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Abstract: Diabetic retinopathy (DR), retinal vein occlusion (RVO), and age-related macular degen-
eration (AMD) pose significant global health challenges, often resulting in vision impairment and
blindness. Automatic detection of these conditions is crucial, particularly in underserved rural areas
with limited access to ophthalmic services. Despite remarkable advancements in artificial intelligence,
especially convolutional neural networks (CNNs), their complexity can make interpretation difficult.
In this study, we curated a dataset consisting of 15,089 color fundus photographs (CFPs) obtained
from 8110 patients who underwent fundus fluorescein angiography (FFA) examination. The primary
objective was to construct integrated models that merge CNNs with an attention mechanism. These
models were designed for a hierarchical multilabel classification task, focusing on the detection
of DR, RVO, AMD, and other fundus conditions. Furthermore, our approach extended to the de-
tailed classification of DR, RVO, and AMD according to their respective subclasses. We employed a
methodology that entails the translation of diagnostic information obtained from FFA results into
CFPs. Our investigation focused on evaluating the models’ ability to achieve precise diagnoses
solely based on CFPs. Remarkably, our models showcased improvements across diverse fundus
conditions, with the ConvNeXt-base + attention model standing out for its exceptional performance.
The ConvNeXt-base + attention model achieved remarkable metrics, including an area under the
receiver operating characteristic curve (AUC) of 0.943, a referable F1 score of 0.870, and a Cohen’s
kappa of 0.778 for DR detection. For RVO, it attained an AUC of 0.960, a referable F1 score of 0.854,
and a Cohen’s kappa of 0.819. Furthermore, in AMD detection, the model achieved an AUC of 0.959,
an F1 score of 0.727, and a Cohen’s kappa of 0.686. Impressively, the model demonstrated proficiency
in subclassifying RVO and AMD, showcasing commendable sensitivity and specificity. Moreover, our
models enhanced interpretability by visualizing attention weights on fundus images, aiding in the
identification of disease findings. These outcomes underscore the substantial impact of our models in
advancing the detection of DR, RVO, and AMD, offering the potential for improved patient outcomes
and positively influencing the healthcare landscape.

Keywords: interpretable; automated detection; diabetic retinopathy; retinal vein occlusion; age-
related macular degeneration

1. Introduction

Diabetic retinopathy (DR) [1], retinal vein occlusion (RVO) [2,3], and age-related
macular degeneration (AMD) [4] are the leading causes of vision impairment in various
populations [1,4,5], with DR being particularly noteworthy. Of an estimated 285 million
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people with diabetes mellitus worldwide, approximately one-third have signs of DR, and
of these, a further one-third of patients with DR have vision-threatening DR, including
diabetic macular edema [6]. Mild nonproliferative diabetic retinopathy (NPDR) represents
the initial phase of diabetic retinopathy, marked by the development of microaneurysms.
As the condition progresses, proliferative diabetic retinopathy (PDR) emerges as an ad-
vanced stage, where individuals may even experience vitreous hemorrhage (VH), posing a
significant risk of severe vision impairment [1]. Moreover, RVO is the second most common
retinal vascular disorder, affecting 16.4 million people worldwide in 2008. The classification
of RVO can be broken down into branch retinal vein occlusion (BRVO), hemiretinal vein
occlusion (HRVO), and central retinal vein occlusion (CRVO) depending on the site of
the obstruction. However, there is rather less research attention on RVO than on DR, for
which abundant studies have been conducted [2,3,7,8]. AMD is highly prevalent among the
elderly population and has two main types, nonneovascular (dry AMD) and neovascular
AMD (wet AMD) [4]. Individuals diagnosed with these conditions may also experience the
onset of macular edema (ME), leading to visual impairment. The progression of DR, RVO,
and AMD is often nearly irreversible [9–11]; therefore, the timely and accurate diagnosis
of these fundus diseases is crucial for facilitating appropriate treatment and preserving
or improving patients’ vision. Color fundus photographs (CFPs) are widely utilized for
the preliminary screening and diagnosis of fundus diseases, owing to the noninvasive
characteristics of color fundus photography and its proficiency in capturing intricate retinal
images compared to fundus fluorescein angiography (FFA), which is invasive, challenging
to perform, and may induce allergic reactions. The conventional approach to interpretation
of CFPs relies on the expertise of professionals who manually analyze the images. How-
ever, the escalating incidence of diabetes [12], hypertension [13], and associated ocular
conditions has placed a considerable burden on healthcare systems. This is particularly
challenging in resource-limited settings where access to specialized ophthalmic services is
constrained [14].

In recent years, artificial intelligence (AI) has emerged as a promising tool in the field of
medical imaging, offering the potential to automate the analysis of fundus images and assist
healthcare professionals in diagnosing retinal diseases accurately and efficiently [15–17].
Deep learning techniques, especially convolutional neural networks (CNNs), have exhibited
remarkable success in various image recognition tasks, including the analysis of fundus
images for DR [15,16,18–25], RVO [26–29], and AMD [30–36]. Despite the promising
outcomes generated by these techniques, their efficacy is primarily confined to a singular
task. Additionally, the intricate nature of CNNs frequently poses challenges in deciphering
and understanding the rationale behind their decisions.

In this study, we address these challenges by proposing integrated models that offer
interpretability in automated detection of DR, RVO, AMD, and other fundus conditions.
Our study involves translating diagnostic information derived from FFA results to CFPs.
We explore the models’ capacity to make accurate diagnoses using only CFPs. Moreover,
our approach extends beyond mere detection to encompass the classification of DR, RVO,
and AMD into their respective subclasses. We leverage the power of CNNs, enhancing
them with an attention mechanism [37]. By incorporating this attention mechanism, our
models can highlight specific regions in CFPs, providing valuable insights into the decision-
making process.

2. Materials and Methods
2.1. Data Collection

This study adhered to the tenets of the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of Peking University Third Hospital (approval
code: M2023513, approval date: 12 September 2023). Our dataset was compiled at the
ophthalmology center of Peking University Third Hospital, covering the period from
12 December 2013 to 29 November 2022. A comprehensive dataset comprising 22,383 CFPs
(Digital Retinal Camera, CR-2 AF, Canon, Tokyo, Japan) was gathered through FFA (FF
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450 plus, Carl Zeiss Meditec AG, Jena, Germany) examinations performed on 17,647 eyes
belonging to 8833 patients. These examinations were conducted by two highly skilled
examiners. The resulting images were then interpreted in clinical practice by a panel of
18 proficient ophthalmologists, each holding the esteemed position of attending doctor
or higher and possessing profound expertise in fundus analysis. During the collection
process, images were anonymized to protect patients’ privacy, and examinations lacking
color images or report documents as well as any damaged or broken images were excluded.
The last examination of a patient (both eyes included) was adopted, and the image quality
of CFPs was assessed using AutoMorph [38], excluding images of poor quality or those
containing artifacts. This resulted in a final dataset of 15,089 CFPs (15,089 eyes) from
8110 patients.

