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Abstract: Malaria continues to be a major barrier to socioeconomic development in Africa, where its
death rate is over 90%. The predictive power of many machine learning models—such as multi-linear
regression (MLR), artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFISs)
and Random Forest classifier—is investigated in this study using data from 2207 patients. The dataset
was reduced from the initial dataset of thirty-two criteria samples to fifteen. Assessment measures
such as the root mean square error (RMSE), mean square error (MSE), coefficient of determination
(R2), and adjusted correlation coefficient R were used. ANFIS, Random Forest, MLR, and ANN are
among the models. After training, ANN outperforms ANFIS (97%), MLR (92%), and Random Forest
(68%) with the greatest R (99%) and R2 (99%), respectively. The testing stage confirms the superiority
of ANN. The paper also presents a statistical forecasting sheet with few errors and excellent accuracy
for MLR models. When the models are assessed with Random Forest, the latter shows the least
results, thus broadening the modeling techniques and offering significant insights into the prediction
of malaria and healthcare decision making. The outcomes of using machine learning models for
precise and efficient illness prediction add to an expanding body of knowledge, assisting healthcare
systems in making better decisions and allocating resources more effectively.

Keywords: adaptive neuro-fuzzy inference system (ANFIS); artificial neural network (ANN); statistical
prediction; malaria parasite; machine learning models; multiple linear regression (MLR)

1. Introduction

Malaria, also referred to as “fivre des marais” in French, is a tropical infectious illness
transmitted by the parasite Plasmodium [1]. As reported by the World Health Organization
(WHO), the annual mortality rate of malaria is roughly 435,000 globally, with sub-Saharan
Africa bearing the brunt of the toll [2]. Malaria is particularly dangerous for children
under the age of five, and it is responsible for a considerable amount of child mortality in
Africa. Approximately 247 million infections caused by malaria were recorded in 2022 [3].
Mosquitoes (female anopheles) disseminate this disease through biting. The symptoms of
malaria often develop 7–30 days following the infected mosquito bite and might include a
high body temperature, a headache, muscular discomfort, and flu-like symptoms. Malaria
can cause consequences such as anemia, renal failure, dyspnea, and cerebral malaria (a
kind of severe malaria that affects the brain) in severe instances [4].

Malaria is among the most common infections in sub-Saharan regions. It thrives in
subtropical areas, threatening public health. In other words, where health surveillance
facilities are few, the impact is significant [5]. Therefore, an appropriate malaria forecasting
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framework is essential for lowering the detrimental effects of malaria prevalence in sub-
tropical regions [6]. There have been increasing reports of the impacts of global warming,
such as the increase and proliferation of insects that spread infection to people [7]. Nu-
merous initiatives have been undertaken in recent years by governmental and nonprofit
groups to completely eradicate malaria with the WHO being a prime example. Several
studies have been conducted to either understand the disease from the perspective of the
Plasmodium mosquito or to develop automated detection technologies [2]. In recent times,
the epidemiology of malaria is revealed to be evolving. This is due to the overall number of
traveling-related epidemics dropping concurrently, with the reduction in human activities
experienced globally during the pandemic as a result of travel restrictions. In spite of this,
multiple studies throughout the pandemic years warned of a potential rise for serious
malaria among travelers coming from areas where malaria is prevalent [8].

Table 1 lists the nations most affected by malaria by the number of cases of malaria
they have experienced for 2021 with Nigeria (94,000,000) as the highest and Tanzania
(3,000,000) as the least. These numbers emphasize the serious impact malaria has on these
nations and the urgent need for comprehensive malaria prevention and control methods.
Additionally, the WHO predicted that 3.3 million malaria incidents would be reported
annually worldwide [9]. A further 125 million pregnant women globally run the danger of
contracting this disease annually. Up to 200,000 infant fatalities are attributed to maternal
malaria each year in sub-Saharan Africa alone. Each year, there are around 10,000 cases of
malaria in western Europe compared to 1300–1500 incidents in the United States [10].

Table 1. Epidemiology of malaria parasite [9].

