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Abstract: Prediction of short-term mortality in patients with acute decompensation of liver cirrhosis
could be improved. We aimed to develop and validate two machine learning (ML) models for
predicting 28-day and 90-day mortality in patients hospitalized with acute decompensated liver
cirrhosis. We trained two artificial neural network (ANN)-based ML models using a training sample
of 165 out of 290 (56.9%) patients, and then tested their predictive performance against Model of End-
stage Liver Disease-Sodium (MELD-Na) and MELD 3.0 scores using a different validation sample of
125 out of 290 (43.1%) patients. The area under the ROC curve (AUC) for predicting 28-day mortality
for the ML model was 0.811 (95%CI: 0.714- 0.907; p < 0.001), while the AUC for the MELD-Na score
was 0.577 (95%CI: 0.435–0.720; p = 0.226) and for MELD 3.0 was 0.600 (95%CI: 0.462–0.739; p = 0.117).
The area under the ROC curve (AUC) for predicting 90-day mortality for the ML model was 0.839
(95%CI: 0.776- 0.884; p < 0.001), while the AUC for the MELD-Na score was 0.682 (95%CI: 0.575–0.790;
p = 0.002) and for MELD 3.0 was 0.703 (95%CI: 0.590–0.816; p < 0.001). Our study demonstrates that
ML-based models for predicting short-term mortality in patients with acute decompensation of liver
cirrhosis perform significantly better than MELD-Na and MELD 3.0 scores in a validation cohort.

Keywords: machine learning; mortality prediction; liver cirrhosis; MELD-Na score; MELD 3.0 score;
liver transplantation; transplant selection

1. Introduction

Liver cirrhosis is a chronic and progressive liver disease that is a leading cause of
morbidity and mortality worldwide. In recent years, the prevalence of liver cirrhosis has
been increasing due to the rising prevalence of obesity and associated non-alcoholic fatty
liver disease, and alcoholism, despite the decreasing global burden of hepatitis B virus and
hepatitis C virus-associated cirrhosis [1]. Decompensated liver cirrhosis is a clinical-stage
disease characterized by the onset of complications such as ascites, hepatic encephalopathy,
and variceal bleeding resulting from severely impaired liver function and/or high portal
pressure, leading to inevitable death [2,3].

The prognosis of decompensated liver cirrhosis is poor with a high mortality rate,
particularly in patients with acute decompensation. The average survival without liver
transplantation is approximately two years [4]. Prediction of mortality in these patients
is crucial for their management, including prioritization for liver transplantation, which
is of special importance in the context of global organ shortage [5,6]. Several clinical
scoring systems, such as the Child-Pugh score (CP score) and Model for End-Stage Liver
Disease (MELD) score and its derivatives, such as MELD-Na and the recently introduced
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MELD 3.0 score, have been developed and used to predict mortality in patients with
liver cirrhosis [7–10]. The MELD score and MELD-Na score are used as the standard
scoring systems for organ allocation worldwide [11]. However, these scoring systems
have limitations and leave room for improvement, especially for predicting short-term
mortality [12,13].

Machine learning (ML) algorithms are increasingly utilized in all areas of human
knowledge, including medicine, mainly due to their inherent ability to learn and improve
over time and offer more accurate predictions, regardless of the outcome needed [14,15].
Hepatology is no exception, and ML has recently been explored to predict mortality in
patients with decompensated liver cirrhosis [16–22]. These algorithms can analyze large and
complex datasets, including clinical, laboratory, and radiological parameters, and identify
patterns and associations that are not apparent through traditional statistical methods.
Furthermore, ML algorithms can also be trained and validated using electronic health
records and clinical databases and applied afterward in clinical settings for predicting
outcomes based on newly acquired input data [23,24].

The development and validation of accurate ML models for predicting short-term
mortality in patients with decompensated liver cirrhosis could have significant clinical
implications. These models could help clinicians identify patients at high risk of mortality
and provide them with more intensive and personalized treatment, as well as timely and
life-saving interventions such as liver transplantation. Furthermore, when compared with
traditionally used models such as MELD or CP score, these models could improve patient
outcomes by facilitating earlier interventions, reducing healthcare costs, and enabling more
efficient use of healthcare resources and organs available for transplantation.

Therefore, in this study, we aimed to develop and validate ML models for predicting
28-day and 90-day mortality in patients hospitalized with decompensated liver cirrhosis,
regardless of the etiology of liver disease, and compare their predictive ability against
MELD-Na and MELD 3.0 scores.

