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Abstract: Respiratory rate (RR) is a critical vital sign that can provide valuable insights into various
medical conditions, including pneumonia. Unfortunately, manual RR counting is often unreliable
and discontinuous. Current RR estimation algorithms either lack the necessary accuracy or demand
extensive window sizes. In response to these challenges, this study introduces a novel method for
continuously estimating RR from photoplethysmogram (PPG) with a reduced window size and lower
processing requirements. To evaluate and compare classical and deep learning algorithms, this study
leverages the BIDMC and CapnoBase datasets, employing the Respiratory Rate Estimation (RRest)
toolbox. The optimal classical techniques combination on the BIDMC datasets achieves a mean
absolute error (MAE) of 1.9 breaths/min. Additionally, the developed neural network model utilises
convolutional and long short-term memory layers to estimate RR effectively. The best-performing
model, with a 50% train–test split and a window size of 7 s, achieves an MAE of 2 breaths/min.
Furthermore, compared to other deep learning algorithms with window sizes of 16, 32, and 64 s, this
study’s model demonstrates superior performance with a smaller window size. The study suggests
that further research into more precise signal processing techniques may enhance RR estimation from
PPG signals.

Keywords: photoplethysmogram; respiratory rate; deep learning; neural network

1. Introduction

Respiratory rate (RR) is a vital sign that provides basic information about a patient’s res-
piratory condition and health status. Despite the development of new technical approaches,
in clinical practice, RR is still manually counted or estimated using electrocardiogram (ECG)
signals [1,2]. However, counting by hand is subjective and prone to mistakes, particularly
in patients who are seriously ill or using mechanical breathing [2,3]. ECG signals need a
lot of patient probing, which is inappropriate in many situations, including surgery and
ambulance transfers [4].

Photoplethysmography (PPG) has gained popularity as a promising non-invasive
method to calculate RR in recent years [3]. Photoplethysmography is easily acquired using
a straightforward finger probe and measures variations in blood volume in peripheral
tissues [5]. Photoplethysmography enables the simultaneous estimation of multiple phys-
iological parameters using a single peripheral sensor, e.g., heart rate variability, oxygen
saturation (SpO2), blood pressure, and RR [5,6]. Photoplethysmography signals are mod-
ulated by respiration in amplitude, baseline, and frequency, enabling RR extraction in
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different approaches. PPG-based RR estimation has gained user acceptance by reducing
the burden of wearing devices with several probes that record ECG to monitor RR for
out-of-hospital patients continuously [2]. However, PPG signals are sensitive to noises and
are influenced by multiple physiological factors, including age, measurement site, blood
pressure, and neural activities [7–9]. The challenge towards clinical application lies in the
accurate, reliable, and robust estimation of RR from PPG data.

Several algorithms have been developed for RR estimation, each employing dis-
tinct techniques to achieve accurate results. Filter-based techniques form one approach,
incorporating digital filtering [10,11], low-pass finite impulse response filter [12,13], Butter-
worth band-pass filter [10,14], and adaptive infinite impulse response notch filter [15,16].
These methods have demonstrated performance with a mean absolute error (MAE) of
2.2 breaths/min, utilising a 5 s window size on the BIDMC datasets. Another approach
involves feature-based techniques, encompassing Variable-Frequency Complex Demodula-
tion [10,17], continuous wavelet transforms [10,17,18], Autoregressive Modeling [18–20],
Beat Detection [21,22], and pulse segmentation [11,21]. State-of-the-art classical algo-
rithms utilising feature-based techniques and time domain RR estimation techniques have
achieved an MAE of 2.08 breaths/min with the same 5 s window size. Additionally, feature
fusion and selection techniques can be implemented to consolidate the results from different
feature-based methods or choose the most suitable technique for each dataset, potentially
reducing the MAE to 1.95 breaths/min with a 5 s window size [23].

Numerous features in the signal domain have been extensively employed for RR
estimation. However, the investigation into classical methods encounters a bottleneck,
as enhancing the performance of RR estimation through signal features proves challeng-
ing [23]. Despite several studies employing deep learning algorithms, their performance
has yet to surpass that of classical methods. Notably, current deep learning algorithms
necessitate large window sizes for optimal performance, indicating a substantial gap in
achieving superior results compared to classical methods [24]. Considering these observa-
tions, there is a compelling need to delve deeper into exploring deep learning algorithms
for RR estimation, aiming to bridge the existing performance gap and potentially surpass
the efficacy of classical methodologies.

In addition to that, ongoing research focuses on deep learning neural networks, with
notable models like RRWaveNet ResNet, RespWatch, CycleGan and RespNet [24–28]. The
state-of-the-art neural network is RRWaveNet, which has pushed the performance even
further, achieving an MAE of 1.62 breaths/min and 1.59 breaths/min for BIDMC and Cap-
noBase Datasets, respectively. However, it utilises a longer 32 and 64 s window size [24].
The RRWaveNet algorithm employs a sophisticated architecture featuring multiple convo-
lutional neural networks (CNNs). Signal data for its training and evaluation are sourced
from the BIDMC and CapnoBase datasets through oximeter recordings [24]. This algorithm
demonstrates commendable performance in terms of MAE, showcasing its efficacy in
accurately estimating respiratory rates. Using diverse datasets enhances its robustness
and generalisability, making RRWaveNet a promising and effective model for respiratory
rate estimation.

The present study focused on RR estimation from PPG signals. A vital parameter is
the window size, which represents the signal duration required for RR estimation. For
instance, a 10 s window size provides RR readings after 10 s of applying the PPG sensor,
offering real-time estimations with the average RR over the specified window. Shorter
window sizes contribute to more immediate results, particularly crucial when a patient’s
breathing rate undergoes sudden changes. In contrast, larger window sizes, such as 32
or 64 s, delay the identification of abrupt respiratory rate drops. Given the importance of
timely RR monitoring, especially for pulmonary patients at risk of brain damage after 4
min of oxygen deprivation, achieving a low window size becomes paramount in terms of
developing an effective RR estimation algorithm [2].

The predominant optimisation of convolutional neural networks (CNNs) characterised
algorithms aiming to comprehend signal patterns for RR estimation, with various archi-
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tectures explored for signal learning and RR estimation. In the current study, a distinctive
approach has been taken by introducing a Long Short-Term Memory (LSTM) layer to the
architectural configuration [29]. Notably, the preceding studies had yet to investigate the
performance of the LSTM layer in this context. As a type of recurrent neural network, the
LSTM layer possesses the ability to analyse sequential input, optimising and preserving
long-term relationships within the sequence. This is particularly crucial to our study’s
objective to reduce the window size. Consequently, our study focuses on exploring a
combined neural network, integrating both CNN and LSTM layers, to uncover its potential
impact on improving RR estimation accuracy through a nuanced analysis of signal patterns
and long-term relationship recognition within the data sequence.

The performance of PPG-based RR estimation can still be improved by reducing
the MAE. Additionally, there is potential to decrease the window size for more precise
and real-time estimation. The potential for neural networks to improve RR estimation is
vast and largely untapped in current research. Numerous neural network architectures
and configurations are yet to be explored for this purpose. Moreover, there is room for
innovation in reducing the window size for more real-time and responsive estimation,
which could significantly enhance performance. The field of RR estimation remains open to
a wide array of neural network possibilities, underscoring the need for further exploration
and innovation in this domain to achieve more accurate and efficient results.