Diagnoses were established through the analysis of FFA images, covering a wide
spectrum of ocular conditions, including DR, RVO, and AMD. Moreover, within the dataset,
prevalent occurrences included ME, VH, and laser spots. In this study, DR, RVO, AMD, ME,
VH, and laser spots were considered as primary classes, and a case could simultaneously
exhibit these conditions. DR subclasses included NPDR (excluding severe NPDR), severe
NPDR (sNPDR), and PDR. RVO subclasses were limited to BRVO and CRVO, with HRVO
excluded due to its scarcity in this dataset (91 eyes), while AMD was classified into dry
and wet subtypes. It is important to note that less common diagnoses such as hypertensive
retinopathy and pathologic myopia were infrequent in the dataset and were not within the
scope of this research. Notably, the dataset, sourced from clinical practice, may lack precise
subclass information for some entries related to DR, RVO, and AMD.

2.2. Model Construction and Configurations

Our tasks involved hierarchical multilabel classification, and we employed advanced
CNN architectures, namely ResNet101 [39], EfficientNetV2-M [40], and ConvNeXt-base [41],
as the foundation for our models. To enhance their interpretability, we integrated an
attention mechanism [37], allowing our models to pinpoint relevant regions in CFPs.

Given an image, the pretrained CNNs, are utilized to extract visual features in patches.
For CNNs as basic comparisons, these patch features are pooled with AvgPool2d and fed
into multitask classification heads, one for predicting the presence of primary classses, and
the other three for predicting the subclasses of DR, RVO, and AMD (Figure 1). For our
CNN + attention-fused models, these patch features serve as the input for the standard
Transformer encoder [37]. The encoder consists of stacked self-attention layers based on
multihead attention (MHA). The MHA mechanism is composed of n parallel heads, each
defined as scaled dot-product attention:

Atti(X, Y) = so f tmax

(
XWQ

i
(
YWK

i
)T

√
dn

)
YWV

i

MHA(X, Y) = [Att1(X, Y); . . . ; Attn(X, Y)]WO (1)

where X ∈ R(lx×d) and Y ∈ R(ly×d) denote the Query matrix and the Key/Value matrix,
respectively, and WQ

i , WK
i , WV

i ∈ R(d×dn) and WO ∈ R(d×d) are learnable parameters, where
dn = d/n and [.; .] stands for the concatenation operation. We extracted the classification
(CLS) token, a condensed representation of the encoded visual features. This token was
then forwarded through the identical multitask classification heads to predict both primary
classes and their respective subclasses if applicable (Figure 1).

To address data imbalance for multilabel classification effectively, we employed an
asymmetric loss (ASL) function [42]. Given a set of K labels, the network produces an indi-
vidual logit designated as zk for each label. These logits subsequently undergo activation
through separate sigmoid functions, denoted as σ(zk). Assuming yk represents the true
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value for class k, the comprehensive classification loss Ltot is formulated by summing the
binary losses across all K labels:

Ltot =
K

∑
k=1

L(σ(zk), yk) (2)

The binary loss per label, denoted as L, can be expressed in a general form as follows:

L = −yL+ − (1 − y)L− (3)

The components L+ and L− correspond to the positive and negative parts, respectively.
The ASL function is defined as follows:

ASL =

{
L+ = (1 − p)γ+ log(p)
L− = (pm)

γ− log(1 − pm)
(4)

where p = σ(z), with the class index k omitted, represents the network’s output probability.
The shifted probability pm is given by pm = max(p − m, 0), where m ≥ 0 is a tunable
hyperparameter known as the probability margin. ASL allows the implementation of
two types of asymmetry to minimize the influence of basic negative samples on the loss
function. These types involve employing soft thresholding, achieved by using focusing
parameters γ− > γ+, and implementing hard thresholding through the probability margin
m. The total classification loss for multilabel classification is then formulated by summing
the ASLs across all labels. In order to rectify the data imbalance among subclasses, we
adopted single-label asymmetric loss, a modification derived from the previous multilabel
asymmetric loss: the replacement of the sigmoid activation function with softmax and the
exclusion of the probability margin m.
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Figure 1. CNN + attention modelling framework. The green dashed box highlights the core of the
CNN + attention models, namely, the standard Transformer encoder. Patch features are extracted by
the ResNet101, EfficientNetV2-M, or ConvNeXt-base CNN architectures. In pure CNN models, patch
features undergo average pooling (AvgPool2d) before reaching multitask classification heads within
the blue dashed box. In CNN + attention models, the standard Transformer encoder encodes patch
features and forwards CLS token to the final classification heads. The classification heads handle
primary classes, observing all training data with multilabel asymmetric loss (ASL) calculation, while
the three other heads for subclasses only see data with specified subclass information, calculating
individual single-label ASLs. The total loss during training is the sum of multilabel ASL and three
single-label ASLs.

During the training phase, images were augmented with various transformations,
including random horizontal and vertical flips, random rotation, color jitter, and random
resized crop. The augmented images were then converted to tensors and normalized with
the pre-established mean and standard deviation values from the ImageNet [43] dataset.
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The entire train dataset was employed to calculate the multilabel asymmetric loss for
primary classes. Instances lacking precise subclass information were selectively masked for
the computation of single-label loss. This loss was separately determined for DR, RVO, and
AMD. The training process was governed by the aggregate loss, encompassing the sum
of the multilabel ASL and the three individual single-label ASLs (Figure 1). During the
evaluation phase, we analyzed performance metrics, including the area under the receiver
operating characteristic curve (AUC), accuracy, recall (sensitivity), precision, F1 score (the
harmonic mean of recall and precision), and specificity. To address label and subclass
imbalances, we also formulated weighted variants of recall, precision, and the F1 score.
Subset accuracy was also analyzed to measure the scale of samples having identical labels
between the prediction and the ground-truth labels for the primary classes. In addition, we
calculated Cohen’s kappa [44], specifically employing the quadratic weighted variant, to
provide a comprehensive evaluation of the model’s agreement with the true labels.