Rank Country Cases (Estimated)

1 Nigeria 94,000,000

2 Democratic Republic of the Congo 16,000,000

3 Mozambique 10,400,000

4 India 6,500,000

5 Uganda 5,700,000

6 Burkina Faso 4,300,000

7 Niger 3,800,000

8 Malawi 3,400,000

9 Mali 3,100,000

10 Tanzania 3,000,000

Major decisions are influenced by forecasting. In order to plan and evaluate disease
control, many strategies are employed to estimate future outcomes based on previous
data. Forecasts provide information that consumers may use before making decisions
or performing activities that may have an impact on the path of an epidemic. To predict
epidemics, both linear and nonlinear models are utilized [11].

The research “A Review of Epidemic Forecasting Using Artificial Neural Networks”
by Datilo et al. highlights the value of precision disease forecasts and suitable methods for
making forecasts. They carried out a thorough analysis evaluating artificial neural networks
(ANNs) to different forecasting techniques. The authors discovered that using hybrid
models—ANNs combined with traditional methodologies or meta-heuristics, conversion
strategies, and technology platforms—significantly improves the training and generalized
capacities of ANNs in disease forecasting. The study finds that choosing the appropriate
forecasting techniques is critical and suggests using ANN hybrids to make more precise
and reliable forecasts about the scale of an outbreak [12]. Machine learning models are
also adopted in other studies to predict, describe and diagnose medical conditions such as
COVID-19 [13].
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Multi-linear regression using GIS and remote sensing was used in mapping the spread
of malaria in the Varanasi district of India. In the study conducted by [14], malaria cases
reported in the research region served as the dependent variable, and multiple time-
based groupings of average temperature data served as the independent factors. In the
methodology, to create a malaria susceptibility map for both qualitative and quantitative
variables, sampling of 50 × 50 was transferred from GIS to statistical software. However,
in [14], the authors adopted both the GIS and statistical methods in their analysis.

The advanced neuro-fuzzy inference system was also adopted in a study by [15] for
the purpose of diagnosing malaria. Oladele et al. created the Coactive Neuro-Fuzzy Expert
System. The tool boosts productivity and accuracy by combining fuzzy logic with neural
networks. Oral interviews were used to record the expertise of medical professionals,
which was then incorporated into the system’s knowledge base. Microsoft SQL Server 2012
and Microsoft Visual C# (C Sharp) were used to implement the software. Patients were
given questionnaires to complete, which were then filled out by practitioners to record
symptoms. The study showed how the neuro-fuzzy approach might be used in practice
and concluded that DIAGMAL is a reliable malaria diagnosis tool [15].

Ozsahin et al. used peripheral blood smears to test deep learning frameworks for
malaria parasite detection. Their target was to develop an accurate deep learning model,
identify the optimal blood smear type, and compare the performance of their model to other
transfer-learning methodologies. While using thick smears, their proposed convolutional
neural network demonstrated accuracy, precision, and sensitivity of 96.97%, 97.00%, and
97.00%, respectively. This study underlines the need to select the appropriate smear type
for improved accuracy and rapid detection in malaria-endemic locations [16].

Yadav et al. used clinical data to conduct a study on machine learning-based malaria
prediction. The study intended to investigate and validate the efficacy of multiple machine-
learning algorithms in predicting malaria based on clinical signs and symptoms. The
study looked at two Senegal databases of malaria patients. The results demonstrated
that Random Forest, Support Vector Machine with Gaussian Kernel, and artificial neural
networks delivered promising and accurate results. On both datasets, these algorithms
outperformed the Rapid Diagnostic Test, with accuracy, recall, and F1 scores of at least 92%,
85%, and 89%, respectively. Yadav et al. in their study demonstrate that machine learning
algorithms can consistently detect the existence or the absence of malaria according to
medical information [17].