This study aims to develop an algorithm that can estimate RR accurately and reliably
from PPG signals, where the best algorithmic parameters are identified. The performance
in different window lengths was assessed to provide a reference for PPG-based real-time
measurement of RR.

2. Materials and Methods

In this study, both classical and deep learning algorithms were optimised to estimate
RR from PPG signals. A classical algorithm was employed to assess the performance
of different classic techniques, determining the optimal combination for RR estimation
through rigorous evaluation. Following the performance evaluation of the classical method,
a deep learning algorithm was developed to enhance performance compared to previous
iterations. The entire process, encompassing the classical and deep learning algorithms,
is visually represented in Figure 1, illustrating the roadmap followed in this study for
RR estimation.
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2.1. Source of Data
2.1.1. BIDMC Dataset

The BIDMC datasets are a collection of respiratory signals from intensive care patients’
ECG, PPG, and impedance plethysmography [30,31]. The datasets are meant to be used to
analyse RR algorithm performance, representing how well they might work in a real-world
critical care setting [30,31].

The primary data for this study were obtained from severely ill patients at the Beth
Israel Deaconess Medical Centre in Boston, MA, USA. For each recording in the dataset,
individual breaths were meticulously annotated by two individuals using the impedance
respiratory signal. The dataset comprises 53 recordings from different patients, each lasting
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8 min [32]. These datasets encompass various physiological signals sampled at 125 Hz,
including the ECG, impedance respiratory signal, and PPG. Physiological parameters
such as heart rate, RR, and SpO2 are sampled at 1 Hz. Additionally, the datasets contain
manually annotated breaths and fixed parameters like age and gender [21]. The manually
annotated breaths were used as reference RR in this study.

2.1.2. CapnoBase Dataset

The CapnoBase dataset comprises 8 min recordings from 42 subjects, including
13 adults and 29 children and neonates, which were obtained during elective surgeries and
routine anaesthesia [33]. These recordings include ECG and PPG signals and capnome-
try signals measuring inhaled and exhaled carbon dioxide (CO2), serving as a reference
for breathing rate. The CapnoBase TBME RR benchmark dataset provides CO2 wave-
forms (capnogram) and PPG data, along with expert-provided labels for pulse peaks in
PPG and breaths in CO2 [33]. Researchers can use this benchmark dataset to test and
compare algorithms.

2.2. Classical Respiratory Rate Estimation Algorithm
2.2.1. Respiratory Rate Estimation Toolbox

The Respiratory Rate Estimation (RRest) toolbox is a MATLAB-based toolbox offer-
ing a comprehensive array of algorithms designed for estimating RR from physiological
signals [32]. This toolbox is an integral part of the larger RR Estimation project and encom-
passes a wide range of algorithms that have been documented in prior literature. Rrest is
adept at estimating RR using windows of ECG and pulse oximetry (PPG) signals while
providing a reference RR derived from concurrent respiratory signals, such as Impedance
Pneumography data. It serves as a valuable resource, particularly when researchers wish
to compare their novel RR algorithms with established ones [21]. Rrest offers a library
of validated algorithms and streamlines the statistical analysis of algorithm performance,
facilitating the computation of various statistics commonly used for performance evalua-
tion [32].

2.2.2. Respiratory Signal Extraction

There are two main respiratory signal extraction method categories: feature-based
extraction and filter-based extraction. Techniques used in filter-based extraction include
wavelet decomposition and band-pass filtering to remove non-respiratory frequencies. A
measurement, such as pulse wave amplitude, is taken out of each cardiac cycle as part of
feature-based extraction [34] (Figure 2).

The original signal was extracted to produce a respiration signal, which is a time series
dominated by breathing modulation. Eliminating extremely low frequencies was the first
stage, which was universal to all strategies. A high-pass filter with a 3 dB cutoff frequency of
4 breaths/min was used to achieve this [35]. Both feature-based and filter-based respiratory
signal extraction techniques were employed, which dictated the intermediate steps. The
next stage, which was the same for all approaches, was employing a band-pass filter with
3 dB thresholds of 4 and 60 breaths/min to exclude frequency unrelated to respiration from
the reconstructed signal [36]. The following phases comprised the feature-based extraction
process, which involved extracting a temporal sequence of beat-by-beat feature readings.
Using low-pass filters with 3 dB thresholds from 100 and 35 Hz, extremely high frequencies
were removed for the PPG signal [35].

This algorithm applied adaptive pulse segmentation and artifact detection for PPG. To
accomplish automated heart rate and artifact detection, the periodic component of the PPG
signal must be removed. The maximal volume peak optimisation of the regular heartbeat
pulsations is sometimes followed by a second peak known as the dicrotic notch [37]. A
line segmentation method processes the waveform and divides the PPG into pulses. This
approach effectively enables the desired trend computation since PPG pulse components
are based on a morphological shape that successive lines can identify.
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The Iterative-End-Point-Fit and Incremental algorithms that make up the Incremental-
Merge Segmentation (IMS) technique were initially created for computer vision and mobile
robotics applications [36]. The segmentation-assisted ECG signal compression method has
also been applied. The IMS algorithm may be implemented in real time and is simple,
quick, and based on a sliding-window structure [37]. The irregularly sampled feature-based
respiratory signals are then resampled using linear, interpolation, cubic spline interpolation,
or Berger’s technique at a constant sampling rate. Band-pass filtering is an option that can
be used after these methods if desired [21].

Linear interpolation is a method for fitting the points to a curve using a linear polyno-
mial, such as the line equation. This is equivalent to drawing a line between two points in a
dataset to connect them. The process of fitting the curve by connecting those points with a
higher degree polynomial is known as polynomial interpolation. Low-degree polynomials
are used in each of the intervals in spline interpolation, which is like polynomial interpola-
tion x’ in that it selects the polynomial parts to fit together smoothly [38]. The outcome is a
function known as a spline. Using cubic spline interpolation, finding a curve that connects
data points with a degree of three or fewer is possible. Splines are polynomials that have
continuous first and second derivatives and are smooth and continuous across a specified
plot [38].

2.2.3. Respiratory Rate Estimation

Respiratory Rate Estimation was performed after RR signal extraction using frequency-
based techniques and time domain detection. Frequency-based pinpoint the frequency
component associated with respiration. Time domain detection includes peak detection
on respiratory signal and identifying zero-crossings with a positive gradient along the RR
signal. The RR was found to correlate to the frequency of the spectral peak with the largest
magnitude from 4 to 60 breaths/min using spectral analysis.

The fusion stage has drawn much attention lately because of the gains in algorithm
performance seen when it is used. To combine simultaneous RR estimates for each modu-
lation that were generated using the feature-based methodology, two modulation fusion
algorithms were optionally optimised. Smart fusion is the anticipated RR signal’s quality,
which is assessed using the BW, AM, and FM respiratory signals. If the standard devi-
ation is less than 4 breaths/min, the RR is calculated as the mean; otherwise, no RR is
produced [35].