All models were implemented using PyTorch framework in Python 3.10 and executed
on an NVIDIA Tesla V100 SXM2 (Santa Clara, CA, USA) graphics processing unit (GPU)
with 32 GB of memory. The driver version used was 510.47.03, and the CUDA version was
11.6. Throughout the training process, the random seed for shuffling data was 325, the
parameter values of ASL were set as follows: a negative gamma (γ−) of 2, a positive gamma
(γ+) of 1, and a probability margin (m) of 0.05 for multilabel ASL and a negative gamma
(γ−) of 2 and a positive gamma (γ+) of 0 for single-label ASL. The training configuration
comprised 3 layers and 8 heads for the encoder, a batch size of 64, a learning rate of 5× 10−5,
a training duration spanning 100 epochs, without early stopping, and the utilization of the
mean Cohen’s kappa as the metric under monitoring.

3. Results
3.1. Data Characteristics

The whole dataset was divided into three sets for developing and training the models,
with a random seed of 813 to ensure replicability: the training set, consisting of 9656 images
(64%); the validation set, with 2414 images (16%); and the test set, comprising 3019 images
(20%) (Table 1).

Table 1. Patient demographics and characteristics in the datasets.

Characteristic
Datasets

Train Validate Test Whole

Number of images (eyes) 9656 2414 3019 15,089
Number of unique patients a 6768 2245 2719 8110

Age, mean (SD b) c 66.40 (14.35) 66.24 (14.50) 66.30 (14.17) 66.40 (14.35)
Sex, female (%) c 3317 (49.01) 1093 (45.28) 1342 (49.36) 3963 (48.87)

Diagnoses c

Primary
Classes

DR 3973 953 1265 6191
RVO 1848 477 584 2909
AMD 1131 314 364 1809
ME 1775 454 548 2777
VH 111 28 28 167

Laser spots 759 199 223 1181

DR
subclasses

NPDR 1820 422 590 2832
sNPDR 777 201 254 1232

PDR 928 223 285 1436
Unspecified 448 107 136 691

RVO
subclasses

BRVO 1081 290 367 1738
CRVO 580 147 164 891

Unspecified 187 40 53 280
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Table 1. Cont.

Characteristic
Datasets

Train Validate Test Whole

AMD
subclasses

Dry AMD 328 105 115 548
Wet AMD 507 127 168 802

Unspecified 296 82 81 459
a The whole dataset is divided based on eye side, where the train, validate, and test datasets may share patients,
but each eye is unique and not shared across the splits. b SD, standard deviation. c Age, sex, and diagnoses have
no significant differences among the four datasets. The ANOVA p-value for age is 0.95, the chi-square p-value for
sex is 0.96, and the chi-square p-value for diagnoses is 0.98.

3.2. Performance of the Models
3.2.1. Classification Performance for the Primary Classes

The integration of the attention mechanism did not enhance the overall performance
of three CNN architectures for assessing the presence of the primary classes. Among
these models, ConvNeXt-base emerged as the top performer, as evidenced by achieving
the highest mean Cohen’s kappa of 0.653 for the primary classes, coupled with a subset
accuracy of 0.644 (Table 2, Figures 2 and 3).

Table 2. Performance of the models.

Diagnoses/Metrics Models AUC Accuracy Recall Precision F1 Score Specificity Cohen’s
Kappa

Primary
classes

DR

R 0.930 0.859 0.856 0.816 0.835 0.860 0.712
R + A 0.923 0.861 0.824 0.840 0.832 0.887 0.713

E 0.933 0.873 0.839 0.856 0.847 0.898 0.739
E + A 0.929 0.861 0.822 0.841 0.832 0.888 0.713

C 0.942 0.878 0.889 0.831 0.859 0.869 0.751
C + A 0.943 0.892 0.861 0.880 0.870 0.915 0.778

RVO

R 0.954 0.929 0.842 0.803 0.822 0.950 0.778
R + A 0.939 0.935 0.796 0.858 0.826 0.968 0.786

E 0.958 0.933 0.817 0.835 0.826 0.961 0.785
E + A 0.955 0.932 0.810 0.836 0.823 0.962 0.781

C 0.965 0.949 0.834 0.895 0.863 0.977 0.832
C + A 0.960 0.944 0.851 0.857 0.854 0.966 0.819

AMD

R 0.960 0.935 0.775 0.710 0.741 0.957 0.704
R + A 0.941 0.930 0.712 0.712 0.712 0.960 0.672

E 0.958 0.927 0.764 0.676 0.717 0.950 0.676
E + A 0.960 0.928 0.723 0.696 0.709 0.957 0.668

C 0.962 0.933 0.769 0.704 0.735 0.956 0.697
C + A 0.959 0.928 0.794 0.671 0.727 0.947 0.686

ME

R 0.874 0.844 0.597 0.567 0.581 0.899 0.486
R + A 0.851 0.839 0.577 0.554 0.565 0.897 0.467

E 0.877 0.823 0.692 0.509 0.587 0.852 0.477
E + A 0.881 0.829 0.688 0.522 0.594 0.860 0.488

C 0.880 0.848 0.682 0.568 0.620 0.885 0.526
C + A 0.885 0.828 0.761 0.518 0.616 0.843 0.511

VH

R 0.955 0.989 0.464 0.419 0.441 0.994 0.435
R + A 0.857 0.990 0.321 0.474 0.383 0.997 0.378

E 0.969 0.992 0.464 0.565 0.510 0.997 0.506
E + A 0.956 0.982 0.679 0.297 0.413 0.985 0.405

C 0.943 0.989 0.464 0.433 0.448 0.994 0.443
C + A 0.911 0.989 0.393 0.393 0.393 0.994 0.387

Laser spots

R 0.906 0.944 0.596 0.627 0.611 0.972 0.581
R + A 0.888 0.943 0.628 0.614 0.621 0.969 0.590

E 0.935 0.947 0.700 0.629 0.662 0.967 0.634
E + A 0.928 0.942 0.722 0.585 0.647 0.959 0.615

C 0.932 0.954 0.709 0.678 0.693 0.973 0.668
C + A 0.928 0.957 0.740 0.696 0.717 0.974 0.694
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Table 2. Cont.