Furthermore, choosing the best prediction model is critical for increased accuracy.
Despite the fact that prior research has successfully used machine learning algorithms
to reliably forecast other diseases, none have revealed the best suited model for malaria
parasite prediction using the same models. The goal of this research is to develop a machine
learning framework capable of effectively predicting malaria parasites based on laboratory
symptoms. In addition, this study intends to determine which of the models was best suited
for reliably predicting malaria parasites. Finally, we want to assess the performance of our
proposed model using widely used evaluation measures such as R2, R, RMSE, and MSE.

2. Materials and Methods
2.1. Dataset

The original data were obtained from Kaggle.com as hematological data from 2207 pa-
tients in Ghana, as reported by Morang et al. [18]. The original dataset includes 32 criteria
samples of 2207 cases. The criteria samples were reduced to 20. The dataset is characterized
by 20 independent variables, which were subsequently reduced to 14 as the new variables
to avoid overfitting. The variables include Fever Symptom, Temperature, Rapid Diagnostic
Test (RDT), White Blood Cell Count (WBC), Red Blood Cell Count (RBC), Hemoglobin
Level, Hematocrit, Mean Cell Volume, Mean Corp Hb, Mean Cell Hb Conc, Platelet Count,
Platelet Distribution Width, Neutrophils Percent, Lymphocytes Percent, Mean Platelet
Volume, Mixed Cells Percent, Neutrophils Count, Lymphocytes Count, Mixed Cells Count,
RBC Distribution Width Percent, and Microscopy. The dependent variable or output is
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the microscopy, which is similar to the method implored by [19] in their study. Table 2
summarizes the details of the criteria and their values in binary 0 and 1. The study contains
fifteen labeled features that are independent and one that is dependent.

Table 2. Parameters and values.

Features Data Type Value (Binary)

Fever Symptom Independent 0 (negative) or 1 (positive)

Temperature Independent

Rapid Diagnostic Test (RDT) Independent 0 (negative) or 1 (positive)

White Blood Cell Count (WBC), Independent 0 (negative) or 1 (positive)

Red Blood Cell Count (RBC) Independent 0 (negative) or 1 (positive)

Hemoglobin Level Independent 0 (negative) or 1 (positive)

Hematocrit Independent 0 (negative) or 1 (positive)

Mean Cell Volume Independent 0 (negative) or 1 (positive)

Mean Corp Hb Independent 0 (negative) or 1 (positive)

Mean Cell Hb Conc Independent 0 (negative) or 1 (positive)

Platelet Count Independent 0 (negative) or 1 (positive)

Platelet Distribution Width Independent 0 (negative) or 1 (positive)

Neutrophils Percent Independent 0 (negative) or 1 (positive)

Lymphocytes Percent Independent 0 (negative) or 1 (positive)

Mean Platelet Volume Independent 0 (negative) or 1 (positive)

Mixed Cells Percent Independent 0 (negative) or 1 (positive)

Neutrophils Count Independent 0 (negative) or 1 (positive)

Lymphocytes Count Independent 0 (negative) or 1 (positive)

Mixed Cells Count Independent 0 (negative) or 1 (positive)

RBC Distribution Width Percent Independent 0 (negative) or 1 (positive)

Microscopy Dependent 0 (negative) or 1 (positive)

2.2. Data Preprocessing

Data preprocessing is an imperative and typical initial step in any machine-learning
modeling technique [20]. It allows raw data to be suitably prepared in network-acceptable
forms. These procedures include data cleansing, which includes the identification and
removal of unnecessary variables, as well as the normalization of the dataset [21]. In
this study, the dataset was cleaned by identifying and removing unnecessary variables
and columns, similar to [22,23]. The missing values were filled in by finding the column’s
average value. The categorical dataset was changed to a numerical dataset, respectively [24].
The equation was applied as below:

y = 0.05 + 0.95 × (x − xmin)/(xmax − xmin) (1)

where x is labeled as measured data, and xmin and xmax are the minimum and maximum
points, respectively.