Diagnostics 2024, 14, 284 6 of 17

Spectral peak-conditioned averaging optimises the Welch periodogram, and frequency
spectra generated from BW, AM, and FM respiratory signals are fused to provide a mean
spectrum. Only spectra that include a specific percentage of their spectral power in a
frequency range centred on the frequency corresponding to their maximum spectral power
are included. The frequency that corresponds to the mean spectrum’s highest power is
thought to be RR [35]. It was possible to employ temporal fusion to smooth out subsequent
RR estimations from the same person. It can be used with or without modulation fusion
beforehand [35].

2.3. Neural Network for Respiratory Rate Estimation

A deep learning algorithm has been developed to estimate RR. BIDMC datasets have
been used to develop the deep learning algorithm. The datasets were cut from 53 eight-
minute data to 424 one-minute data for training and testing. The algorithm combines a
CNN and a LSTM neural network. The convolutional layer was used as the first layer to
classify the RR signal. A convolutional neural network can extract features from both spatial
and temporal dimensions. A Long Short-Term Memory network is a type of recurrent
layer that can improve the prediction ability of the deep learning model. Long Short-Term
Memory network operates on sequential data by iterating through time steps and capturing
intricate relationships between them, facilitating the learning of long-range dependencies
within the sequence. The input of the deep learning model was a 30 Hz RR signal, and the
output was the labelling of inhalation and exhalation.

2.3.1. Deep Learning Algorithm

Similar data processing and RR signal extraction were applied before the deep learning
algorithm to obtain a clean RR signal. To reduce the training time, the RR signal was
resampled from 125 Hz to 30 Hz, which retained the signal’s pattern and reduced the
input data’s size. Then, a severe baseline difference was found due to the different blood
pressures of the patients. Therefore, the zero-score method was applied to remove the
baseline difference and rescale all the RR signals between negative two and positive two.

The labelling process is carried out by cutting the zero as the midline. Any signal
higher than zero is considered an inhalation signal and is labelled as one. Meanwhile,
signals lower than zero are considered exhalation signals and are labelled as zero. Many
RR signals have artifacts and fluctuations. Therefore, the labelling should be modified for
the training model to learn all the artifacts and fluctuations. All the train and validation RR
signals should be labelled for training.

After that, the labelled RR signal will be used as the input to train the deep learning
model. The RR signal data were split into three parts: training, validation, and testing. The
train and validation splits are 80% train data and 20% validation data. The output of the
training model shall classify inhalation and exhalation signals. Next, RR was computed
based on the number of inhalation signals detected. The performance of this deep learning
algorithm can be evaluated by comparing the computed RR to the reference RR. The
performance evaluation method includes MAE, RMSE, and percentage error. The whole
process of deep learning is shown in Figure 3. This process was applied similarly to the
testing data.

The CapnoBase datasets serve as a crucial testing ground for neural network models
initially trained on the BIDMC datasets. This evaluation allows researchers to assess and
ascertain the model’s performance when applied to diverse datasets beyond its training
environment. The objective is to ensure that the model can demonstrate its efficacy across
a range of conditions and with various patient demographics, ultimately verifying its
suitability for broader clinical applications.
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2.3.2. Deep Learning Neural Network Architecture

Clean and scaled 30 Hz RR signals and the labels were fed as input to the CNN-LSTM
model. The architecture of the CNN-LSTM neural network is shown in Figure 4.
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Figure 4. CNN-LSTM neural network architecture.

The neural network takes a 30 Hz labelled RR signal as input. The convolution
layer learns from the input signal. Pooling layers offer a technique for reducing the
dimensionality of feature maps by condensing information about the presence of features
within patches of the feature map. Max pooling will capture the most activated presence
of a feature. The Rectified Linear Activation Function, commonly referred to as ReLU,
is a mathematical function that behaves in a piecewise linear manner. When the input
is positive, it directly outputs the same value; otherwise, it outputs zero. ReLU has
gained widespread popularity as the default activation function in various neural network
architectures due to its ease of training and its tendency to yield improved performance in
many cases.

The model uses LSTM as the recurrent neural network. It is a fundamental building
block to analyse sequential input, such as time series or text written in natural language. It
can optimise and retain long-term relationships between sequences. The flattened layer
is a vital bridge between CNNs and artificial neural networks. It facilitates the seamless
integration of CNNs with ANNs, enabling the neural network models to acquire a deep
understanding of intricate patterns in data and subsequently make accurate predictions.

The final layer of the mode is the SoftMax layer. It is a significant layer of the neural
network. It transforms the prior layer’s raw scores or logits into probability distributions
across many classes. This deep learning model gives the label probability on two classes:
inhalation and exhalation. Then, the output layer gives the label as 1 (inhalation) or 0
(exhalation). After the classification, the output processing step estimates RR by calculating
the number of inhalations and exhalations.
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The last part of the model is stochastic gradient descent (SGD) optimisation, a widely
used optimisation algorithm used in deep learning. It deals with the classic Gradient
Descent methods’ computational inefficiencies while working with huge datasets in deep
learning. Utilising SGD, the enormous expense of backpropagation over the whole training
set is the driving force behind neural networks in this context. SGD can offset this expense
and result in rapid convergence to the optimal.

2.3.3. Deep Learning Neural Network Optimisation Parameters

Several parameters can be modified to optimise the deep learning model performance.
The first parameter to optimise is the train–validation and test split. In this study, train–
validation data and test data are split by three ratios, which are 20:80, 50:50, and 80:20.
Within the train–validation, the train data would be 80%, and the validation data would be
20%. In addition to that, five window sizes were used in the optimisation, which are 120,
150, 180, 210 and 240, corresponding to 4 to 8 s signals, respectively.

In addition, various parameters were optimised to achieve the best model. The CNN
layers were tested from one to three, revealing that while additional layers extended training
and testing times, they did not significantly enhance performance. Filter lengths ranging
from 1 to 5 were examined, with shorter lengths demonstrating better results without
substantially increasing processing time because of the downsampling from 125 Hz to
30 Hz in data preprocessing. Pool sizes of 2 to 5 were tested, with larger sizes reducing
processing time but adversely impacting performance. Lastly, batch sizes within the range
of 5, 10, 15, 20, 25, and 30 were examined, with the determination that the most favourable
balance between computational efficiency and optimal performance in respiratory rate
estimation was provided by a batch size of 20. This exhaustive exploration across various
batch sizes aimed to identify the specific configuration that maximises computational
resource utilisation while ensuring excellence in the estimation process.

Training and evaluation were carried out on Intel(R) Core (TM) i5-10300H CPU with 8
GB of RAM hosted by Nvidia GeForce GTX 1650 GPU. In each experimental run, 100 train-
ing epochs with a batch size of 20, a pool size of 2, and a filter length of 1 were applied. To
mitigate over-fitting, an early stopping technique was implemented during the training
phase. The model that achieved the lowest validation loss was preserved and subsequently
employed for testing.

2.4. Performance Evaluation

Three parameters were used to evaluate the algorithm’s performance. It includes MAE,
percentage error, and root mean square error (RMSE). For the performance evaluation,
the lower the value, the better the performance in RR estimation. The formula of the
performance evaluation parameter is shown in the equation below.