Diagnoses/Metrics Models AUC Accuracy Recall Precision F1 Score Specificity Cohen’s
Kappa

Weighted metrics
and mean

Cohen’s kappa for the
primary classes

R - - 0.774 0.737 0.755 - 0.616
R + A - - 0.741 0.756 0.748 - 0.601

E - - 0.785 0.748 0.763 - 0.636
E + A - - 0.775 0.741 0.754 - 0.612

C - - 0.809 0.765 0.785 - 0.653
C + A - - 0.819 0.766 0.788 - 0.646

Subset accuracy

R - 0.610 - - - - -
R + A - 0.604 - - - - -

E - 0.600 - - - - -
E + A - 0.589 - - - - -

C - 0.644 - - - - -
C + A - 0.629 - - - - -

DR
subclasses

NPDR

R 0.850 0.748 0.900 0.702 0.789 0.583 -
R + A 0.865 0.775 0.863 0.746 0.800 0.679 -

E 0.843 0.746 0.851 0.716 0.778 0.631 -
E + A 0.839 0.752 0.844 0.726 0.781 0.651 -

C 0.865 0.764 0.855 0.736 0.792 0.664 -
C + A 0.859 0.775 0.773 0.792 0.782 0.777 -

sNPDR

R 0.741 0.775 0.362 0.500 0.420 0.895 -
R + A 0.743 0.751 0.429 0.445 0.437 0.845 -

E 0.725 0.731 0.406 0.402 0.404 0.825 -
E + A 0.725 0.736 0.429 0.416 0.422 0.825 -

C 0.751 0.750 0.413 0.441 0.427 0.848 -
C + A 0.741 0.724 0.531 0.412 0.464 0.779 -

PDR

R 0.823 0.798 0.432 0.651 0.519 0.922 -
R + A 0.849 0.815 0.488 0.688 0.571 0.925 -

E 0.794 0.774 0.354 0.587 0.442 0.916 -
E + A 0.789 0.775 0.372 0.587 0.455 0.911 -

C 0.853 0.821 0.505 0.702 0.588 0.928 -
C + A 0.837 0.807 0.512 0.649 0.573 0.906 -

Weighted metrics and
Cohen’s kappa for
the DR subclasses

R - - 0.661 0.644 0.638 - 0.491
R + A - - 0.671 0.664 0.661 - 0.570

E - - 0.625 0.613 0.609 - 0.467
E + A - - 0.632 0.621 0.618 - 0.476

C - - 0.668 0.661 0.658 - 0.566
C + A - - 0.653 0.670 0.658 - 0.575

RVO
subclasses

BRVO

R 0.976 0.917 0.978 0.909 0.942 0.780 -
R + A 0.972 0.928 0.962 0.936 0.949 0.854 -

E 0.963 0.906 0.978 0.895 0.935 0.744 -
E + A 0.969 0.911 0.975 0.904 0.938 0.768 -

C 0.976 0.928 0.948 0.948 0.948 0.884 -
C + A 0.981 0.930 0.951 0.948 0.950 0.884 -

CRVO

R 0.976 0.917 0.780 0.941 0.853 0.978 -
R + A 0.972 0.928 0.854 0.909 0.881 0.962 -

E 0.963 0.906 0.744 0.938 0.830 0.978 -
E + A 0.969 0.911 0.768 0.933 0.843 0.975 -

C 0.976 0.928 0.884 0.884 0.884 0.948 -
C + A 0.981 0.930 0.884 0.890 0.887 0.951 -

Weighted metrics and
Cohen’s kappa for
the RVO subclasses

R - - 0.917 0.919 0.915 - 0.796
R + A - - 0.928 0.928 0.928 - 0.829

E - - 0.906 0.907 0.902 - 0.766
E + A - - 0.911 0.913 0.909 - 0.782

C - - 0.928 0.928 0.928 - 0.832
C + A - - 0.930 0.930 0.930 - 0.837
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Table 2. Cont.

Diagnoses/Metrics Models AUC Accuracy Recall Precision F1 Score Specificity Cohen’s
Kappa

AMD
subclasses

Dry AMD

R 0.906 0.830 0.913 0.734 0.814 0.774 -
R + A 0.890 0.820 0.791 0.771 0.781 0.839 -

E 0.905 0.799 0.791 0.734 0.762 0.804 -
E + A 0.907 0.820 0.722 0.814 0.765 0.887 -

C 0.912 0.823 0.809 0.769 0.788 0.833 -
C + A 0.905 0.827 0.870 0.746 0.803 0.798 -

Wet AMD

R 0.906 0.830 0.774 0.926 0.844 0.913 -
R + A 0.890 0.820 0.839 0.855 0.847 0.791 -

E 0.905 0.799 0.804 0.849 0.826 0.791 -
E + A 0.907 0.820 0.887 0.823 0.854 0.722 -

C 0.912 0.823 0.833 0.864 0.848 0.809 -
C + A 0.905 0.827 0.798 0.899 0.845 0.870 -

Weighted metrics and
Cohen’s kappa for

the AMD subclasses

R - - 0.830 0.850 0.832 - 0.661
R + A - - 0.820 0.821 0.820 - 0.628

E - - 0.799 0.802 0.800 - 0.588
E + A - - 0.820 0.820 0.818 - 0.620

C - - 0.823 0.825 0.824 - 0.637
C + A - - 0.827 0.837 0.828 - 0.650

Mean Cohen’s kappa
(best epoch/100)

R - - - - - - 0.627 (16)
R + A - - - - - - 0.626 (73)

E - - - - - - 0.626 (12)
E + A - - - - - - 0.616 (9)

C - - - - - - 0.661 (24)
C + A - - - - - - 0.660 (27)

Best values are highlighted in bold. R, ResNet101; E, EfficientNetV2-M; C, ConvNeXt-base; and A, attention.
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When detecting DR, the inclusion of the attention mechanism enhanced the perfor-
mance of ResNet101 (Cohen’s kappa: 0.713 vs. 0.712) and ConvNeXt-base (Cohen’s kappa:
0.778 vs. 0.751). The optimal model was identified as ConvNeXt-base + attention, attain-
ing an AUC of 0.943 (Figure 2), an F1 score of 0.870, and a Cohen’s kappa of 0.778. For
the detection of RVO, the incorporation of the attention mechanism improved the perfor-
mance of ResNet101 (Cohen’s kappa: 0.786 vs. 0.778), with the pre-eminent model being
ConvNeXt-base, achieving an AUC of 0.965, an F1 score of 0.863, and a Cohen’s kappa of
0.832. However, in the case of AMD, the integration did not enhance the performance of
any of the three CNN architectures. The optimal model for AMD detection was ResNet101,
demonstrating an AUC of 0.960, an F1 score of 0.741, and a Cohen’s kappa of 0.704. Con-
cerning ME, the incorporation of the attention mechanism improved the performance of
EfficientNetV2-M (Cohen’s kappa: 0.488 vs. 0.477), with ConvNeXt-base emerging as the
superior model, achieving an AUC of 0.880, an F1 score of 0.620, and a Cohen’s kappa of
0.526. All models fell short in detecting VH (Figures 2 and 3). For the identification of laser
spots, the integration of the attention mechanism enhanced the performance of ResNet101
(Cohen’s kappa: 0.590 vs. 0.581) and ConvNeXt-base (Cohen’s kappa: 0.694 vs. 0.668). The
optimal model was ConvNeXt-base + attention, achieving an AUC of 0.928, an F1 score of
0.717, and a Cohen’s kappa of 0.694 (Table 2).

