing an intelligible
prognostic model using 2

rounds of variable
selection by SHAP values as

well as clinical domain
knowledge
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Table 3. Cont.

Ref. ML/DL Algorithm/Method Dataset Size
TBI-Related

Clinical
Assessment

Performance Main contribution

[109] DL
TFNN

vs.
RF, XGB, SVM

833
(ProTECT III

data set)

GOSE 1–4
vs.

GOSE 5–8

AUC
TFNN: 0.79

RF: 0.80
SVM: 0.79
XGB: 0.74

Developing human
interpretable neural network

model based on
tropical geometry to predict

GOSE 6 months after
hospitalization

* Quadratic discriminant, Linear discriminant, Fine KNN, Subspace KNN, Coarse KNN, Coarse Gaussian SVM,
Medium Gaussian SVM, Fine Gaussian SVM, Cubic KNN, Boosted trees, Subspace discriminant, Simple tree,
Medium tree, Complex tree, Cosine KNN, Medium KNN, RUSBoosted trees, Bagged trees, Weighted KNN, Cubic
SVM, Quadratic SVM, Linear SVM.

7. TBI Datasets

The Federal Interagency Traumatic Brain Injury Research Informatics System (FIT-
BIR) [110], founded by the National Institute of Health (NIH) and the Department of
Defense (DoD), is a centralized TBI dataset repository that has provided an invaluable
platform to share standardized raw data including clinical assessment, medical imaging,
and environmental and behavioral history from different studies and clinical trials. This
platform serves as a link to current databases, facilitates collaboration between laboratories,
and provides a valuable opportunity to share methodologies and related tools. Integration,
re-aggregation, and re-analysis of the shared data through this rich, diverse, and high-
quality TBI dataset repository can accelerate TBI research progress by identifying targeted
and more specific clinical treatments.

Among core FITBIR datasets is the Transforming Research and Clinical Knowledge in
TBI (TRACK-TBI) [111]. TRACK-TBI, founded by the National Institute of Neurological and
Communicative Disorders and Stroke (NINDS), is a dataset containing standard clinical
data from 3000 subjects at 18 U.S. sites. This dataset includes blood biospecimens, CT/MRI
imaging, and detailed clinical outcomes across military, sports, and civilian populations.

MIMIC-III (Medical Information Mart for Intensive Care–III) [112] and eICU (Philips
eICU Collaborative Research Database) [113] are also two big publicly available general
ICU datasets that include a large number of TBI patients. These datasets were generated
from de-identified electronic health records of patients admitted to the ICU. MIMIC-III is a
single-center dataset, containing 53,423 ICU admissions between 2001 and 2012, for patients
aged 16 years old and older. eICU is a multi-center dataset that consists of 200,859 ICU
admissions between 2014 and 2015 for 139,367 unique patients.

8. Discussion

TBI is a heterogenous condition that results in a wide spectrum of injuries in terms of
symptoms, severity, and outcome. Over the past two decades, there has been a plethora of
research on developing automated clinical decision-support systems that can detect and
quantify the imaging features of TBI, analyze the brain status and patients’ homeostasis in
ICU, assess the injury severity, guide clinical diagnosis, and predict patients’ outcome.

Despite the great potential of AI-based decision support systems in TBI, there is still
a noticeable gap between the available technology and clinical practice, which is also
reflected in some limitations of this survey.

Apart from a brief section on EEG data, most of the reviewed methods are based on still
image data such as CT, MRI, and ultrasound. This is because, beside clinical examinations,
current practice in TBI diagnosis primarily employs neuroimaging techniques. Furthermore,
the rapid development of computer vision, especially deep-learning-based algorithms in
the past decade, has outperformed other data modalities by a considerable margin, thus
heavily influencing the scope of this survey.
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In sharp contrast to the great number of automated clinical decision support systems
and ML algorithms presented in this survey, their performance has not been validated
and compared in a uniform manner. This is due to a lack of publicly available benchmark
datasets for TBI, especially a large amount of imaging data with annotations provided by
clinical experts, which are vital for the training of most deep-learning-based computer
vision algorithms.

Therefore, the current state of potential applications of AI-based decision support
systems in TBI calls for more collaboration within the field of TBI research, both between the
clinical and AI research communities, and within different aspects of TBI such as various
types of data and feature modalities, pathology, and severity spectrums.

The most urgent issue is the development of TBI-focused AI research platforms and
benchmark datasets which require a lot of effort from the clinical side of the TBI research
community. This will facilitate researchers by providing them with large training, val-
idation, and testing datasets, especially a sufficient quantity of annotated images for
deep-learning-based computer vision models and other sophisticated models which have
a higher chance of overfitting. In this regard, FITBIR provides an invaluable platform to
share the standard raw data, methodologies, and related tools.

