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Abstract: The objective of this study was to explore the feasibility of current 3D reconstruction in
assessing the position of maxillary impacted canines from 2D panoramic X-rays. A dataset was created
using pre-treatment CBCT data from a total of 123 patients, comprising 74 patients with impacted
canines and 49 patients without impacted canines. From all 74 subjects, we generated a dataset
containing paired 2D panoramic X-rays and pseudo-3D images. This pseudo-3D image contained
information about the location of the impacted canine in the buccal/lingual, mesial/distal, and
apical/coronal positions. These data were utilized to train a deep-learning reconstruction algorithm,
a generative AI. The location of the crown of the maxillary impacted canine was determined based
on the output of the algorithm. The reconstruction was evaluated using the structure similarity
index measure (SSIM) as a metric to indicate the quality of the reconstruction. The prediction of
the impacted canine’s location was assessed in both the mesiodistal and buccolingual directions.
The reconstruction algorithm predicts the position of the impacted canine in the buccal, middle, or
lingual position with 41% accuracy, while the mesial and distal positions are predicted with 55%
accuracy. The mean SSIM for the output is 0.71, with a range of 0.63 to 0.84. Our study represents
the first application of AI reconstruction output for multidisciplinary care involving orthodontists,
periodontists, and maxillofacial surgeons in diagnosing and treating maxillary impacted canines.
Further development of deep-learning algorithms is necessary to enhance the robustness of dental
reconstruction applications.

Keywords: three-dimensional reconstruction; deep learning; maxillary impacted canines; dental
reconstruction

1. Introduction

Maxillary canines are the second most commonly impacted teeth in the dental arch,
following the third molars. The prevalence of maxillary canine impactions ranges from
1% to 3%, and of these cases, approximately 83% to 98% are unilateral impactions [1,2]. Or-
thodontic and surgical interventions are typically necessary, as these impacted canines can
lead to the root resorption of neighboring teeth and cause functional and aesthetic problems.
Successfully planning orthodontic treatment requires determining the precise position and
spatial context of the impacted canine. Radiographic assessments are employed to make
these diagnoses, utilizing either two-dimensional radiographs (panoramic X-ray, lateral or
posterior–anterior cephalometric, and periapical X-rays) or advanced three-dimensional
imaging technology like cone beam computed tomography CBCT).

Historically, 2D radiographs have been the primary tool for diagnosing the position
of impacted canines. However, they suffer from limitations such as poor visibility and
the potential misrepresentation of structures. Distortion, the overlay of three-dimensional
structures, and imaging artifacts can adversely affect the localization and treatment plan-
ning of maxillary impacted canines [3]. Newer methods, such as CBCT, offer significant
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advantages. CBCT allows the orthodontist to create 3D images, providing a much more
accurate localization of maxillary impacted canines from various dissection views [4]. This
advanced imaging technology empowers dentists to diagnose and plan treatments with
far greater accuracy and precision, enabling customized treatment plans with minimal
complications. The benefits of CBCT images extend beyond implant planning, surgical
assessments of pathology, temporomandibular joint (TMJ) evaluation, and pre- and post-
operative assessments of craniofacial fractures [5]. However, the adoption of CBCT has
been limited for several reasons. Firstly, CBCT involves higher irradiation doses compared
to 2D radiographs, which has raised concerns about radiation exposure [3]. Additionally,
the cost of the CBCT can be prohibitive for many patients, limiting its popularity, especially
in small dental clinics or developing countries [6,7].