MAE =
1
N∑N

i=1|xi − x̂i|(breaths/min) (1)

Percentage error =
Estimate RR − Reference RR

Reference RR
× 100% (2)

RMSE =

√
1
N∑N

i=1|xi − x̂i|2(breaths/min) (3)

where xi is a reference value and x̂i is an estimated value of the signal, and N is the total
number of samples in the signal.

3. Results
3.1. RRest Toolbox Algorithm That Utilised Fusion Method

In the 150 combinations that included fusion techniques, the MAE values ranged from
1.95 breaths/min in the best case to 35.06 breaths/min in the worst. The measurements
show a percentage error of 10.89%, an RMSE of 2.82 breaths/min, and a CP2 of 66%.
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These combinations include mean Peak Amplitude as a feature selection technique, breath
detection via combined trough and peak detection as the RR estimation techniques and
temporal smoothing as fusion techniques (Table 1).

Table 1. Top 10 technique combination performance with fusion.

Rank Combination MAE Percentage Error RMSE

1 Peak Amplitude, Trough and Peak Detection, Temporal Fusion 1.95 10.89 2.82

2 Peak Amplitude, Positive Gradient Zero-Crossing Detection, Temporal Fusion 2.03 11.35 2.88

3 Trough and Peak Detection, Smart Fusion, Temporal Fusion 2.04 11.38 2.62

4 Consecutive Trough Mean Value, Trough and Peak Detection, Temporal Fusion 2.04 11.40 2.88

5 Consecutive Trough Mean Value, Positive Gradient Zero-Crossing Detection, Temporal Fusion 2.04 11.43 2.89

6 Peak Amplitude, Positive Gradient Zero-Crossing Detection, Temporal Fusion 2.10 11.77 3.35

7 Peak Amplitude, Trough and Peak Detection, Temporal Fusion 2.13 11.90 3.39

8 Consecutive Trough Mean Value, Detrend and Detect Trough and Peak, Temporal Fusion 2.15 12.00 3.11

9 Consecutive Trough Mean Value, Spikes and Drop Detection, Temporal Fusion 2.16 12.08 2.87

10 Positive Gradient Zero-Crossing Detection, Smart Fusion, Temporal Fusion 2.21 12.37 2.87

MAE—mean absolute error. RMSE—root mean square error.

3.2. Deep Learning Neural Network Optimisation

The hyperparameter for the CNN-LSTM neural network has been optimised. The
final neural network contains a 1-D convolution layer, a max pooling layer, a ReLU layer,
an LSTM layer activated by tanh, a flatten layer, a SoftMax layer and an SGD optimiser
layer. The optimal model uses a pool size of 2, a filter length of 1, a window size of 210
and a 50% train–test split. The performance of the best model has achieved an MAE of
2.02 breaths/min, a percentage error of 11.82% and an RMSE of 2.6 breaths/min.

In Figure 5, the chart shows the variation in loss of validation data over the training
epochs with 210 data points or 7 s as the window size. It is worth noting that the loss starts
to exhibit fluctuations after the 30th epoch, indicating the stabilisation of the model’s per-
formance. To select the most suitable model for testing, consider the model with the lowest
loss over the course of 100 epochs. This rigorous methodology led to the identification of an
optimal model, achieving an impressively low loss of 0.098; this exceptional performance
milestone was reached precisely during the 74th epoch.

3.2.1. Performance of Different Window Sizes

Table 2 illustrates the relationship between window size, performance, and processing
time in the context of RR estimation. Notably, it reveals that as the window size increases,
performance also improves, reaching an optimum at a 210 window size. However, it is
essential to note that this improvement comes at the cost of increased training and test times.
A saturation point is observed in the training process when the window size is extended
to 210 and further to 240. Consequently, the decision was made to halt the window size
expansion at 240, recognising that pushing it beyond this point yielded diminishing returns,
likely due to computational constraints or other limiting factors.

Table 2. Performance of different window sizes.

Window Size MAE Percentage Error (%) Training Time (50%) Testing Time (50%)

120 (4 s) 3.94 23.9 14 h 3 min

150 (5 s) 3.45 20.39 20 h 5 min

180 (6 s) 2.76 16.16 25 h 7 min

210 (7 s) 2.42 14.42 36 h 9 min

240 (8 s) 2.49 15.09 55.5 h 13 min
MAE—mean absolute error.
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The model with the lowest loss over the course of 100 epochs was selected as the
model for testing. Therefore, the optimal model was selected during the 74th epoch of a
210 window size, which achieved a loss of 0.098. This underscores the model’s stability
and its readiness for thorough testing and evaluation.

3.2.2. Performance of Different Train–Test Split

Interestingly, it was observed that splitting the data into a 50% training and 50% testing
configuration produced outcomes comparable to those achieved with an 80% training split.
Consequently, opting for a 50% training split streamlines the training process and reduces
computational demands, making it a practical choice for model optimisation. This fine
calibration of the train–test split parameter is critical for ensuring effective learning and
the feasibility of the model development effort. Table 3 shows different train–test split
performance on 210 window sizes.

Table 3. Performance of different train–test split.

Training Testing

Train:Test MAE Time MAE Time

20:80 1.34 16 h 4.27 3 min

50:50 1.3 36 h 2.42 9 min

80:20 1.47 52 h 2.57 12 min
MAE—mean absolute error.

4. Discussion
4.1. Performance of Classical Algorithm

The initial phase of respiratory rate (RR) signal extraction involves employing either
feature-based or filter-based techniques. Feature-based methods encompass key aspects
like Amplitude Modulation, Frequency Modulation, Baseline Wander, Peak Amplitude,
and Trough Amplitude [23,39]. On the other hand, filter-based techniques encompass
band-pass filtering, filtering using the centred-correntropy function, and wavelet extrac-
tion [23]. Subsequently, RR estimation is performed on the extracted RR signal utilising
both frequency domain techniques (e.g., Fourier transform and auto-regressive spectral
analysis) and time domain techniques (e.g., peak detection and Zero-crossing breath de-
tection). Fusion methods, including smart fusion and temporal fusion, play a crucial role
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in refining the RR signal. Smart fusion adaptively selects from Amplitude Modulation,
Frequency Modulation, and Baseline Wander to combine their features for enhanced RR
signal estimation [23]. Temporal fusion is employed to smooth out the RR signal from the
same individual, ensuring a more stable and reliable respiratory rate estimation.

This study’s comprehensive exploration of respiratory rate estimation using classical
techniques involved testing 274 combinations. Out of these, 150 combinations incorporated
fusion methods, revealing that using fusion techniques significantly enhanced performance.
The evaluation of various classical method combinations allowed for identifying the most
effective technique, shedding light on the optimal approaches for accurate RR estimation.
This systematic assessment underscores the importance of fusion methods in refining clas-
sical techniques and highlights the specific combinations that yield superior performance
in RR estimation. Table 1 shows the top 10 best-performing algorithms with the fusion
method ranked with MAE value. All top 10 algorithms used the time domain techniques
for RR estimation, indicating that the time domain techniques have better performance
than frequency domain techniques in RR estimation with the fusion method in this dataset.