3.2.2. Classification Performance for the DR Subclasses

Despite the suboptimal performance of all the models in accurately grading DR
into NPDR, sNPDR, and PDR, the incorporation of the attention mechanism led to an
overall enhancement in the performance metrics. Specifically, for ResNet101, there was
an improvement in the weighted F1 score from 0.638 to 0.661 and in Cohen’s kappa from
0.491 to 0.570. Similarly, EfficientNetV2-M demonstrated an increase in the weighted F1
score from 0.609 to 0.618 and in Cohen’s kappa from 0.467 to 0.476, while ConvNeXt-base
exhibited an improvement in Cohen’s kappa from 0.566 to 0.575. Among these models,
ConvNeXt-base + attention emerged as the optimal model (Figures 4 and 5). This model
achieved a weighted F1 score of 0.658 and a Cohen’s kappa of 0.575, showcasing superior
performance in grading the DR severity (Table 2, Figures 4 and 5).
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3.2.3. Classification Performance for the RVO Subclasses

For the classification of RVO into BRVO and CRVO, the incorporation of the attention
mechanism enhanced the performance of all three CNNs. In the case of ResNet101, the
weighted F1 score increased from 0.915 to 0.928, and Cohen’s kappa increased from 0.796



Diagnostics 2024, 14, 121 11 of 17

to 0.829. Similarly, EfficientNetV2-M exhibited an increase in the weighted F1 score from
0.902 to 0.909 and in Cohen’s kappa from 0.766 to 0.782. Concurrently, ConvNeXt-base
demonstrated an improvement in the weighted F1 score from 0.928 to 0.930 and in Cohen’s
kappa from 0.832 to 0.837. Among these models, ConvNeXt-base + attention emerged as
the optimal model, achieving an AUC of 0.981, a weighted F1 score of 0.930, and a Cohen’s
kappa of 0.837 (Table 2, Figures 6 and 7).
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3.2.4. Classification Performance for the AMD Subclasses

In the task of classifying AMD into dry and wet types, the integration of the attention
mechanism proved beneficial for the performance of EfficientNetV2-M and ConvNeXt-base.
Specifically, EfficientNetV2-M demonstrated an increase in the weighted F1 score from
0.800 to 0.818 and in Cohen’s kappa from 0.588 to 0.620. Similarly, ConvNeXt-base exhibited
improvement in the weighted F1 score from 0.824 to 0.828 and in Cohen’s kappa from 0.637
to 0.650. Among these models, ResNet101 emerged as the optimal, achieving an AUC of
0.906, a weighted F1 score of 0.832, and a Cohen’s kappa of 0.661 (Table 2, Figures 8 and 9).
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3.3. Ablation Studies of Key Parameters

Although ConvNeXt-base stood out as the top performer, achieving the highest mean
Cohen’s kappa of 0.661, the ConvNeXt-base + attention model excelled in accurately
classifying the subclasses for DR, RVO, and AMD while maintaining precision in assessing
the primary classes. To assess the impact of key parameters, including the negative gamma
(γ−) and the number of encoder layers and heads, on the ConvNeXt-base + attention model,
we conducted ablation studies. The experiments involved varying the negative gamma to
values of 3 and 4, setting the number of encoder layers to 4 and 5 while keeping the number
of heads fixed at 8, and adjusting the number of heads to 16 and 32 with the number of
layers fixed at 3. Other parameters were held constant throughout these experiments.

The augmentation of the negative gamma resulted in a decline in the model’s perfor-
mance. Specifically, the mean Cohen’s kappa decreased from 0.660 to 0.645 and further to
0.640 (Supplementary Table S1). This deterioration underscores the sensitivity of the model
to changes in the negative gamma parameter. Increasing the number of encoder layers, on
the other hand, had a positive impact on performance, with the mean Cohen’s kappa rising
from 0.660 to 0.666 (Supplementary Table S2). Notably, this enhancement was particularly
prominent in predicting the presence of the primary classes. The mean Cohen’s kappa
for the primary classes increased from 0.646 to 0.662 and further to 0.670 (Supplementary
Table S2). However, there was no significant increase in Cohen’s kappa for the classification
of the DR, RVO, or AMD subclasses (Supplementary Table S2). Among the three options
for the number of encoder heads, 16 proved to be the most effective, resulting in the highest
mean Cohen’s kappa of 0.667. Nevertheless, the improvement was more noticeable for the
primary classes, whereas there was not a comparable enhancement in the classification of
the DR, RVO, or AMD subclasses (Supplementary Table S3).

4. Discussion

In a groundbreaking study, Gulshan et al. utilized a dataset of 128,175 retinal images
to develop a deep learning (DL) algorithm. This algorithm exhibited an exceptional ability
to identify moderate or worse DR, boasting a sensitivity and specificity exceeding 90% [15].
These findings were corroborated by Ting et al., who demonstrated the DL algorithm’s
comparable efficacy in detecting various ocular conditions such as possible glaucoma and
AMD [16]. Chen et al. employed DL models to screen for RVO [27]. Their investigation
revealed that the Inception-v3 model exhibited notable performance, achieving a sensitivity
of 0.93, specificity of 0.99, and an F1 score of 0.95 in RVO identification. Similarly, Ren et al.
achieved remarkable outcomes with their RVO identification model. In an independent
dataset, their model exhibited robust performance, maintaining an impressive AUC of 0.81
and accurately detecting RVO [28].

Our innovative approach distinguishes itself from conventional models that typically
specialize in a singular task, such as grading DR or classifying RVO or AMD. Through the
strategic integration of an attention mechanism and the implementation of a hierarchical
multilabel classification task design, our models exhibited a remarkable ability to initially
assess the presence of DR, RVO, AMD, ME, and laser spots with commendable recall and
specificity. Subsequently, the models proceeded to classify subclasses of DR, RVO, and
AMD if the output probability exceeded or equaled 0.5.