Over the past decades, researchers have been diligently working on advancing tech-
niques for 3D reconstruction from 2D X-ray images [8,9]. These efforts aim to provide
superior details and higher accuracy while simultaneously reducing radiation exposure
and costs to patients [10,11]. In recent years, with the impressive success of deep learning
in computer vision-related fields, researchers have begun exploring its potential for 3D
reconstruction from 2D X-rays. For instance, Kim et al. employed a convolutional neural
network (CNN) to extract informative features and combined it with statistical shape
modeling (SSM) to reconstruct 3D leg bones from 2D X-rays [12]. Similarly, Kasten et al.
introduced an end-to-end deep network designed to directly learn the distribution of bone
shapes, bypassing the need for SSM. Their approach achieved an average Dice similarity
coefficient of 0.906 when reconstructing 3D knee bones from bi-planar X-ray images [13].

Concurrently, Zheng et al. proposed the use of a generative adversarial network
(GAN), specifically X2CT-GAN, for reconstructing a computed tomography (CT) from two
orthogonal X-rays [7]. Distinct from prior studies focused on 3D model reconstruction,
X2CT-GAN has the remarkable capability of generating a 3D volumetric image from just
two 2D chest X-rays. While the clinical value of the reconstruction output was not reported,
it holds promise for future applications where physicians may utilize this algorithm to
reconstruct a CT-like 3D volume from a standard X-ray machine. In the realm of dental
imaging, He et al. developed a two-step reconstruction algorithm known as Oral-3D,
with the goal of reconstructing the 3D bone structure of the oral cavity using only a
single panoramic X-ray [6,14]. Unlike chest X-rays, panoramic images are single-view
images captured with a moving camera. Achieving 3D reconstruction from a single view
necessitates additional information, such as prior knowledge about the dental arch’s shape.
In the first step, a deep-learning neural network, such as a GAN, is employed to expand
the 2D panoramic image to a flattened 3D representation. In the second step, this flattened
image is curved along the real archform. The Oral-3D framework has demonstrated success
in reconstructing healthy oral cavities, oral cavities with missing teeth, and oral cavities
with wisdom teeth.

It is recognized, even in the studies performed by He et al., that AI is currently unable
to produce a 3D reconstruction that is completely identical to the ground truth. To evaluate
the reconstruction quality, the structural similarity index measure (SSIM) is a classical
metric used in the reconstruction task. Both X2CT-GAN and Oral-3D adopted this metric
and achieved approximately 72% and 78%, respectively. The current reconstruction results
allow the researchers to identify wisdom and missing teeth, as demonstrated by the work
of He et al. For the present study, we attempt to understand the current clinical application
of AI to 3D reconstruction by solving a more complex and nuanced problem than He et al.
We propose reconstructing the 3D dental structure and tooth position from 2D panoramic
X-rays in patients with maxillary impacted canines. From this reconstruction output, we
will assess the clinical value of the reconstruction output to determine if our algorithm can
be of use to orthodontists to help diagnose and plan treatments for cases with maxillary
impacted canines.

Inspired by He et al., we also break down the task of 3D bone reconstruction via a 2D
panoramic X-ray into a two-step process [14]. However, in this study, we will only focus
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on the first step of the reconstruction technique, as this is where the major reconstruction
process occurs, and the error in this process needs to be minimized to construct an accurate
3D oral structure with bone density and the curved mandibular structure. We choose to call
the result of this first step a pseudo-3D image. From this pseudo-3D image, the position of
the impacted maxillary canine is located, and the clinical feasibility of our AI algorithm
is determined.

The purpose of this work is to examine if an artificial intelligence algorithm achieving
a certain level of computer-vision metric (e.g., SSIM) can be used for 3D reconstruction in a
way that accurately preserves the clinical information needed to identify the position of a
maxillary impacted canine so that an orthodontist can dependably diagnose and treatment
plan for these patients.