4.2. Performance Analysis in Deep Learning Model

Compared with window size, it is worth noting that this 7 s window size aligns closely
with conventional algorithms, which typically employ a 5 s window. However, it is vital
to recognise that the choice of window size impacts both the model’s training and testing
times significantly. For instance, a 120-sized window necessitates approximately 14 h for
training and a mere 3 min for predictions on 200 min of signal data. In contrast, a 240-sized
window extends the training time considerably, requiring roughly 55.5 h, with predictions
for the same 200 min of signal data taking approximately 13 min. This underscores the
intricate trade-off between window size, training duration, and the responsiveness of the
algorithm in real-time scenarios.

In comparison with the train–test split, the allocation of data into training and testing
sets is a crucial parameter in model development. Striking the right balance is essential, as
having too little data for training can hinder the model’s ability to grasp intricate patterns
and may result in missing out on essential scenarios not adequately represented in the
training set [25]. Conversely, an overly large training dataset can significantly extend the
training time, necessitating substantial computational power and potentially leading to
kernel disconnections in platforms like Visual Studio Code and runtime errors in platforms
like Google Colab.

4.3. Performance Comparison with the State of the Art

Three contemporary algorithms were found to estimate RR. The first algorithm was
the RRWaveNet Model, a novel deep learning technique recently published in the field and
achieved an MAE of 1.62 with a 32 s window size. The second algorithm was the RRest
Toolbox, a powerful tool designed for the comprehensive assessment of classic techniques in
RR estimation. Through 274 different combinations of these techniques, the lowest MAE of
1.95 was attained. Lastly, within the scope of this project, an algorithm was developed that
combines CNN with LSTM networks. This unique model delivered an MAE of 2.42 under
optimal conditions.

However, the testing phase encountered several challenges. As compared to a full
signal set of 424 min applied to the RRest Toolbox, only 217 min of signals were utilised
during the deep learning testing phase due to the fact that a 50:50 train–test split was
applied, which is considerably less than the 424 min used for the RRest Toolbox. Addition-
ally, 12 non-consecutive 1 min signal segments exhibited severe fluctuations, significantly
affecting the model’s performance. Strikingly, upon removing these troublesome signal
segments, a substantial enhancement in the model’s accuracy was observed, where MAE
was reduced from 2.42 to 2.02 with a low window size of 7 s.

To ensure an equitable comparison, identical data preprocessing steps were applied
to all datasets and the classic methods were evaluated using the RRest Toolbox. These
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classical techniques achieved an MAE of 1.90, which held its own in contrast to the out-
comes after eliminating fluctuating signal segments. This observation suggests that deep
learning algorithms harbour untapped potential for further exploration. In summary, the
findings in this study imply that, with meticulous data preprocessing and rigorous signal
quality control, deep learning methods can perform on par with well-established classical
techniques in this specific domain. Expanding the variety of datasets during the training of
deep learning methods has been shown to enhance model performance [25]. The model
exhibits improved capabilities when exposed to a more diverse dataset. Additionally,
having better computational power enables the incorporation of more extensive datasets,
fostering a deeper understanding and refinement of the model. Moreover, using synthetic
data becomes feasible when there is sufficient computational power, contributing to the
augmentation of the training dataset [25] (Table 4).

Table 4. Performance of different algorithms on the BIDMC dataset.

Study Method Window Size
(Seconds) MAE Processing Time

[26] RespNet 16, 32, 64 2.45, 2.07, 2.06 -

[24] RRWaveNet 16, 32, 64 1.87, 1.62, 1.66 -

[25] ResNet 16, 32, 64 2.25, 2.46, 2.16 -

[27] RespWatch 16, 32, 64 1.88, 1.96, 1.66 -

[28] CycleGan 32 1.9 -

This Study RRest Toolbox 5 1.95 2.5 h

This Study RRest Toolbox
(Removed) 5 1.90 1.5 h

This Study CNN-LSTM
Model 7 2.42 36 h, 9 min

(Train, Test)

This Study
CNN-LSTM

Model
(Removed)

7 2.02 36 h, 9 min
(Train, Test)

MAE—mean absolute error. RRest Toolbox (Removed)—Fluctuation signals are removed before applying to
the RRest Toolbox. CNN-LSTM Model (Removed)—Fluctuation signals are removed before applying to the
CNN-LSTM Model.

To assess the model’s performance across diverse datasets, CapnoBase datasets were
employed for testing, maintaining consistent data preprocessing and scaling techniques.
The BIDMC dataset focuses on adults, predominantly adults over 50 years of age, in
intensive care units. In contrast, the CapnoBase dataset encompasses a variety of ages,
including both adults and children undergoing elective surgery and anesthesia. Both
datasets are inclusive of both male and female patients. The CapnoBase dataset, with its
broader representation of patient demographics and medical contexts, provides a more
comprehensive testing ground for model robustness compared to the BIDMC dataset,
which focuses more on a specific age group.

Remarkably, the model demonstrated effective RR estimation with a commendable
MAE of 1.99 breaths/min. Further refinement was achieved by removing segments with
severe signal fluctuations to mitigate artifacts, resulting in an even more impressive MAE
of 1.24 breaths/min. The MAE achieved by this model exceeded the performance of the
state-of-the-art deep learning algorithm, which is 1.59 breaths/min. This model exhibits
several strengths, including its ability to operate with low window size, minimal processing
time, and adaptability to perform well when applied to other datasets, underscoring its
robustness and suitability for various applications (Table 5).
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Table 5. Performance of different algorithms on CapnoBase datasets.

Study Method Window Size
(Seconds) MAE Processing Time

[26] RespNet 16, 32, 64 5.4, 4.86, 4.48 -

[24] RRWaveNet 16, 32, 64 1.79, 1.86, 1.59 -

[25] ResNet 16, 32, 64 2.62, 2.36, 2.29 -

[27] RespWatch 16, 32, 64 1.87, 2.09, 1.82 -

This Study RRest Toolbox 5 0.93 2.5 h

This Study RRest Toolbox
(Removed) 5 0.90 1.5 h

This Study CNN-LSTM
Model 7 1.99 7 min

(Test)

This Study
CNN-LSTM

Model
(Removed)

7 1.24 7 min
(Test)

MAE—mean absolute error. RRest Toolbox (Removed)—fluctuation signals are removed before applying to
the RRest Toolbox. CNN-LSTM Model (Removed)—fluctuation signals are removed before applying to the
CNN-LSTM Model.

When comparing various deep learning algorithms, it becomes evident that window
size and MAE are pivotal parameters signifying algorithm performance, with improve-
ments noted as more studies emerge. While increasing the window size tends to result in a
better MAE, the significance of a smaller window size for rapid responsiveness to changes
in RR cannot be understated. Despite RRWaveNet’s higher MAE, optimal performance
requires a larger window size, only achieving lower MAE values when using 32 and 64 s
windows [24]. In this study, although the MAE is slightly higher than other deep learning
algorithms, the window size is remarkably reduced to only 7 s, providing efficient RR
estimation within a shorter timeframe for faster response. Balancing window size and
MAE poses a significant challenge in algorithm development, often requiring trade-offs.
The current study incrementally improves window size and MAE, recognising the ongoing
opportunity for exploration in uninvestigated neural network layers and architectures with
the potential for enhanced algorithm performance.