2. Materials and Methods
2.1. Patients

In this study, we conducted a retrospective analysis of medical records from 290 pa-
tients who were hospitalized with decompensated liver cirrhosis at two gastroenterology
departments in Croatia, Bosnia, and Herzegovina. Of these patients, 199 (68.6%) were from
University Hospital Dubrava in Zagreb (between 2014–2017), while 91 (31.4%) were from
University Clinical Center Tuzla (between 2016–2017)—Figure 1.

Inclusion criteria required the presence of acute decompensation of liver cirrhosis
upon admission and available data on 28- and 90-day survival. Diagnosis of liver cirrhosis
was established by liver biopsy (in most cases before decompensation) or unequivocal
clinical criteria (including typical imaging of endoscopic and laboratory features) at the
time of presentation, whereas the etiology of liver cirrhosis relied on the anamnestic
data about harmful alcohol consumption, presence of features of metabolic syndrome, or
confirmed by the biochemical, serological, or genetic tests typical for viral, autoimmune,
or hereditary liver diseases. Acute decompensation was defined by the presence of overt
ascites, encephalopathy, porto-hypertensive bleeding, or severe infection that required
in-hospital treatment [25].

Patients with incomplete data, hepatocellular carcinoma, any other malignancy, severe
cardiovascular conditions, those who died within 24 h of initial evaluation, transplanted
patients within the follow-up period, and pediatric patients (age < 18 years) were excluded
from the study. The study was approved by the Ethics Committees of both institutions.
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Figure 1. Flow diagram illustrating the selection of patient records.

2.2. Data

We collected clinical and biochemical parameters obtained on initial evaluation, in-
cluding age, gender, etiology of liver disease, leukocyte and platelet count, serum levels
of hemoglobin, creatinine, total bilirubin, sodium, albumin, and international normalized
ratio (INR).

We also recorded the grade of ascites according to the Child-Pugh classification (grade
0—none; grade 1—treatment controlled; grade 2—not controlled on treatment) [10] and
encephalopathy according to the West Haven Scale [26]. We calculated MELD-Na and
MELD 3.0 scores for all patients on initial evaluation according to previously published
formulas [8,9]. All of these variables were used as input variables for our ML models. We
also recorded mortality after 28 and 90 days from initial evaluation, which were converted
into dichotomous yes/no variables as output variables for our ML models.

2.3. Development of ML Model

We developed an ML model based on artificial neural network modeling, specifically
using a Multilayer Perceptron Model within the Neural Network function in the SPSS 26.0
(SPSS, Chicago, IL, USA) software package to construct and train two separate models—one
for predicting 28-day mortality and the other for predicting 90-day mortality.

To ensure the accuracy of the ANN, we trained the model using a process in which we
added input data (patient data) and known output information (correct classification—in
our case, mortality after 28 or 90 days) to each training sample. After each pair of input-
output data passed through the ANN, the computed network output result was compared
against the real outcome and the error rate was calculated. The weight of each connection
was then adjusted based on the error rate, reducing the error between the real outcome and
the actual output. This adjustment algorithm moves from layer to layer in the direction
from output to input layer, called a back-propagation algorithm, which is the most widely
used method for training ANNs [27].
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The division of data into training and validation sets was carried out using a stratified
random sampling method to ensure that both datasets were representative of the overall
population. This stratification was done based on the outcome variable—the presence
of acute decompensation events—to ensure that the proportion of outcomes was similar
across both datasets, thereby reducing sample bias and improving the external validity
of the model’s performance. This resulted in the sample being divided into two parts:
165/290 (56.9%) patients were used for training both models, while the remaining 125/290
(43.1%) were used for validating both models. We used the training sample to separately
train both models, while the validation sample was used to assess their accuracies. The
error for this sample gives an honest estimate of the predictive ability of both models since
the validation cases were not used to build and train it.

To construct our ML models, we employed a back-propagation algorithm with auto-
matic selection of the optimal network architecture, which was implemented with multiple
strategies to mitigate overfitting and ensure the generalizability of our machine learning
models. We utilized L2 regularization to penalize overly complex models by adding a
magnitude-based penalty to the loss function. Additionally, we employed pruning to
reduce model complexity by systematically removing less significant weights. The process
of early stopping was employed to halt training when no improvements were observed on
the validation set over a set number of epochs. Additionally, we utilized SPSS’s automatic
feature for selecting the optimal network architecture, with the objective of optimizing
both model complexity and performance based on validation data outcomes. We saved the
predicted probabilities and network classification output for each patient and evaluated
them in subsequent statistical analyses.