2.3. Machine Learning Prediction Models
2.3.1. Advanced Neuro-Fuzzy Inference System (ANFIS)

The power of artificial neural networks and fuzzy reasoning are combined in a hybrid
machine learning model known as adaptive neuro-fuzzy inference system (ANFIS). A
learning method is used to adapt the fuzzy inference system, allowing it to detect complex
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relationships and generate accurate predictions [22]. ANFIS has the ability to recognize
problems and locate solutions as they develop. Its predecessors were the feed-forward and
multilayer adaptive networks. Input variables as well as input and output variables and the
fuzzy rule collectively make up the ANFIS fuzzy rule, which is based on Takagi–Sugeno–
Kan inferences and incorporates both independent and dependent variables [25]. The
database of fuzzy includes both fuzzing and de-fuzzing. The information is transformed
into fuzzified values via fuzzy set theory utilizing membership function parameters (MF).
The MFs of the nodes played a crucial part in the modeling of the correlation involving
the two parameters. Its constituent functions are triangular, trapezoid, and Gaussian.
Equations (1) and (2) are developed based on the Takagi–Sugeno–Kan inferences.

Rule No.1 : if µ (x) is A1 and µ (y) is B1 then f1 = p1x + q1y + r1 (2)

Rule No.2 : if µ (x) is A2 and µ (y) is B2 then f2 = p2x + q2y + r2 (3)

The variables A1, B1, and B2 are the membership functions for x and y, whereas the
inputs p1, q1, r1, and p2, q2, r2 provide the data for the output function. The ANFIS’s
formulation and structure are compatible with a 5-tiered neural network design [26].

2.3.2. Artificial Neural Network (ANN)

There are an overall total of fifteen layers that make up the replication type of ANN
used in this study: fourteen input layers, fifteen hidden layers, as well as one output layer.
Supervised training was used in the procedure, which used 70% of the total sample for
training and thirty percent for testing. The target layer used a linear transfer function, and
the hidden layer used a sigmoid activation function. Six epochs of training were conducted
to show the neural network’s architecture and training parameters for successful malaria
prediction, as shown in Table 3.

Table 3. ANN modeling summary.

ANN Architecture

Type Feed-forward
back-propagation

Number of layers 15
Input layers 14

Hidden layers 15
Output layers 1

Training parameters Training method Supervised
Training algorithm Malaria data

Training data 70% of all the data
Activation function In hidden layer Sigmoid

In output layer Linear transfer function
Epochs 6

Testing data Amount of data 30% of all data

Artificial neural networks are machine learning algorithms that resemble the human
brain in both physical and functional aspects. They link the layers of “neurons” (cells) that
they employ to process and convey info. To assess whether a neuron should be triggered,
the method uses a simple computation based on data from other neurons. The result of
this computation is then passed to the neurons in the next layer [27]. The design of the
three-layer feed-forward neural network used in this investigation is shown in Figure 1.
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Figure 1. Architecture of ANN.

Neural networks normally only require a limited fraction of conventional mathemati-
cal operations; the formula for an artificial neural network will alter depending on the type
of network employed to carry out a certain job. One of the most basic processes in neural
networks is the dot product, which measures how similar two vectors are to one another.
The following is the formula for the dot product of two vectors, x and w:

dot (x, w) = ∑xi* wi (4)

where the total is computed over all members of the vectors, and xi and wi are the i-th and
i-th elements of the x- and w-vectors, respectively [28].

Another common method applied to neural networks is the activation function, which
is used to measure the results of the dot product in order to identify the output of a neuron.
There are also numerous other activation functions that may be utilized, including the
function of the sigmoid, the function of tanh, and the ReLU functions. The particular
formula for the activation function will vary depending on the function being utilized. In
this case, the sigmoid function can be expressed as

f(x) = 1/(1 + ex) (5)

which represents natural logarithm’s base (e) [28].