2. Materials and Methods
2.1. Dataset

A dataset was created using pre-treatment CBCT data from a total of 123 patients,
including 74 patients with impacted canines and 49 patients without impacted canines.
These CBCT scans were collected from Peking University Hospital with institutional ethical
committee approval (IRB: PKUSSIRB-201626016) [15]. The CBCT machine (NewTom VG,
QR s.r.l., Verona, Italy) was used under the following settings: 15 × 15 cm field of view,
110 kV, and 1–20 mA (pulsed mode), with a resolution of 0.3 mm isotropic voxel and
exposure time of 10 s. The exclusion criteria included (1) previous orthodontic treatment,
(2) cleft palate or other maxillofacial syndromes, (3) maxillary dental/skeletal trauma or
surgical history, and (4) dental age younger than the late mixed dentition. The age range of
the subjects was between 11 and 18 years of age. The total numbers of males and females
were 50 and 73, respectively. The average age was 14.59, with a standard deviation of 2.29.
Table 1 shows the demographic summary of the subjects recruited in this study.

Table 1. Summary of this study’s dataset.

Samples with
Impacted Canine

Samples without
Impacted Canine Total

Number of samples 74 49 123

Mean age ± SD 14.50 ± 2.30 14.67 ± 2.29 14.59 ± 2.29

Age range 11–18 11–18 11–18

Number of Males/Females 28/46 24/25 50:73

Number of buccal/middle/lingual impactions 36/12/26 N/A 36/12/26

Number of mesial/distal impactions 65/9 N/A 65/9

SD: standard deviation; N/A: not applicable.

Corresponding 2D panoramic X-rays and pseudo-3D images were prepared for all
CBCT images. Instead of using direct scans from a 2D panoramic X-ray machine, we
projected these images from 3D CBCT data using 3D slicer with Sandbox module [16]. All
the pseudo-3D images were also generated via 3D slicer and then resized to 128 voxels
along anterior–posterior (AP) and inferior–superior (IS) directions, with a fixed spacing
size of 0.3 mm in right–left (RL) direction. Therefore, the size of the 2D panoramic X-ray
was N × 128, where N was the number of voxels in RL direction of the corresponding
pseudo-3D image. The intensity of all voxels was normalized between −1 and 1 for both
2D and 3D images. It is recognized that synthetic panoramic images differ in intensity
distribution from original scans. To address this, a representative sample was selected
as a template, and we performed histogram matching on the remaining samples to align
their intensity distributions more closely with the template, minimizing the differences and
ensuring consistency across the dataset. This method prepared paired 2D and 3D image
sets for AI training.
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These data were used to train a deep-learning reconstruction algorithm (described in
the Section 2.2). Of the 74 patients who were used to train the algorithm, 36 were in the
buccal position, 12 in the middle, and 26 in the lingual position. In the mesial and distal
direction, 65 samples were in the mesial position, and 9 samples were in the distal position.
We did not define a middle position in the mesial and distal direction.

2.2. Deep-Learning Network

Since the absorption of radiation varies among different tissues, the depth information
of the teeth and the mandible is embedded in the 2D panoramic X-ray. According to
Oral-3D by He et al., the 3D reconstruction of bone structures from 2D panoramic X-ray
comprised 2 stages: dimensional expansion from 2D to pseudo-3D images and deformable
registration to bend the pseudo-3D image to fit the actual archform [6,14].

Regarding the first stage, we adopted X2CT-GAN framework that allows us to recon-
struct a pseudo-3D image from a single 2D image [7]. This pseudo-3D image contains infor-
mation related to depth, as well as the location of the impacted canine in the buccal/lingual,
mesial/distal, and apical/coronal positions. In the second stage, this pseudo-3D image can
be converted to a 3D structure of the oral cavity when paired with information related to
the dental arch.

For this study, we chose to focus on the first stage of reconstruction (single 2D image
to a pseudo-3D image) as the major reconstruction process happens in this stage, and errors
should be minimized in this stage to ensure an accurate 3D structure of the oral cavity is
produced in the second stage.