2.4. Statistical Analysis

All statistical analyses were performed using the SPSS 26.0 software package (SPSS,
Chicago, IL, USA). Prior to analysis, all variables were subjected to a Kolmogorov-Smirnov
test to ascertain their normal distribution. Descriptive statistics were used to determine the
baseline characteristics of all variables. When appropriate, Student’s t-test with correction
for unequal variances was used to compare quantitative variables, while the chi-square test
was used for categorical variables. The diagnostic accuracy of both predictive models was
evaluated using Receiver Operating Characteristics (ROC) analysis, and areas under the
ROC curve (AUC) (which corresponds to c-statistics) were compared pairwise between
the ML models and the MELD score. All tests were conducted at a 95% confidence level
(p < 0.05).

3. Results
3.1. Baseline Characteristics

Table 1 presents the baseline characteristics of the 290 patients included in the study.
The patients had a mean age of 63 (SD 10) years, ranging from 31 to 88 years. Of the patients,
211/290 (72.8%) were men and 79/290 (27.2%) were women, resulting in a male-to-female
ratio of 2.67 to 1. The main outcomes showed that 53/290 (18.3%) patients died within
28 days, while 73/290 (25.2%) patients died within 90 days of the initial evaluation.

Table 1. Baseline characteristics of patients.

Parameter Characteristics

n = 290 Mean Standard Deviation

Age (years) 62.97 10.46
WBC (×109/L) 7.67 4.77

Hemoglobin (g/L) 92.34 30.63
Platelets (×109/L) 120 72
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Table 1. Cont.

Parameter Characteristics

n = 290 Mean Standard Deviation

Creatinine (µmol/L) 125.10 92.75
Total bilirubin (µmol/L) 121.94 308.89

INR 1.61 0.49
Sodium (mmol/L) 135 6

Albumin (g/L) 26.81 5.87
MELD-Na 18 8
MELD 3.0 21 8

n %

Ascites
Grade 0 69 23.8
Grade I 186 64.1
Grade II 35 12.1

Encephalopathy
Grade 0 191 65.9
Grade I 15 5.2
Grade II 47 16.2
Grade III 36 12.4
Grade IV 1 0.3

Etiology of cirrhosis
Alcohol 230 79.3

HBV/HCV 36 12.4
Other + cryptogenic * 12 4.1

PBC/PSC 7 2.4
NAFLD 5 1.7

* Other etiologies, such as autoimmune hepatitis, non-alcoholic steatohepatitis, Wilson’s disease, and cryptogenic
cirrhosis.

3.2. MELD-Na and MELD 3.0 for Predicting 28- and 90-Day Mortality in Whole Sample

ROC analysis was utilized to evaluate the predictive ability of MELD-Na and MELD
3.0 for 28- and 90-day mortality in the entire sample (n = 290). The AUC for MELD-Na in
predicting 28-day mortality was 0.586 (95% CI: 0.497 to 0.675; p = 0.045), while the AUC for
MELD 3.0 was 0.614 (95% CI: 0.530 to 0.698; p = 0.009). There was no significant difference
between the AUCs (p = 0.66). The AUC for MELD-Na and MELD 3.0 for 90-day mortality
were 0.741 (95% CI: 0.674 to 0.808; p < 0.001) and 0.771 (95% CI: 0.707 to 0.836; p < 0.001),
respectively. There was no significant difference between the AUCs (p = 0.60).

3.3. ML Model for Predicting 28-Day Mortality

An artificial neural network (ANN)-based machine learning (ML) model was created
as previously described. The model was trained on 165 out of 290 patients (56.9%) and
tested on the remaining 125 patients (43.1%).

In the training sample, 27 out of 165 patients (16.4%) died within 28 days, while in
the testing sample, 26 out of 125 patients (20.8%) died. There was no significant difference
between the two groups (X2 = 0.94; df = 1; p = 0.333). The training and testing samples had
similar 90-day mortality rates, with 39 out of 165 (23.6%) patients and 34 out of 125 (27.2%)
patients dying, respectively (X2 = 0.48; df = 1; p = 0.489).

Figure 2A displays the relative importance of each input variable in predicting the
outcome, with sodium, albumin, and creatinine being the three most significant variables.



Diagnostics 2024, 14, 981 6 of 11

Diagnostics 2024, 14, x FOR PEER REVIEW 6 of 11 
 

 

3.3. ML Model for Predicting 28-Day Mortality 
An artificial neural network (ANN)-based machine learning (ML) model was created 

as previously described. The model was trained on 165 out of 290 patients (56.9%) and 
tested on the remaining 125 patients (43.1%). 