2.3.3. Multiple Linear Regression (MLR)

The objective of MLR, a statistical approach, is to model the linear connection between
a dependent variable and a group of independent factors. Given the values of the inde-
pendent variables, the value of the dependent variable may be predicted. The dependent
variable is represented in an MLR model as a linear mixture of the independent variables
with an error feature that is thought to be random. Model parameters, or the coefficients of
the independent variables, are computed using an optimization method like least squares.
An MLR model can be represented generally as follows: Assuming y is the variable of
dependence, x1, x2, ..., xn are the variables of independence, b0, b1, ..., bn are the model
criteria, and e is the random error term, the formula is:

y = b0 + b1x1 + b2x2 + ... + bnxn + en (6)

MLR only uses one layer; it does not utilize neurons or intricate layer structures.
The coefficients that are applied to each input parameter in MLR to determine how the
parameter affects the output constitute the essence of the rules. The approach works for
situations when the interaction among parameters is primarily linear, since it predicts
the output by assuming a linear arrangement of inputs. As opposed to fuzzy logic or
fuzzy inference systems, which use membership functions, MLR uses statistical concepts to
estimate the coefficients and generate predictions depending on the inputs [29].
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2.3.4. Random Forest

The RF classifier is a combination of tree classifiers. The classifiers are built using
random vectors that are extracted individually from the input vector, and the individual
tree provides a unit preference for the most prevalent group to categorize a given input
vector. Various decision trees are constructed in training using the Random Forest ensemble
learning approach, which then integrates the predictions of the trees to produce reliable
and accurate results. The approach makes use of the bagging technique, in which an initial
sample of the initial dataset is used to train every tree. To increase variation, a randomly
selected set of characteristic features is taken into consideration for dividing at every node
in a tree. In tasks like classification, the final outcome is decided by an overwhelming vote
of the trees, whereas in regression tasks, the average of the predictions made by each tree is
used. In mathematical terms, the ensemble’s forecast (Y) for a novel input (X) is determined
as follows if (T) is the set of trees of choice in the forest.

for classification (Y = \text{mode}\{T_1(X), T_2(X), ..., T_n(X)\}\) (7)

For regression, Y = \frac{1}{n}\sum_{i = 1}̂{n}T_i(X)\) (8)

2.3.5. Validation of Models

The main goal of statistical models is to adapt the framework to the available data in
line with the indicators being employed to provide accurate forecasts for unknown datasets.
The majority of the time, this is accomplished by changing the model to better fit the data.
Overfitting is a concern because of this [30]. There are several alternatives for validation
techniques, including k-fold, leave-one-out, cross-validation, holdout, and others. One such
technique is cross-validation, which is sometimes referred to as k-fold cross-validation [31].
The holdout tactic is frequently considered to be more approachable than the intricate k-fold
method. We split the gathered data into two samples, 50% for the training phase and 50%
for the testing phase, considering the 4-fold cross-validation. It is important to remember
that there are several methods for validating and segmenting the data.

2.3.6. Model Performance Parameters

It is imperative to compare the projected values with the actual data obtained in order
to assess how effectively a data-driven strategy worked. In this work, the models were
assessed using a variety of statistical error metrics and a fit quality metric called the R2.
Other metrics utilized were the R, MSE, MAPE, and RMSE [32]:

R2 = 1 −
∑N

j=1

[
(Y)obs,j − (Y)com,j

]2

∑N
j=1

[
(Y)obs,j − (Y)obs,j

]2 (9)

R =
∑N

i=1
(
Yobs,i − Yobs,i

)(
Ycom,i − Ycom,i

)√
∑N

i=1
(
Yobs,i − Yobs,i

)2
∑N

i=1
(
Ycom,i − Ycom,i

)2
(10)

MSE =
1
N ∑N

i=1

(
Yobs,i − Ycom,i)

2 (11)

RMSE =

√
∑N

i=1(Yobs,i − Ycom,i)
2

N
(12)

where N is the aggregate amount of points in the dataset, Yobs is the total number for
observed data points, Y is the mean value of the data that was observed, and Ycom is the
computed value.
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3. Results
Methodological Procedure

The methodical procedure of data collection, data preparation, model training, testing,
and prediction comprised the experimental setup for our investigation. Furthermore, the
MLR, ANN, ANFIS and Random Forest models are adopted as our machine learning
classifiers. The results are evaluated using the evaluation metrics, RMSE, MSE, R and R2,
as shown illustrated in Figure 2.