Our methodology places a significant emphasis on the interpretability of DL models,
a critical element in comprehending their decision-making processes. We integrated an
attention mechanism, initially devised for natural language processing tasks [37], to enable
our models to calculate global relative scores across features. This integration proved to be
pivotal in elevating the performance of our classification models, particularly the ConvNeXt
+ attention model, which demonstrated accurate subclass classification for DR, RVO, and
AMD while maintaining the precision for assessing the primary classes. Moreover, this
incorporation did not impose a significant time complexity burden on the models. The
additional time required for training one epoch was merely a matter of seconds. In order to
offer visual insights into the decision-making process, we effectively employed heatmaps
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to depict attention weights in CFPs (Figure 10). This approach not only enhances the
transparency of our models but also provides a valuable tool for clinicians and researchers,
enabling them to grasp the rationale behind the model’s decisions.
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Despite these promising results, challenges persist in accurately identifying VH,
sNPDR and PDR, as indicated by suboptimal sensitivity and F1 score. This limitation
can be ascribed to various factors, encompassing the scarcity of VH occurrences within
the datasets, the intricate challenges posed by the indistinguishable similarities between
sNPDR and NPDR or PDR, and the inherent limitations arising from the reliance solely on
CFPs. Additionally, the diagnoses were derived from FFA images, leading to potential gaps
in the available information. To delve deeper into addressing these challenges, exploring
advanced techniques such as transfer learning or ensemble models could be beneficial.
Transfer learning involves leveraging pretrained models on large datasets and fine-tuning
them for the specific task at hand, potentially mitigating the impact of data imbalance [45].
Ensemble models, on the other hand, combine predictions from multiple models, often en-
hancing overall performance and robustness [46]. Additionally, incorporating multimodal
data, such as patient clinical records, optical coherence tomography angiography (OCTA)
scans [47,48] or FFA images when deemed necessary, may provide a more comprehensive
perspective of the disease, potentially improving the accuracy of diagnosis. This integration
of diverse data modalities can offer complementary information, helping to overcome
limitations associated with a single-source data approach. This remains a focal point of our
ongoing efforts as we strive to advance our work in the future. Additionally, the study’s
scope was limited to a single ophthalmology center, where varying diagnostic accuracy
among contributing doctors impacted the consistency of interpretation. Future studies
could benefit from a more diverse and extensive dataset, potentially addressing these
limitations for more comprehensive and accurate results.



Diagnostics 2024, 14, 121 15 of 17

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14020121/s1. Table S1. Ablation studies on negative
gamma (γ−). Table S2. Ablation studies on the number of layers. Table S3. Ablation studies on the
number of heads.

Author Contributions: Conceptualization and methodology, W.L.; ethical approval, W.L. and Z.S.;
data curation, W.L., L.B., B.M., T.S., Y.L., Z.S., L.Z., K.F., F.Y., X.W. and S.C.; writing (original draft),
W.L.; writing (review and editing), B.M., Y.L., T.S. and L.B.; supervision, H.Q. and H.D.; and funding
acquisition, B.M. All authors have read and agreed to the published version of the manuscript.

Funding: The study was supported by National Natural Science Foundation of China (82171022,
81974128, 82371026, 82301177), Peking University Medicine Sailing Program for Young Scholars’
Scientific & Technological Innovation (BMU2023YFJHPY016) and China Postdoctoral Science Founda-
tion (2023M730122). The funding organization had no role in the design or conduct of this research.

Institutional Review Board Statement: This study was approved by the Ethics Committee of the
Peking University Third Hospital and followed the principles of the Declaration of Helsinki (approval
code: M2023513, approval date: 12 September 2023).

Informed Consent Statement: Patient consent was waived due to the retrospective nature of this study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Acknowledgments: The study was supported by High-Performance Computing Platform of Peking
University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheung, N.; Mitchell, P.; Wong, T.Y. Diabetic retinopathy. Lancet 2010, 376, 124–136. [CrossRef] [PubMed]
2. Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global epidemiology of retinal vein occlusion: A systematic review and meta-analysis

of prevalence, incidence, and risk factors. J. Glob. Health 2019, 9, 010427. [CrossRef] [PubMed]
3. Laouri, M.; Chen, E.; Looman, M.; Gallagher, M. The burden of disease of retinal vein occlusion: Review of the literature. Eye

2011, 25, 981–988. [CrossRef] [PubMed]
4. Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet 2018, 392, 1147–1159. [CrossRef]

[PubMed]
5. Jaulim, A.; Ahmed, B.; Khanam, T.; Chatziralli, I.P. Branch retinal vein occlusion: Epidemiology, pathogenesis, risk factors, clinical

features, diagnosis, and complications. An update of the literature. Retina 2013, 33, 901–910. [CrossRef]
6. Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye

Vis. 2015, 2, 17. [CrossRef]
7. Ip, M.; Hendrick, A. Retinal Vein Occlusion Review. Asia-Pac. J. Ophthalmol. 2018, 7, 40–45. [CrossRef]
8. Sivaprasad, S.; Amoaku, W.M.; Hykin, P. The Royal College of Ophthalmologists Guidelines on retinal vein occlusions: Executive

summary. Eye 2015, 29, 1633–1638. [CrossRef]
9. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House

Classification: ETDRS Report Number 10. Ophthalmology 2020, 127, S99–S119. [CrossRef]
10. Hou, X.; Wang, L.; Zhu, D.; Guo, L.; Weng, J.; Zhang, M.; Zhou, Z.; Zou, D.; Ji, Q.; Guo, X.; et al. Prevalence of diabetic retinopathy

and vision-threatening diabetic retinopathy in adults with diabetes in China. Nat. Commun. 2023, 14, 4296. [CrossRef]
11. Nicholson, L.; Talks, S.J.; Amoaku, W.; Talks, K.; Sivaprasad, S. Retinal vein occlusion (RVO) guideline: Executive summary. Eye

2022, 36, 909–912. [CrossRef] [PubMed]
12. Ma, R.C.W. Epidemiology of diabetes and diabetic complications in China. Diabetologia 2018, 61, 1249–1260. [CrossRef]
13. Zhang, M.; Shi, Y.; Zhou, B.; Huang, Z.; Zhao, Z.; Li, C.; Zhang, X.; Han, G.; Peng, K.; Li, X.; et al. Prevalence, awareness,

treatment, and control of hypertension in China, 2004–2018: Findings from six rounds of a national survey. BMJ 2023, 380, e071952.
[CrossRef] [PubMed]