In the training sample, 27 out of 165 patients (16.4%) died within 28 days, while in 
the testing sample, 26 out of 125 patients (20.8%) died. There was no significant difference 
between the two groups (X2 = 0.94; df = 1; p = 0.333). The training and testing samples had 
similar 90-day mortality rates, with 39 out of 165 (23.6%) patients and 34 out of 125 (27.2%) 
patients dying, respectively (X2 = 0.48; df = 1; p = 0.489). 

Figure 2A displays the relative importance of each input variable in predicting the 
outcome, with sodium, albumin, and creatinine being the three most significant variables. 

 
Figure 2. (A). Normalized importance of each input variable in ML model for prediction of 28-day 
mortality in decompensated liver cirrhosis. (B). Normalized importance of each input variable in 
ML model for prediction of 90-day mortality in decompensated liver cirrhosis. 

ROC analysis was performed in the validation sample exclusively for the ML model, 
MELD-Na, and MELD 3.0 scores with 28-day mortality as the outcome. The ML model 
had an AUC of 0.811 (95% CI: 0.714 to 0.907; p < 0.001), while MELD-Na had an AUC of 
0.577 (95% CI: 0.435 to 0.720; p = 0.226) and MELD 3.0 had an AUC of 0.600 (95% CI: 0.462 
to 0.739; p = 0.117). 

Statistical analysis revealed that the differences in AUCs between MELD-Na and 
MELD 3.0, compared to the ML model, were significant (p = 0.012 and p = 0.005, respec-
tively). Figure 3A shows that the ML model outperformed both MELD-Na and MELD 3.0 
in predicting 28-day mortality in decompensated cirrhosis. 

Diagnostics 2024, 14, x FOR PEER REVIEW 6 of 11 
 

 

3.3. ML Model for Predicting 28-Day Mortality 
An artificial neural network (ANN)-based machine learning (ML) model was created 

as previously described. The model was trained on 165 out of 290 patients (56.9%) and 
tested on the remaining 125 patients (43.1%). 

In the training sample, 27 out of 165 patients (16.4%) died within 28 days, while in 
the testing sample, 26 out of 125 patients (20.8%) died. There was no significant difference 
between the two groups (X2 = 0.94; df = 1; p = 0.333). The training and testing samples had 
similar 90-day mortality rates, with 39 out of 165 (23.6%) patients and 34 out of 125 (27.2%) 
patients dying, respectively (X2 = 0.48; df = 1; p = 0.489). 

Figure 2A displays the relative importance of each input variable in predicting the 
outcome, with sodium, albumin, and creatinine being the three most significant variables. 

 
Figure 2. (A). Normalized importance of each input variable in ML model for prediction of 28-day 
mortality in decompensated liver cirrhosis. (B). Normalized importance of each input variable in 
ML model for prediction of 90-day mortality in decompensated liver cirrhosis. 

ROC analysis was performed in the validation sample exclusively for the ML model, 
MELD-Na, and MELD 3.0 scores with 28-day mortality as the outcome. The ML model 
had an AUC of 0.811 (95% CI: 0.714 to 0.907; p < 0.001), while MELD-Na had an AUC of 
0.577 (95% CI: 0.435 to 0.720; p = 0.226) and MELD 3.0 had an AUC of 0.600 (95% CI: 0.462 
to 0.739; p = 0.117). 

Statistical analysis revealed that the differences in AUCs between MELD-Na and 
MELD 3.0, compared to the ML model, were significant (p = 0.012 and p = 0.005, respec-
tively). Figure 3A shows that the ML model outperformed both MELD-Na and MELD 3.0 
in predicting 28-day mortality in decompensated cirrhosis. 

Figure 2. (A). Normalized importance of each input variable in ML model for prediction of 28-day
mortality in decompensated liver cirrhosis. (B). Normalized importance of each input variable in ML
model for prediction of 90-day mortality in decompensated liver cirrhosis.

ROC analysis was performed in the validation sample exclusively for the ML model,
MELD-Na, and MELD 3.0 scores with 28-day mortality as the outcome. The ML model had
an AUC of 0.811 (95% CI: 0.714 to 0.907; p < 0.001), while MELD-Na had an AUC of 0.577
(95% CI: 0.435 to 0.720; p = 0.226) and MELD 3.0 had an AUC of 0.600 (95% CI: 0.462 to
0.739; p = 0.117).