Figure 2. Experimental set-up.

The malaria parasite was predicted using associated independent factors and data-
driven approaches including MLR, ANN, ANFIS and Random Forest. Table 4 shows the
findings of the statistical analysis of the data before going into further depth about the
model calibration. Data analysis helps identify the data’s scientific and navigational worth,
resolving issues that could otherwise prohibit correct simulation of the outcomes. The
model that was created and then utilized to build the ANN, ANFIS and Random Forest
models was created using MATLAB 9.3 (R2019A). Correlation studies were performed using
Microsoft Excel (Microsoft Excel Professional plus 2019. Version 1808 (Build 10405.20015)),
which was also used to create the traditional linear regression (MLR). It was decided to
take the average of the segmented, data-driven correlations of the 15 input variables.

Table 4. Result of the models.

TRAINING TESTING

MLR ANFIS ANN Random
Forest MLR ANFIS ANN Random

Forest

R2 0.848586 0.947893 0.999661 0.6873 R2 0.951865 0.967739 0.974009 0.7648
R 0.921187 0.973598 0.99983 0.8358 R 0.975636 0.983737 0.986919 0.8752

RMSE 0.000834 0.000882 0.000906 0.0775 RMSE 0.000883 0.00089 0.000893 0.0583
MSE 0.000769 0.000859 0.000905 0.2783 MSE 0.000861 0.000876 0.000881 0.2414

The models’ performance metrics during the training stage demonstrate that ANN
fared better than the others, showing the least RMSE (0.000906) and MSE (0.000905) as
well as the greatest R2 (0.999661) and R (0.99983). ANFIS performed admirably as well,
displaying an R2 of 0.947893 and R of 0.973598. MLR was relatively less precise, yet it
produced findings that were still rather good. But in testing, Random Forest fared better
than the other models, exhibiting the lowest RMSE (0.0583) and MSE (0.2414) and the
highest R2 (0.7648) and R (0.8752). This suggests that while Random Forest was revealed
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to be the most reliable through the testing phase, ANN performed exceptionally well
throughout the training phase. As a consequence, the effectiveness of the results from the
current study is consistent with studies about the present and future status of machine
learning models in identifying malaria parasites published by Ozsahin et al. Their method
has made it feasible to swiftly comprehend the machine learning. The effectiveness of the
models was assessed during the testing phase and training phase.

The forecast sheet has a variety of statistical metrics that show how well and accurately
a forecasting model performs. RMSE, MASE, SMAPE, Alpha, Beta, and Gamma data are
shown. The Alpha value of 0.75 indicates a rather high level of confidence in the statistical
study. When the beta value is 0, it means that there is no evidence of a Type II error and
that the model is not missing any significant trends or components. In a manner similar
to the preceding illustration, a Gamma value of 0.00 shows that there is no evidence of a
Type I error, demonstrating that the model is not incorrectly identifying any significant
components. The MASE rating of 1.74 denotes the forecast’s accuracy in relation to the
scale, as shown in Figure 3.

Figure 3. Forecasting MLR.

SMAPE score of 0.98 calculates the percentage difference between the expected and
actual values. A forecast error’s average size is represented by the MAE, which has a
value of 0.30. Taking into consideration the squared values of forecast errors, the RMSE,
which represents the average size of forecast errors, has a value of 0.40. The precision and
accuracy of the projections generated by the forecasting model are essential topics covered
by these statistics overall, as shown in Table 5.

Table 5. Statistics of the forecast.

Statistics Value

Alpha 0.75

Beta 0.00

Gamma 0.00

MASE 1.74

SMAPE 0.98

MAE 0.30

RMSE 0.40

4. Discussion

Employing a sample of 2207 patients, the findings of this research offer insightful
information about how well various machine learning algorithms predict malaria. ANN
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showed outstanding precision throughout the training phase, attaining the greatest R2, R,
and least RMSE and MSE across the models. This demonstrates how ANNs can efficiently
identify intricate associations in the data while they are learning. Conversely, the ANFIS
demonstrated a high level of performance, demonstrating its adeptness in managing the
dataset. Although it produced acceptable results, MLR was relatively less accurate when it
was being trained. Interestingly, Random Forest performed better than the other algorithms
having the highest R2 and R, as well as the least RMSE and MSE, and it was considered the
most stable predictor throughout the testing stage. This demonstrates Random Forest’s
capacity to generalize and generate precise predictions on novel, untested datasets. Random
Forest’s testing phase efficiency was better than expected, indicating that it can handle
real-world events and generalize effectively to a variation of datasets.