The X2CT-GAN deep generative framework was used for the 3D reconstruction of
CT volume from biplanar chest X-rays [7]. The original work also proposed a variant of
X2CT-GAN, which only takes a single 2D X-ray to generate the 3D chest structure. Inspired
by the single X-ray variant, we proposed a deep generative framework, called Pan2CBCT,
in this study to generate pseudo-3D bone structure from 2D panoramic X-ray. Similar
to the standard GAN architecture, Pan2CBCT consists of two networks: generator and
discriminator (Figure 1).
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Inspired by Oral-3D, the loss functions used in Pan2CBCT are as follows:

LossGAN
D = Ey[D(y)− 1)2

]
+Ex

[
D(G(x))2

]
,

LossGAN
G = Ex(D(G(x))− 1)2

]
,

where LossGAN
G and LossGAN

D represent the adversarial loss for generator and discriminator,
respectively; x and y represent the panoramic and pseudo-3D images, respectively; G
and D represent the generator and discriminator functions; and E denotes the expected
value [6,14]. To further improve the generated quality, two additional loss functions in
terms of voxel-wise and plane-wise regularization, LossR and LossP, are used for generator,
which are expressed as

LossR = Ex,y

[
(y − G(x))2

]
,

LossP = 1
3

[
Ex,y

[
(Pax(y)− Pax(G(x)))2

]
+ Ex,y

[
(Pco(y)− Pco(G(x)))2

]
+ Ex,y

[
(Psa(y)− Psa(G(x)))2

]]
,

where Pax, Pco, and Psa are the projections in the axial, coronal, and sagittal planes, respec-
tively. The ultimate optimization problem tries to minimize the G and minimize the D and
is formulated as

D∗ = argmin
D

LossGAN
D ,

G∗ = argmin
G

λ1LossGAN
D +λ2LossR + λ3LossP.

The Pan2CBCT was trained using Adam optimizer [17]. For all impacted canine and
non-impacted canine paired Pan-CBCT samples, the input to the network is a 128 × 128 2D
patch of panoramic X-ray image, and the output is a 128 × 128 × 128 3D patch of re-
construction of the bony structure. In this manner of patching, a paired 2D–3D sample
becomes several 3D 128 × 128 × 128 patches for training. For example, a pseudo-3D image
with size of 320 × 128 × 128 with stride of 32 could contribute to 10 patches with size of
128 × 128 × 128 (Figure 2).
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The entire imaging workflow is shown in Figure 3.
The entire implementation process was conducted using Pytorch [18] on the computing

resource provided by the Ohio Supercomputer Center [19].
The algorithm performance was evaluated using 15-fold cross-validation. The training

data consisted of a total number of 123 samples: 74 samples with impacted canine and
49 samples without impacted canine. The training data with impacted canines were split
into 15 groups: 14 groups with 5 samples and 1 group with 4 samples. The samples without
impacted canine were kept as 1 group. Each fold contained all the training data, with
1 group serving as the test group (Figure 4).
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2.3. Evaluation Metric and Clinical Predictability

The reconstruction was evaluated using the structure similarity index measure (SSIM)
as a metric to indicate the reconstruction quality. This measure compares the two images
based on 3 features: luminance (l), contrast (c), and structure (s). The SSIM is reported to be
between 0 and 1. A value closer to 1 indicates that the images are very similar, whereas a
value closer to 0 indicates that the images are very different.

The accuracy of the location of the impacted canine was calculated by comparing
the ground truth images and the output of the algorithm along both buccal–lingual and
mesial–distal directions.

3. Results

The reconstruction performance was evaluated by accurately identifying the impacted
canine on the output (Figure 5). In Figure 5, the impacted canine can be appreciated in both
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the reconstruction output and the ground truth on the buccal aspect. From visual evaluation,
the differences are obvious. The sagittal, coronal, and axial slices of the reconstruction are
blurry and depict a loss of detailed tooth structure compared to the ground truth. However,
the anatomical structures are maintained, and the position of the impacted canine can be
discerned.
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The position of the impacted canine in either the buccal, middle, or lingual position
was identified with 41% accuracy (Table 2). The algorithm was trained with 36 buccal
samples, 12 middle samples, and 26 lingual samples. As almost 50 percent of the training
data had buccal samples, the greatest reconstruction accuracy was for the buccal samples.