Most of the existing methods for TBI severity assessment are developed for a specific
pathology (e.g., including brain swelling, hemorrhage, raised intracranial pressure, and
midline shift) or severity group of TBI patients (e.g., severe or severe to moderate TBI).
Future approaches need to be more inclusive, considering all TBI pathologies and severity
categories. A hierarchical framework with multiple models that covers the full TBI severity
spectrum is recommended.

Although neuroimaging-based methods provide an excellent structural and functional
mapping of TBI, they are limited to momentary views of the dynamically evolving brain
injury and may fail to detect mild to moderate injuries [96]. In contrast, qEEG-based
techniques provide a good temporal and spatial resolution of the brain activities and are
promising in detecting non-severe TBI cases [96]. EEG is a promising portable technology
that can provide useful information about TBI as soon as it happens. This is particularly
important in the rapid, initial diagnosis of at-risk populations such as athletes and mil-
itary service members. The accuracy of initial detection in TBI-diagnosed subjects can
further be validated using neuroimaging techniques as soon as they are transferred to the
healthcare units.

Current advances in developing TBI prognostication models suggest that developing
complicated models will not drastically improve the injury outcome prediction so future
studies need to focus on identifying the most informative variables. Intelligible feature
selection methods such as SHAP that return the contribution value of each variable can
enable researchers to select the most relevant features. Moreover, adding another layer of
validation from clinical experts on TBI on the selected features is necessary for the adoption
of the developed model in the clinical domain.

Another major problem of many ML models with clinical applications is their “black
box” essence with limited understandability and transparency. Ideally, a rule-based model
with explainable rules aligned with clinical domain knowledge should be considered. This
will improve the acceptability of the outputs and facilitate the integration of the developed
decision support system into the medical management of TBI. In this regard, using FNN-
based models that allow extracting human interpretable data as “if-then” rules would be
helpful. These models allow the integration of clinical domain knowledge into the learning
process which improves model performance and reduces the amount of required training
data. Furthermore, it provides the advantage of rule extraction from a few factors when
some of the variables are not available.

9. Conclusions

Given the heterogeneity of TBI, future computer-aided decision support systems
should be more comprehensive, covering different TBI severity spectrums and abnormali-
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ties. This model needs to be validated in multiple settings, including small, rural hospitals
that are less likely to participate in research. Because the prognostic information given to
families plays a major role in determining prognosis, mediated by the withdrawal of life-
sustaining treatment, predictive models must be highly accurate before they can confidently
be deployed in clinical practice. Ideally, the logic of their predictions can be understood
and interpreted by individual clinicians, which will aid in adoption into clinical practice.
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Table’s Abbreviations

DL: Deep Learning, ML: Machine Learning, FCM: Fuzzy c-mean, ICH: Intracerebral Hematoma, EDH:
Epidural Hematoma, SDH: Subdural Hematoma, IVH: Intraventricular Hematoma, EAH: Extra-Axial
Hematoma, IPH: Intraparenchymal Hemorrhage, Sen: Sensitivity, Spec: Specificity, DSC: DICE, Acc:
Accuracy, similarity coefficient, GA: genetic algorithm, FCN: fully convolutional neural network,
ICC: Interclass correlation coefficient, NN: Neural Network, CNN: Convolutional Neural Network,
RNN: recurrent neural network, RF: Random Forest, GMM: Gaussian mixture model, MDRLSE:
Modified Distance regularized level-set evolution, SVM: Support Vector Machine, DRLSE: Distance
regularized level-set evolution, AUC: Area Under the Curve, NPL: Natural Language processing,
LSTM: Long-Short Term Memory. ICP: Intracranial Pressure, MLS: Midline Shift, GLRLM: Grey
Level Run Length Method, DTCWT: Dual Tree Complex Wavelet Transform, DWPT: Discrete Wavelet
Packet Transform, iML: ideal Midline, ISS: Injury Severity Score, csfv: Cerebrospinal Fluid Volume,
icvv: Intracranial Volume, ABP: Arterial Blood Pressure, FV: Flow Velocity, GA: Genetic Algorithm,
SVR: Support Vector Regression, KNN: K-Nearest Neighbors, ONSD: Optic Nerve Sheath Diameter,
MAE: Mean Absolute Error, NPL: Natural Language processing, FCN: Fully Convolutional Neural
Network, RLDN: Regression-based Line Detection Network, GCS: Glasgow Coma Scale, GOSE:
Glasgow Outcome Scale-Extended, LR: logistic Regression, AUPRC: area under the precision-recall
curve, XGB: XGboost, RF: Random Forest, GBM: gradient Boosting Machines, ANN: Artificial Neural
Network, DNN: Deep Neural Network, SNN: Shallow Neural Network, LR-net: elastic-net Regular-
ized Logistic Regression, SHAP: SHapley Additive exPlanations, TFNN: Tropical geometry-based
Fuzzy Neural Network
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