Statistical analysis revealed that the differences in AUCs between MELD-Na and
MELD 3.0, compared to the ML model, were significant (p = 0.012 and p = 0.005, respec-
tively). Figure 3A shows that the ML model outperformed both MELD-Na and MELD 3.0
in predicting 28-day mortality in decompensated cirrhosis.
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3.4. ML Model for Predicting 90-Day Mortality

A separate ML model was developed to predict 90-day mortality in patients with
decompensated cirrhosis, using the same approach as the 28-day mortality model. Figure 2B
presents the normalized importance of each input variable for predicting 90-day mortality,
indicating that the three most important input variables were hemoglobin, creatinine, and
total bilirubin levels.

ROC analysis was performed in the validation sample for the ML model, MELD-Na,
and MELD 3.0 scores, with 90-day mortality as the outcome. The AUC for the ML model
was 0.839 (95% CI: 0.776 to 0.884; p < 0.001), while MELD-Na had an AUC of 0.682 (95%
CI: 0.575 to 0.790; p = 0.002) and MELD 3.0 had an AUC of 0.703 (95% CI: 0.590 to 0.816;
p < 0.001).

When comparing the AUCs of MELD-Na and the ML model, we observed a statistically
borderline significant difference (p = 0.05). The ML model performed better than the MELD-
Na score in predicting 90-day mortality in decompensated cirrhosis (Figure 3B). However,
the difference in AUCs between the ML model and MELD 3.0 was not significant (p = 0.09).

4. Discussion

The objective of this study was to develop and validate machine learning models for
predicting short-term mortality (28-day and 90-day) in patients with acute decompensation
of liver cirrhosis with mixed etiologies of underlying liver diseases. The models were
based on clinical and laboratory parameters obtained at hospital admission, and they
demonstrated higher accuracy for predicting short-term mortality when compared with
the traditionally used MELD-Na score and the more recently proposed MELD 3.0 score.

Accurate prediction of mortality in patients with decompensated liver cirrhosis is
crucial for their management and treatment planning, particularly for timely liver transplan-
tation, given the global organ shortage [28]. Although MELD scores can predict short-term
mortality, there have been many attempts to improve this model by adding other pa-
rameters of importance, such as sodium, age, bilirubin, and gender, to its formula [8].
Hence, newer derivatives of the MELD score, such as MELD-Na or MELD 3.0 scores, were
introduced, which include other relevant parameters in their final formula [7,9].

However, all these attempts are based on conventional statistical methodology, usually
based on some form of multivariate regression analysis [29]. In contrast, living organisms
and processes within, whether physiological or pathological, can seldom be described with
a linear equation. In such circumstances, whereas non-linear, poorly delineated processes
exist, the application of ML-based models has repeatedly proven to be superior [30]. As
stated in an excellent review by Ghoshal and Das [19], due to the inherent ability of neural



Diagnostics 2024, 14, 981 8 of 11

network-based systems to identify complex nonlinear interactions, ML-based models are
expected to perform better than most linear models such as regression-based models.

In our evaluation of the predictive potential for mortality in patients with decom-
pensated cirrhosis, the corresponding area under the curve (AUC) values for 28- and
90-day mortality were suboptimal for both MELD-Na and MELD 3.0 scores, as shown in
Figure 3A,B. Despite the fact that MELD 3.0 includes other relevant parameters such as
albumin and female gender to improve the original formula, the improvement between
MELD-Na and MELD 3.0 is modest, if not small, as already discussed by the authors of
MELD 3.0 [7]. We strongly believe that the problem is not the parameters included in
the final formula of the score, but rather the inherent inability of conventional statistical
methodology to describe biological systems. Therefore, we speculate that current models
used to predict mortality in decompensated liver cirrhosis can be vastly improved with
superior predictive methods such as ML.

Several published studies have attempted and succeeded in proving this. For exam-
ple, Cucchetti et al. [16] demonstrated the clear superiority of an ANN-based model in
predicting 90-day mortality of patients with end-stage liver disease compared with the con-
ventional MELD score. More recently, Yu et al. [31] described better predictive performance
of an ML model compared to existing scoring systems, including MELD-Na, for predicting
30-day mortality. Finally, a large retrospective cohort study of almost 108,000 US patients
with cirrhosis used ML to derive clinical variables used to produce a new score that was
more predictive of 1-year mortality than the MELD-Na score [32].