4.4. Fluctuation Signal Elimination

Eliminating fluctuation signals is crucial for ensuring the accuracy of respiratory rate
(RR) estimation, as motion artifacts, light disruptions, and noise can adversely affect signal
quality, leading to the emergence of fluctuation signals. In the BIDMC datasets, 12 one-
minute signal segments with severe fluctuation signals were identified and removed due
to their potential to introduce extremely large errors. Such errors could result in a reported
RR of 30 breaths/min, while the reference RR was only 14 breaths/min. To attain a more
precise estimation, it is imperative to eliminate fluctuation signals that may arise during
instances of motion artifacts, light disruptions, or noise, thereby enhancing the overall
accuracy of RR measurements. Figure 6 shows the comparison between the normal signal
and the fluctuation signal.

4.5. Clinical Application, Limitations, and Future Directions
4.5.1. Clinical Application

The clinical application of RR estimation from PPG signals, as demonstrated by the
findings in this study, holds promising implications for patient monitoring in various
medical conditions [40]. A single-probe oximeter recording PPG signals proves to be an
efficient tool for long-term patient condition monitoring, offering a distinct advantage
over ECG, which typically requires multiple probes. The PPG-based device’s simplicity,
portability, and user-friendly nature make it a practical choice in clinical settings.
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In a clinical setting, RR estimation burdens patients and healthcare providers, often
requiring multiple probes from ECG or manual recording and monitoring, particularly
in ambulatory services. However, implementing an accurate, fast-response, and low-
processing requirement RR estimation algorithm into a bedside monitor and a simple
oximeter offers a transformative solution [1]. With this approach, all RR data can be easily
recorded and monitored, streamlining the process and significantly reducing the time and
effort involved [1]. Such an algorithm enables the swift identification of abnormal RR,
facilitating prompt responses and interventions when needed, ultimately improving the
efficiency and effectiveness of RR monitoring in clinical scenarios.

For chronic pulmonary diseases such as Chronic Obstructive Pulmonary Disease
and obstructive sleep apnea, continuous and reliable RR monitoring is crucial for disease
management and early detection of exacerbation. In these cases, the low window size
and real-time responsiveness of the deep learning model in the study can significantly
contribute to effective patient care. In acute pulmonary diseases like acute respiratory
distress syndrome or pneumonia, rapid and accurate monitoring of RR is vital for timely
intervention. The fast and reliable response the PPG-based device provides with the
developed algorithm becomes particularly critical in such acute scenarios, ensuring the
prompt detection of RR changes.

4.5.2. Limitations

In this study, limitations exist in the domain of RR estimation from PPG signals, with
computational constraints being a notable challenge. Model training and development
are hindered by limitations in computational power, often resulting in interruptions such
as kernel disconnections that halt the training process. With improved computational
capabilities, model training could be more robust and efficient, allowing for the inclusion
of more extensive datasets and achieving better performance with reduced errors.

Another limitation arises from the availability of open-source datasets, which may
not be sufficiently comprehensive to fully develop and refine the algorithm. The need
for a wider variety of datasets is evident, as a more diverse range of data is essential for
enhancing the algorithm’s generalisation and overall accuracy. In essence, overcoming
these limitations hinges on advancements in computational resources and expanding
diverse datasets to foster the continual improvement and applicability of respiratory rate
estimation algorithms based on PPG signals.

4.5.3. Future Directions

Guiding the future progression of the project for respiratory rate estimation based on
PPG signals involves strategic considerations. Addressing computational constraints by
exploring enhanced resources or refined algorithms is a pivotal focus for advancing model
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training. This may encompass utilising advanced hardware, cloud-based computing, or im-
plementing streamlined parallel processing methods to surmount the existing limitations.

Future advancements in artifact identification and reconstruction are essential for
refining signal quality and optimising RR estimation performance. To address the impact of
artifacts on signal accuracy, innovative approaches may involve advanced signal processing
and dedicated deep learning methods for effective artifact detection and reconstruction.
Developing robust algorithms capable of distinguishing PPG signals from artifacts and
efficient reconstruction techniques is critical for enhancing RR estimation.

Equally essential is the expansion of the dataset repository. Establishing partnerships
with healthcare institutions or gaining access to more diverse datasets is imperative for
comprehensive algorithmic development. This approach fortifies the model’s resilience
and adaptability, ensuring its efficacy across diverse patient profiles and health conditions.

Furthermore, continual enhancement of the algorithm, particularly in terms of real-
time responsiveness and reduced window size, is critical for practical applicability. Integrat-
ing more sophisticated signal processing techniques or exploring emerging technologies
can provide avenues to further optimise the algorithm’s efficacy.

5. Conclusions

In conclusion, the project’s goal of creating a reliable algorithm for accurately estimating
RRs from PPG was achieved through a series of well-defined objectives. These objectives
encompassed fine-tuning algorithmic parameters, validating accuracy using diverse PPG
datasets collected under varying physiological and environmental conditions, enhancing
robustness against disturbances such as noise and motion artifacts, and optimising real-time
processing to ensure swift and precise RR predictions. This project’s results are of utmost
significance for healthcare and monitoring applications, where the accurate estimation of RRs
is pivotal in patient care and assessment. In evaluating classical methods, the performance
was accurately assessed with 274 different technique combinations. The optimal algorithm
emerged, featuring mean Peak Amplitude as the chosen feature selection method, combined
trough and peak detection for RR estimation, and temporal smoothing as the fusion technique.
Remarkably, this configuration achieved an impressive MAE of 1.9.

A CNN + LSTM neural network was also successfully developed, yielding a slightly
higher MAE of 2.02. The model can also be applied to other datasets. The model has been
applied to CapnoBase datasets and achieved an MAE of 1.24. This verified the model
performance on new PPG raw data. These results underline the comprehensive nature of
our project and its ability to excel in both classical and advanced techniques, reinforcing
the significance of our findings for healthcare and monitoring applications where precise
RR estimation is paramount.

Author Contributions: Conceptualization, B.-H.K. and C.-H.G.; Methodology, W.J.C. and C.-H.G.;
Software, Y.K.T.; Validation, W.Y.L. and C.-H.G.; Formal analysis, W.J.C. and Y.K.T.; Investigation,
W.J.C., S.D. and H.L.; Resources, B.-H.K., W.Y.L., H.L. and C.-H.G.; Data curation, W.J.C., W.Y.L. and
S.D.; Writing—original draft, W.J.C.; Writing—review & editing, B.-H.K., W.Y.L., Y.K.T., S.D., H.L. and
C.-H.G.; Visualization, W.J.C. and W.Y.L.; Supervision, B.-H.K. and C.-H.G.; Project administration,
C.-H.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Higher Education Malaysia under the Funda-
mental Research Grant Scheme (No. FRGS/1/2023/SKK05/UTAR/02/1 to CHG).

Institutional Review Board Statement: No Institutional Review Board approval is needed for this
study. All data are obtained from online public databases.

Informed Consent Statement: No specific informed consent statement are obtained, but all data
including informed consent should be conducted from the data source.

Data Availability Statement: Publicly available datasets were analyzed in this study.

Acknowledgments: The authors have full appreciation for the availability of public datasets from
BIDMC PPG and Respiration Dataset and CapnoBase Dataset.