Table 2. Identification of buccal, middle, and lingual positions from reconstruction output compared
to ground truth.

Ground Truth
Position

Number of
Samples

Correct
Identification

Incorrect
Identification

Percentage
Correct

BUCCAL 36 23 13 64%
MIDDLE 12 4 8 33%

LINGUAL 26 3 23 12%
Number Correct 30
Number Wrong 44

Accuracy 0.41

In the mesial and distal positions, the reconstruction output had a 55% accuracy
(Table 3). The training sample contained 65 samples in the mesial position and 9 samples in
the distal position. As 88% of the training data was in the mesial position, the reconstruction
outputs in the mesial direction had greater accuracy.

Table 3. Identification of mesial and distal position from reconstruction output compared to
ground truth.

Ground Truth
Position

Number of
Samples

Correct
Identification

Incorrect
Identification

Percentage
Correct

MESIAL 65 40 25 62%
DISTAL 9 1 8 11%

Number Correct 41
Number Wrong 33

Accuracy 0.55
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To quantitatively measure the similarity of the reconstruction output and the ground
truth, SSIM was employed. The average SSIM value was 0.71, with a minimum of 0.63 and
a maximum of 0.84. A value of 0.84 indicates a reconstruction quality that has a modest
similarity to the ground truth. There was a statistical difference between the ground
truth of the flattened CBCT and the AI-generated flattened CBCT based on the SSIM
(p < 0.001). The 75%, 50%, and 25% quantiles of SSIM are 0.74, 0.71, and 0.69, respectively.
The ground truth and the reconstruction output can be compared visually in Figure 6.
The boundaries between the individual teeth and the bone are blurry, especially in the
coronal slice compared to the ground truth. Despite having a higher SSIM value than the
output of Figure 5 (SSIM = 0.68), the reconstruction output does not visually look much
different. Visual image quality may be more important than the SSIM value, as the images
will eventually be read visually by an orthodontist to diagnose and plan treatments for the
impacted canine.
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4. Discussion

The reconstruction of a 3D image from a 2D panoramic X-ray could be useful in various
dental practices, including but not limited to orthodontic diagnosis and treatment planning
of maxillary impacted canines, implant insertion, alveolar bone grafts, auto-transplantation,
etc. In this study, we developed a deep-learning-based AI system to reconstruct a pseudo-
3D image. From this pseudo-3D image, we were able to locate the position of the maxillary
canine in either the buccal, lingual, or middle position, as well as in either the mesial or
distal position on most of the samples.

To quantify the reconstruction quality, SSIM was used as the key criterion, as it is
a measure correlated to the image quality as perceived by humans. Our reconstruction
output showed promising SSIM values, with an average value of 0.71 and a range of
0.63–0.84, indicating modest similarity between the reconstruction output and the ground
truth image. The SSIM evaluates similarities within pixels, and if the pixels of the ground
truth and the predicted reconstruction images align with similar pixel density values, the
value will be closer to the positive one.

Although our reconstruction SSIM values achieved similar values to other deep-
learning algorithms in the healthcare field [6,7,14,20], we were only able to identify the
position of the impacted canine in either the buccal, middle, or lingual position with 41%
accuracy. These results suggest that the use of AI in 3D reconstruction for diagnosis is not
yet suitable for clinical application at an SSIM level of approximately 0.7. Thorough clinical
studies are crucial to ensure that the actual clinical information is correctly preserved before
considering the practical application of the algorithms. Presently, reconstruction outputs
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with an SSIM value in the 0.7 range may be used for the identification of missing teeth or
wisdom teeth but lack anatomical details for diagnosis and treatment planning.