Similarly, the ML models developed for the purpose of this study have demonstrated
clear advantages in the short-term prediction of mortality in patients with decompensated
cirrhosis compared to standard scoring systems such as MELD-Na or MELD 3.0. In our
sample, this superiority was even more emphasized for the prediction of lethal outcomes
within 28 days, thus demonstrating the potential of this approach to better identify patients
in need of accelerated liver transplantation.

There are certain criticisms that MLs based on ANNs are, in fact, the “black box”. At
the most basic level, “black box” means that, for deep neural networks, we do not know
how all the individual neurons work together to arrive at the final output. Frequently, we
do not understand what happens inside artificial neural networks, what the significance of
each particular neuron is, or what the significance of each particular interneuron connection
is. But is that not also true for our own nervous system? Yet, we input variables into our
brains every day and produce results that are most often actionable. We do not need
to know how the car works in order to drive it. The exact way the tool works is not
important as long as it provides reliable and accurate predictions [33,34]. This holds true
also for ML-based medical decision-making tools, such as in the case of models used in the
present study.

We attempted to explain the intricacies of our models, at least partially, with graphs
depicting the normalized importance of input variables for each of our particular models
(Figure 2A,B). As seen, the most usual suspects, such as sodium, albumin, bilirubin, and
creatinine, are among the three most important variables. The hemoglobin level, although
not the usual parameter included in the conventional scoring systems for mortality in
cirrhosis, has been shown to be a significant risk factor for mortality in liver cirrhosis [35]
and emerged as a variable of significance for mortality in other studies that used ML models
to predict death in cirrhosis [32].

ML models, which incorporate advanced analytical techniques, are designed with the
end-user in mind and aim for ease of implementation in clinical settings. These models can
be integrated into existing hospital information systems via software interfaces, allowing
for real-time analysis of patient data to generate predictive outputs without the need for
manual calculation. Furthermore, unlike traditional scoring systems that rely on static
formulas, ML models can continuously learn from new data, potentially offering more
accurate and personalized predictions over time. Of course, the deployment of these
models in clinical practice would involve initial validation studies followed by training



Diagnostics 2024, 14, 981 9 of 11

sessions for healthcare providers to ensure familiarity with the system’s functionality and
interpretation of its outputs. Such efforts are designed to bridge the gap between advanced
machine learning technologies and routine clinical use, ensuring that these tools enhance,
rather than complicate, the decision-making process.

It is important to address several limitations of our study. We acknowledge that the
predominance of patients with alcoholic liver disease in our sample may limit the gen-
eralizability of our findings, as well as the geographic concentration of the data sources.
Nevertheless, the clinical course of acute decompensation in cirrhosis is similar, regardless
of etiology. While our models show promising results within the studied populations, their
performance must be carefully evaluated when extended to other regions. The study is in-
deed retrospective, but we have invested every effort to thoroughly select patients’ records
with complete data on admission, including data on ascites and hepatic encephalopa-
thy grade. We excluded some patients who underwent liver transplantation (Croatian
cohort) to harmonize the structure of the investigated cohorts because, in Bosnia, liver
transplantations are anecdotal, without a single organ available during the studied period.

Another potential issue is the low predictive accuracy of both MELD-Na and MELD
3.0 scores observed in our study. Yet, this was a retrospective study from real-life cohorts
from a certain geographic area, in a population of patients evaluated on admission to the
hospital due to decompensation (and not in the general population of cirrhotic patients
where most studies evaluating MELD score are conducted), thus reflecting the disease
etiology, severity, and clinical patterns of presentation. Some of these factors have been
appreciated in the recent analysis, and predictive performances of MELD and its derivates
similar to those obtained in our study were reported by other authors as well [36,37].

It is also possible that we could have had even better accuracy of our ML models if we
used more clinical variables. However, our intention was to show that ML methodology
can yield better results, with practically the same variables commonly used in CP and
MELD scores. Of course, ML models can be trained to be more precise with large datasets,
preferably from a larger geographical region—the larger, the better. We believe that our
sample size was sufficient to demonstrate the clear superiority of ML-based approaches
against conventional prognostic scores. It is up to future studies to elaborate this on large
datasets and create models that perhaps one day can change the standard of care.

5. Conclusions

In conclusion, both ML-based models for predicting short-term mortality (28- and
90-day) in patients with decompensated liver cirrhosis, regardless of the etiology of un-
derlying chronic liver disease, performed better than MELD-Na and MELD 3.0 scores
in our validation cohort. Future studies on large datasets are needed to create models
that could be used for better allocation of organs and referral of patients for accelerated
liver transplantation.
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