Diagnostics 2024, 14, 284 16 of 17

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Liu, H.; Allen, J.; Zheng, D.; Chen, F. Recent development of respiratory rate measurement technologies. Physiol. Meas. 2019, 40,

07TR01. [CrossRef]
2. Meredith, D.J.; Clifton, D.; Charlton, P.; Brooks, J.; Pugh, C.W.; Tarassenko, L. Photoplethysmographic derivation of respiratory

rate: A review of relevant physiology. J. Med. Eng. Technol. 2011, 36, 1–7. [CrossRef]
3. Baker, S.; Xiang, W.; Atkinson, I. Determining respiratory rate from photoplethysmogram and electrocardiogram signals using

respiratory quality indices and neural networks. PLoS ONE 2021, 16, e0249843. [CrossRef]
4. Stankoski, S.; Kiprijanovska, I.; Mavridou, I.; Nduka, C.; Gjoreski, H.; Gjoreski, M. Breathing Rate Estimation from Head-Worn

Photoplethysmography Sensor Data Using Machine Learning. Sensors 2022, 22, 2079. [CrossRef]
5. Zhao, D.; Sun, Y.; Wan, S.; Wang, F. SFST: A robust framework for heart rate monitoring from photoplethysmography signals

during physical activities. Biomed. Signal Process. Control 2017, 33, 316–324. [CrossRef]
6. Shuzan, M.N.I.; Chowdhury, M.H.; Chowdhury, M.E.H.; Murugappan, M.; Hoque Bhuiyan, E.; Arslane Ayari, M.; Khandakar,

A. Machine Learning-Based Respiration Rate and Blood Oxygen Saturation Estimation Using Photoplethysmogram Signals.
Bioengineering 2023, 10, 167. [CrossRef]

7. Hartmann, V.; Liu, H.; Chen, F.; Hong, W.; Hughes, S.; Zheng, D. Toward Accurate Extraction of Respiratory Frequency From the
Photoplethysmogram: Effect of Measurement Site. Front. Physiol. 2019, 10, 732. [CrossRef]

8. Khalid, S.G.; Ali, S.M.; Liu, H.; Qurashi, A.G.; Ali, U. Photoplethysmography temporal marker-based machine learning classifier
for anesthesia drug detection. Med. Biol. Eng. Comput. 2022, 60, 3057–3068. [CrossRef] [PubMed]

9. Gajbhiye, P.; Tripathy, R.K.; Bhattacharyya, A.; Pachori, R.B. Novel Approaches for the Removal of Motion Artifact From EEG
Recordings. IEEE Sens. J. 2019, 19, 10600–10608. [CrossRef]

10. Iqbal, T.; Elahi, A.; Ganly, S.; Wijns, W.; Shahzad, A. Photoplethysmography-Based Respiratory Rate Estimation Algorithm for
Health Monitoring Applications. J. Med. Biol. Eng. 2022, 42, 242–252. [CrossRef] [PubMed]

11. Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter Respiratory Rate Estimation From the Photoplethysmo-
gram. IEEE Trans. Biomed. Eng. 2013, 60, 1946–1953. [CrossRef]

12. Icazatti, F.; Dell’Aquila, C.; Leber, E.L. Design and validation of a respiratory rate estimation algorithm based on photoplethys-
mography (PPG) signal. In Proceedings of the 2021 XIX Workshop on Information Processing and Control (RPIC), San Juan,
Argentina, 3–5 November 2021. [CrossRef]

13. Tun, H.M. Photoplethysmography (PPG) Scheming System Based on Finite Impulse Response (FIR) Filter Design in Biomedical
Applications. Int. J. Electr. Electron. Eng. Telecommun. 2021, 10, 272–282. [CrossRef]

14. Khreis, S.; Ge, D.; Rahman, H.A.; Carrault, G. Breathing Rate Estimation Using Kalman Smoother With Electrocardiogram and
Photoplethysmogram. IEEE Trans. Biomed. Eng. 2020, 67, 893–904. [CrossRef] [PubMed]

15. Kim, H.; Kim, J.-Y.; Im, C.-H. Fast and Robust Real-Time Estimation of Respiratory Rate from Photoplethysmography. Sensors
2016, 16, 1494. [CrossRef]

16. Park, C.; Lee, B. Real-time estimation of respiratory rate from a photoplethysmogram using an adaptive lattice notch filter.
BioMedical Eng. OnLine 2014, 13, 170. [CrossRef] [PubMed]

17. Chon, K.H.; Dash, S.; Kihwan, J. Estimation of Respiratory Rate From Photoplethysmogram Data Using Time–Frequency Spectral
Estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [CrossRef] [PubMed]

18. Dash, S.; Shelley, K.H.; Silverman, D.G.; Chon, K.H. Estimation of Respiratory Rate From ECG, Photoplethysmogram, and
Piezoelectric Pulse Transducer Signals: A Comparative Study of Time–Frequency Methods. IEEE Trans. Biomed. Eng. 2010, 57,
1099–1107. [CrossRef] [PubMed]

19. Lin, Y.-D.; Chien, Y.-H.; Chen, Y.-S. Wavelet-based embedded algorithm for respiratory rate estimation from PPG signal. Biomed.
Signal Process. Control 2017, 36, 138–145. [CrossRef]

20. Pimentel, M.A.F.; Johnson, A.E.W.; Charlton, P.H.; Birrenkott, D.; Watkinson, P.J.; Tarassenko, L.; Clifton, D.A. Toward a Robust
Estimation of Respiratory Rate From Pulse Oximeters. IEEE Trans. Biomed. Eng. 2017, 64, 1914–1923. [CrossRef]

21. Charlton, P.H.; Celka, P.; Farukh, B.; Chowienczyk, P.; Alastruey, J. Assessing mental stress from the photoplethysmogram: A
numerical study. Physiol. Meas. 2018, 39, 054001. [CrossRef]

22. Yang, H.; Minteer, S.D.; He, D.; Che, X.; Qin, X. Respiratory Rate Estimation from the Photoplethysmogram Combining Multiple
Respiratory-induced Variations Based on SQI. In Proceedings of the 2019 IEEE International Conference on Mechatronics and
Automation (ICMA), Tianjin, China, 4–7 August 2019. [CrossRef]

23. Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.F.; Johnson, A.E.W.; Alastruey, J.; Tarassenko, L.; Watkinson, P.J.; Beale,
R.; Clifton, D.A. Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review. IEEE Rev. Biomed.
Eng. 2021, 11, 2–20. [CrossRef]