14. Balyen, L.; Peto, T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac. J.
Ophthalmol. 2019, 8, 264–272. [CrossRef]

15. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.J.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.;
Cuadros, J.A.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs. JAMA 2016, 316, 2402–2410. [CrossRef] [PubMed]

16. Ting, D.; Cheung, C.; Lim, G.; Tan, G.; Quang, N.; Gan, A.; Hamzah, H.; García-Franco, R.; San Yeo, I.Y.; Lee, S.-Y.; et al.
Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images
from Multiethnic Populations with Diabetes. JAMA 2017, 318, 2211–2223. [CrossRef]

https://www.mdpi.com/article/10.3390/diagnostics14020121/s1
https://www.mdpi.com/article/10.3390/diagnostics14020121/s1
https://doi.org/10.1016/S0140-6736(09)62124-3
https://www.ncbi.nlm.nih.gov/pubmed/20580421
https://doi.org/10.7189/jogh.09.010427
https://www.ncbi.nlm.nih.gov/pubmed/31131101
https://doi.org/10.1038/eye.2011.92
https://www.ncbi.nlm.nih.gov/pubmed/21546916
https://doi.org/10.1016/S0140-6736(18)31550-2
https://www.ncbi.nlm.nih.gov/pubmed/30303083
https://doi.org/10.1097/IAE.0b013e3182870c15
https://doi.org/10.1186/s40662-015-0026-2
https://doi.org/10.22608/APO.2017163442
https://doi.org/10.1038/eye.2015.164
https://doi.org/10.1016/j.ophtha.2020.01.030
https://doi.org/10.1038/s41467-023-39864-w
https://doi.org/10.1038/s41433-022-02007-4
https://www.ncbi.nlm.nih.gov/pubmed/35301458
https://doi.org/10.1007/s00125-018-4557-7
https://doi.org/10.1136/bmj-2022-071952
https://www.ncbi.nlm.nih.gov/pubmed/36631148
https://doi.org/10.22608/apo.2018479
https://doi.org/10.1001/jama.2016.17216
https://www.ncbi.nlm.nih.gov/pubmed/27898976
https://doi.org/10.1001/jama.2017.18152


Diagnostics 2024, 14, 121 16 of 17

17. Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56.
[CrossRef]

18. Poschkamp, B.; Stahl, A.; Poschkamp, B.; Stahl, A. Application of deep learning algorithms for diabetic retinopathy screening.
Ann. Transl. Med. 2022, 10, 1298. [CrossRef]

19. Gunasekeran, D.V.; Ting, D.S.W.; Tan, G.; Wong, T.Y. Artificial intelligence for diabetic retinopathy screening, prediction and
management. Curr. Opin. Ophthalmol. 2020, 31, 357–365. [CrossRef]

20. Grzybowski, A.; Brona, P.; Lim, G.; Ruamviboonsuk, P.; Tan, G.; Abràmoff, M.D.; Ting, D.S.J. Artificial intelligence for diabetic
retinopathy screening: A review. Eye 2020, 34, 451–460. [CrossRef]

21. Bellemo, V.; Lim, G.; Rim, T.H.; Tan, G.; Cheung, C.Y.; Sadda, S.R.; He, M.; Tufail, A.; Lee, M.L.; Hsu, W.; et al. Artificial Intelligence
Screening for Diabetic Retinopathy: The Real-World Emerging Application. Curr. Diabetes Rep. 2019, 19, 72. [CrossRef] [PubMed]

22. Gargeya, R.; Leng, T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology 2017, 124, 962–969.
[CrossRef] [PubMed]

23. Kose, U.; Deperlioglu, O.; Alzubi, J.A.; Patrut, B. Diagnosing Diabetic Retinopathy by Using a Blood Vessel Extraction Technique
and a Convolutional Neural Network. Stud. Comput. Intell. 2021, 909, 53–72. [CrossRef]

24. Abràmoff, M.; Lou, Y.; Erginay, A.; Clarida, W.; Amelon, R.; Folk, J.; Niemeijer, M. Improved Automated Detection of Diabetic
Retinopathy on a Publicly Available Dataset through Integration of Deep Learning. Investig. Ophthalmol. Vis. Sci. 2016, 57,
5200–5206. [CrossRef] [PubMed]

25. Abràmoff, M.D.; Lavin, P.T.; Birch, M.R.; Shah, N.; Folk, J.C. Pivotal trial of an autonomous AI-based diagnostic system for
detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 2018, 1, 39. [CrossRef] [PubMed]

26. Tong, Y.; Lu, W.; Yu; Shen, Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis. 2020, 7, 22. [CrossRef]
[PubMed]

27. Chen, Q.; Yu, W.H.; Lin, S.; Liu, B.S.; Wang, Y.; Wei, Q.J.; He, X.X.; Ding, F.; Yang, G.; Chen, Y.X.; et al. Artificial intelligence can
assist with diagnosing retinal vein occlusion. Int. J. Ophthalmol. 2021, 14, 1895–1902. [CrossRef] [PubMed]

28. Ren, X.; Feng, W.; Ran, R.; Gao, Y.; Lin, Y.; Fu, X.; Tao, Y.; Wang, T.; Wang, B.; Ju, L.; et al. Artificial intelligence to distinguish
retinal vein occlusion patients using color fundus photographs. Eye 2023, 37, 2026–2032. [CrossRef]

29. Nagasato, D.; Tabuchi, H.; Ohsugi, H.; Masumoto, H.; Enno, H.; Ishitobi, N.; Sonobe, T.; Kameoka, M.; Niki, M.; Mitamura,
Y. Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion. Int. J.
Ophthalmol. 2019, 12, 94–99. [CrossRef]

30. Cai, L.Z.; Hinkle, J.W.; Arias, D.; Gorniak, R.; Lakhani, P.; Flanders, A.; Kuriyan, A. Applications of Artificial Intelligence for the
Diagnosis, Prognosis, and Treatment of Age-related Macular Degeneration. Int. Ophthalmol. Clin. 2020, 60, 147–168. [CrossRef]

31. Kankanahalli, S.; Burlina, P.; Wolfson, Y.; Freund, D.E.; Bressler, N. Automated classification of severity of age-related macular
degeneration from fundus photographs. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1789–1796. [CrossRef] [PubMed]

32. Burlina, P.; Joshi, N.; Pekala, M.; Pacheco, K.D.; Freund, D.E.; Bressler, N. Automated Grading of Age-Related Macular
Degeneration from Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmol. 2017, 135, 1170–1176.
[CrossRef] [PubMed]