Our accuracy values indicate that the clinical applicability of our AI system is still
lacking. Image quality degradation is observed between the ground truth and the recon-
struction output. The blurry boundaries between the alveolar bone and tooth structure
make it very difficult to identify the impacted canine location. Given the quality of the
images, it is not feasible for an orthodontist to diagnose and plan treatments using the
reconstruction output.

In the buccal, middle, and lingual directions, the positions were identified with 41%
accuracy. The greatest reconstruction accuracy was in the buccal direction, as almost 50%
of the training data was in the buccal direction. This indicates that training sample size
plays an important role in the accuracy of the reconstruction output. The reconstruction
algorithm had trouble reconstructing samples in the lingual direction, as demonstrated
by an accuracy of 12%. For samples that contained an impacted canine in the middle, the
accuracy was between the buccal and lingual positions.

The mesial and distal positions of the impacted canine were identified from the
reconstruction output with 55% accuracy. The AI was able to reconstruct the impacted
canine in the mesial–distal position with higher accuracy compared to the buccal–lingual
direction. The AI system did not need to learn the depth information from the 2D panoramic
X-ray to reconstruct the impacted canine in the mesial or distal position, leading to greater
accuracy in the reconstruction output.

Our current AI algorithm attempts to solve a much more nuanced and complicated
problem that goes beyond the simple 3D reconstruction of a healthy oral cavity and abnor-
mal dental structures (missing teeth and wisdom teeth). Our study, therefore, serves as an
important step towards the development of more refined and accurate AI-driven diagnostic
tools in the field of dentistry. This study, utilizing generative adversarial networks (GANs),
shows promise for AI-based 3D reconstructions from 2D panoramic X-rays. Nevertheless,
at an SSIM value of approximately 0.7, the results of 50% predictability of the canine posi-
tion in the diagnostic image underscore the limitations of our study. The limitations include
the poor image quality of panoramic X-rays converted from CBCT, the requirement of the
matched CBCT-panoramic X-ray pairs, the limited sample size, and the AI algorithm itself.
Nevertheless, the present study provides a feasibility test for future advancements and
highlights the considerable potential of AI technologies in dental imaging. Recent newer
models like diffusion-based AI may outperform GANs.

To overcome the aforementioned limitations and improve the quality of dental 3D
reconstruction, we propose three research directions for the future. Firstly, additional
modalities (e.g., cephalometric X-rays) can be introduced to provide more informative
features in the anterior–posterior direction. Several previous studies used two or more
X-ray images during reconstruction [21–25]. Additionally, the original work of X2CT-
GAN presented an ablation study, demonstrating that a second-view X-ray significantly
improved the SSIM in chest CT reconstruction. However, to reconstruct a 3D object from
its 2D X-ray projections, obtaining the source position and image plane orientation in 3D
space with high accuracy is crucial [8].

Secondly, the size and heterogeneity of the dataset need to be increased, as well as the
heterogeneity of the dataset. Our results indicated that if each position of the impacted
canine is not well represented, the accuracy of the reconstruction output is influenced.
Finally, future research should aim to integrate more advanced AI technologies. Although
generative models based on diffusion models have shown outstanding capabilities to
generate high-quality images [26,27], they were less successful in preserving meaningful
representation in the latent space compared to GAN, which is still an open challenge for
diffusion models [28–30]. On the other hand, the cost of collecting and labeling data could
be very expensive. Recent studies have shown that self-supervised learning is able to
train a model using unlabeled samples or more effectively utilize the existing labeled data,
resulting in improved model performance [31–33].
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5. Conclusions

The clinical feasibility of employing a deep-learning model for 3D reconstruction
from a 2D panoramic X-ray in cases of maxillary impacted canines has been demonstrated
by generative images with a 70% similarity (SSIM = 0.7). However, 50% accuracy is not
adequate for the practical application of this program in clinical settings. It is imperative
to refine the data preparation and enhance the deep-learning algorithm to increase the
precision and predictability of determining the canine’s position.
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