24. Osathitporn, P.; Sawadwuthikul, G.; Thuwajit, P.; Ueafuea, K.; Mateepithaktham, T.; Kunaseth, N.; Choksatchawathi, T.;
Punyabukkana, P.; Mignot, E.; Wilaiprasitporn, T. RRWaveNet: A Compact End-to-End Multiscale Residual CNN for Robust PPG
Respiratory Rate Estimation. IEEE Internet Things J. 2023, 10, 15943–15952. [CrossRef]

https://doi.org/10.1088/1361-6579/ab299e
https://doi.org/10.3109/03091902.2011.638965
https://doi.org/10.1371/journal.pone.0249843
https://doi.org/10.3390/s22062079
https://doi.org/10.1016/j.bspc.2016.12.005
https://doi.org/10.3390/bioengineering10020167
https://doi.org/10.3389/fphys.2019.00732
https://doi.org/10.1007/s11517-022-02658-1
https://www.ncbi.nlm.nih.gov/pubmed/36063352
https://doi.org/10.1109/JSEN.2019.2931727
https://doi.org/10.1007/s40846-022-00700-z
https://www.ncbi.nlm.nih.gov/pubmed/35535218
https://doi.org/10.1109/TBME.2013.2246160
https://doi.org/10.1109/rpic53795.2021.9648499
https://doi.org/10.18178/ijeetc.10.4.272-282
https://doi.org/10.1109/TBME.2019.2923448
https://www.ncbi.nlm.nih.gov/pubmed/31217092
https://doi.org/10.3390/s16091494
https://doi.org/10.1186/1475-925X-13-170
https://www.ncbi.nlm.nih.gov/pubmed/25518918
https://doi.org/10.1109/TBME.2009.2019766
https://www.ncbi.nlm.nih.gov/pubmed/19369147
https://doi.org/10.1109/TBME.2009.2038226
https://www.ncbi.nlm.nih.gov/pubmed/20659821
https://doi.org/10.1016/j.bspc.2017.03.009
https://doi.org/10.1109/TBME.2016.2613124
https://doi.org/10.1088/1361-6579/aabe6a
https://doi.org/10.1109/icma.2019.8816323
https://doi.org/10.1109/RBME.2017.2763681
https://doi.org/10.1109/JIOT.2023.3265980


Diagnostics 2024, 14, 284 17 of 17

25. Bian, D.; Mehta, P.; Selvaraj, N. Respiratory Rate Estimation using PPG: A Deep Learning Approach. In Proceedings of the 2020
42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada,
20–24 July 2020. [CrossRef]

26. Ravichandran, V.; Murugesan, B.; Balakarthikeyan, V.; Ram, K.; Preejith, S.; Joseph, J.; Sivaprakasam, M. RespNet: A deep learning
model for extraction of respiration from photoplethysmogram. In Proceedings of the 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 5556–5559. [CrossRef]

27. Dai, R.; Lu, C.; Avidan, M.; Kannampallil, T. RespWatch. In Proceedings of the International Conference on Internet-Of-Things
Design and Implementation, Charlottesvle, VA, USA, 18–21 May 2021. [CrossRef]

28. Aqajari, S.A.H.; Cao, R.; Zargari, A.H.A.; Rahmani, A.M. An End-to-End and Accurate PPG-based Respiratory Rate Estimation
Approach Using Cycle Generative Adversarial Networks. In Proceedings of the 2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021. [CrossRef]

29. Lampier, L.C.; Coelho, Y.L.; Caldeira, E.M.O.; Bastos-Filho, T.F. A Deep Learning Approach to Estimate the Respiratory Rate from
Photoplethysmogram. Ingenius 2022, 27, 96–104. [CrossRef]

30. Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.;
Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet. Circulation 2000, 101, e215–e220. [CrossRef] [PubMed]

31. physionet.org., n.d. BIDMC PPG and Respiration Dataset v1.0.0. Available online: https://physionet.org/content/bidmc/1.0.0/
(accessed on 30 April 2023).

32. Peterhcharlton. A Toolbox of Respiratory Rate Algorithms, GitHub. 2017. Available online: https://github.com/peterhcharlton/
RRest/wiki (accessed on 25 April 2023).

33. Karlen, W. CapnoBase IEEE TBME Respiratory Rate Benchmark. Sch. Portal Dataverse 2021. [CrossRef]
34. Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Alastruey, J.; Clifton, D.A.; Beale, R.; Watkinson, P.J. Extraction of respiratory signals

from the electrocardiogram and photoplethysmogram: Technical and physiological determinants. Physiol. Meas. 2017, 38, 669–690.
[CrossRef]

35. Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Clifton, D.A.; Beale, R.; Watkinson, P.J. An assessment of algorithms to estimate
respiratory rate from the electrocardiogram and photoplethysmogram. Physiol. Meas. 2016, 37, 610–626. [CrossRef]

36. Charlton, P.H.; Bonnici, T.; Tarassenko, L.; Clifton, D.A.; Beale, R.; Watkinson, P.J.; Alastruey, J. An impedance pneumography
signal quality index: Design, assessment and application to respiratory rate monitoring. Biomed. Signal Process. Control 2021, 65,
102339. [CrossRef]

37. Karlen, W.; Ansermino, J.M.; Dumont, G.A. Adaptive pulse segmentation and artifact detection in photoplethysmography for
mobile applications. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, San Diego, CA, USA, 28 August–1 September 2012. [CrossRef]

38. GeeksforGeeks. Cubic Spline Interpolation. 2021. Available online: https://www.geeksforgeeks.org/cubic-spline-interpolation/
(accessed on 28 April 2023).

39. Liu, H.; Chen, F.; Hartmann, V.; Khalid, S.G.; Hughes, S.; Zheng, D. Comparison of different modulations of photoplethysmogra-
phy in extracting respiratory rate: From a physiological perspective. Physiol. Meas. 2020, 41, 094001. [CrossRef]

40. Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and
Exercise. Sensors 2020, 20, 6396. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/EMBC44109.2020.9176231
https://doi.org/10.1109/EMBC.2019.8856301
https://doi.org/10.1145/3450268.3453531
https://doi.org/10.1109/embc46164.2021.9629984
https://doi.org/10.17163/ings.n27.2022.09
https://doi.org/10.1161/01.CIR.101.23.e215
https://www.ncbi.nlm.nih.gov/pubmed/10851218
https://physionet.org/content/bidmc/1.0.0/
https://github.com/peterhcharlton/RRest/wiki
https://github.com/peterhcharlton/RRest/wiki
https://doi.org/10.5683/SP2/NLB8IT
https://doi.org/10.1088/1361-6579/aa670e
https://doi.org/10.1088/0967-3334/37/4/610
https://doi.org/10.1016/j.bspc.2020.102339
https://doi.org/10.1109/embc.2012.6346628
https://www.geeksforgeeks.org/cubic-spline-interpolation/
https://doi.org/10.1088/1361-6579/abaaf0
https://doi.org/10.3390/s20216396

	Introduction 
	Materials and Methods 
	Source of Data 
	BIDMC Dataset 
	CapnoBase Dataset 

	Classical Respiratory Rate Estimation Algorithm 
	Respiratory Rate Estimation Toolbox 
	Respiratory Signal Extraction 
	Respiratory Rate Estimation 

	Neural Network for Respiratory Rate Estimation 
	Deep Learning Algorithm 
	Deep Learning Neural Network Architecture 
	Deep Learning Neural Network Optimisation Parameters 

	Performance Evaluation 

	Results 
	RRest Toolbox Algorithm That Utilised Fusion Method 
	Deep Learning Neural Network Optimisation 
	Performance of Different Window Sizes 
	Performance of Different Train–Test Split 


	Discussion 
	Performance of Classical Algorithm 
	Performance Analysis in Deep Learning Model 
	Performance Comparison with the State of the Art 
	Fluctuation Signal Elimination 
	Clinical Application, Limitations, and Future Directions 
	Clinical Application 
	Limitations 
	Future Directions 


	Conclusions 
	References