33. Burlina, P.; Pacheco, K.D.; Joshi, N.; Freund, D.E.; Bressler, N.M. Comparing humans and deep learning performance for grading
AMD. Comput. Biol. Med. 2017, 82, 80–86. [CrossRef] [PubMed]

34. Grassmann, F.; Mengelkamp, J.; Brandl, C.; Harsch, S.; Zimmermann, M.; Linkohr, B.; Peters, A.; Heid, I.M.; Palm, C.; Weber,
B.H.F. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular
Degeneration from Color Fundus Photography. Ophthalmology 2018, 125, 1410–1420. [CrossRef] [PubMed]

35. Peng, Y.; Dharssi, S.; Chen, Q.; Keenan, T.D.L.; Agrón, E.; Wong, W.T.; Chew, E.Y.; Lu, Z. DeepSeeNet: A Deep Learning Model
for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs.
Ophthalmology 2019, 126, 565–575. [CrossRef]

36. Govindaiah, A.; Smith, R.T.; Bhuiyan, A. A New and Improved Method for Automated Screening of Age-Related Macular
Degeneration Using Ensemble Deep Neural Networks, In Proceedings of the 2018 40th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [CrossRef]

37. Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.
In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December
2017.

38. Zhou, Y.; Wagner, S.K.; Chia, M.A.; Zhao, A.; Woodward-Court, P.; Xu, M.; Struyven, R.R.; Alexander, D.C.; Keane, P.A.
AutoMorph: Automated Retinal Vascular Morphology Quantification via a Deep Learning Pipeline. Transl. Vis. Sci. Technol. 2022,
11, 12. [CrossRef] [PubMed]

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [CrossRef]

40. Tan, M.; Le, Q.V. EfficientNetV2: Smaller Models and Faster Training. arXiv 2021, arXiv:2104.00298.
41. Liu, Z.; Mao, H.; Wu, C.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. In Proceedings of the 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18 June–24 June 2022; pp. 11966–11976.
42. Ben-Baruch, E.; Ridnik, T.; Zamir, N.; Noy, A.; Friedman, I.; Protter, M.; Zelnik-Manor, L. Asymmetric Loss For Multi-Label

Classification. arXiv 2020, arXiv:2009.14119. [CrossRef]

https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.21037/atm-2022-73
https://doi.org/10.1097/ICU.0000000000000693
https://doi.org/10.1038/s41433-019-0566-0
https://doi.org/10.1007/s11892-019-1189-3
https://www.ncbi.nlm.nih.gov/pubmed/31367962
https://doi.org/10.1016/j.ophtha.2017.02.008
https://www.ncbi.nlm.nih.gov/pubmed/28359545
https://doi.org/10.1007/978-981-15-6325-6_4
https://doi.org/10.1167/iovs.16-19964
https://www.ncbi.nlm.nih.gov/pubmed/27701631
https://doi.org/10.1038/s41746-018-0040-6
https://www.ncbi.nlm.nih.gov/pubmed/31304320
https://doi.org/10.1186/s40662-020-00183-6
https://www.ncbi.nlm.nih.gov/pubmed/32322599
https://doi.org/10.18240/ijo.2021.12.13
https://www.ncbi.nlm.nih.gov/pubmed/34926205
https://doi.org/10.1038/s41433-022-02239-4
https://doi.org/10.18240/ijo.2019.01.15
https://doi.org/10.1097/IIO.0000000000000334
https://doi.org/10.1167/iovs.12-10928
https://www.ncbi.nlm.nih.gov/pubmed/23361512
https://doi.org/10.1001/jamaophthalmol.2017.3782
https://www.ncbi.nlm.nih.gov/pubmed/28973096
https://doi.org/10.1016/j.compbiomed.2017.01.018
https://www.ncbi.nlm.nih.gov/pubmed/28167406
https://doi.org/10.1016/j.ophtha.2018.02.037
https://www.ncbi.nlm.nih.gov/pubmed/29653860
https://doi.org/10.1016/j.ophtha.2018.11.015
https://doi.org/10.1109/EMBC.2018.8512379
https://doi.org/10.1167/tvst.11.7.12
https://www.ncbi.nlm.nih.gov/pubmed/35833885
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2009.14119


Diagnostics 2024, 14, 121 17 of 17

43. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.S.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2014, 115, 211–252. [CrossRef]

44. Cohen’s Kappa. The SAGE Encyclopedia of Research Design; SAGE Publications: New York, NY, USA, 2022.
45. Chaurasia, B.K.; Raj, H.; Rathour, S.S.; Singh, P.B. Transfer learning-driven ensemble model for detection of diabetic retinopathy

disease. Med. Biol. Eng. Comput. 2023, 61, 2033–2049. [CrossRef]
46. Mondal, S.S.; Mandal, N.; Singh, K.K.; Singh, A.; Izonin, I. EDLDR: An Ensemble Deep Learning Technique for Detection and

Classification of Diabetic Retinopathy. Diagnostics 2022, 13, 124. [CrossRef] [PubMed]
47. Heisler, M.; Karst, S.; Lo, J.; Mammo, Z.; Yu, T.; Warner, S.; Maberley, D.; Beg, M.F.; Navajas, E.V.; Sarunic, M.V. Ensemble Deep

Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography. Transl. Vis. Sci. Technol. 2020, 9,
20. [CrossRef] [PubMed]

48. Le, D.; Alam, M.; Yao, C.K.; Lim, J.I.; Hsieh, Y.T.; Chan, R.V.P.; Toslak, D.; Yao, X. Transfer Learning for Automated OCTA
Detection of Diabetic Retinopathy. Transl. Vis. Sci. Technol. 2020, 9, 35. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11517-023-02863-6
https://doi.org/10.3390/diagnostics13010124
https://www.ncbi.nlm.nih.gov/pubmed/36611416
https://doi.org/10.1167/tvst.9.2.20
https://www.ncbi.nlm.nih.gov/pubmed/32818081
https://doi.org/10.1167/tvst.9.2.35
https://www.ncbi.nlm.nih.gov/pubmed/32855839

	Introduction 
	Materials and Methods 
	Data Collection 
	Model Construction and Configurations 

	Results 
	Data Characteristics 
	Performance of the Models 
	Classification Performance for the Primary Classes 
	Classification Performance for the DR Subclasses 
	Classification Performance for the RVO Subclasses 
	Classification Performance for the AMD Subclasses 

	Ablation Studies of Key Parameters 

	Discussion 
	References