To evaluate the effectiveness of the model for prediction, the forecast sheet included a
number of statistical indicators, such as RMSE, MASE, SMAPE, Alpha, Beta, and Gamma.
While a Beta value of 0 reveals no evidence of a Type II mistake, suggesting that major
patterns or components are not neglected, a high Alpha score of 0.75 reflects a high degree
of certainty in the statistical investigation. A Gamma value of 0.00, on the other hand,
implies that there is no proof of a Type I error and that the model accurately detects key
components. The forecast’s accuracy in relation to the scale is indicated by the MASE score
of 1.74.

The percentage difference of predicted and actual data is derived using an SMAPE
score of 0.98. The MAE indicates the mean size of forecast mistakes in this scenario, which
is 0.30. The RMSE reflects the average size of forecast errors and has a value of 0.40 when
the squared values of the errors in forecasting are considered. These quantitative metrics,
as shown in Table 5, represent the prediction model’s total ability to provide projections
with clarity and accuracy.

Comparatively, this study is distinctively outstanding when compared with other
studies such as the study by [4]. The authors adopted a single machine learning model, the
ANN in their study, which recorded 85%, which was lower than our prediction with 99%
in prediction. Similarly, there is no similar study that adopted ANN, MLR and ANFIS in
the prediction of a malaria parasite dataset with similar evaluation metrics. Similarly, this
study is unique due to the adoption of both statistical and machine learning approaches in
the analysis.

Multi-linear regression utilizing geographic information systems (GIS) and satellite
imagery was employed to map the spread of malaria in India’s Varanasi district. The depen-
dent variable in the study by [14] was malaria cases recorded in the research location, and
the independent factors were several time-based groupings of average temperature data.
To build a malaria susceptibility map for both qualitative and quantitative characteristics,
a 50 × 50 sample was translated from GIS to statistical software. However, in [14], the
authors used both GIS and statistical approaches in their research.

Our study achieves exceptional results by utilizing sophisticated machine learning
techniques, specifically artificial neural networks (ANNs), to forecast malaria occurrence.
It effectively analyzes a large dataset with various variables, producing amazing disease
prediction accuracy. The study by [14], on the other hand, uses multi-linear regression com-
bined with GIS and remote sensing to track malaria spread in a particular area. While the
study sheds light on the effect of temperature on instances of malaria, our study’s extensive
use of machine learning and broader variable coverage demonstrates superior predicting
capabilities, thereby rendering it flexible and efficient for tackling malaria-related issues.

Furthermore, our study outperforms the study by Ozsahin et al., which concentrated
on malaria parasite detection employing deep learning techniques. A range of predictive
models, comprising artificial neural networks (ANNs), adaptive neuro-fuzzy inference
systems (ANFISs), and multi-linear regression (MLR), were used in our study, allowing for
a full examination of a diversified dataset with various variables. This resulted in extremely
accurate disease forecasts. In contrast, Ozsahin et al. focused primarily on deep learning for
malaria parasite detection, emphasizing the selection of the best blood smear type. While
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their convolutional neural network demonstrated remarkable accuracy, precision, and
sensitivity, our study’s comprehensive use of machine learning models provided a more
comprehensive and flexible approach to addressing malaria-related difficulties, making the
other study’s findings more compelling.

When compared to Yadav et al.’s study, which similarly addresses machine learning-
based malaria prediction, our study outperforms them. While Yadav et al. applied a
variety of machine learning techniques to forecast malaria based on clinical data, the
first study distinguishes itself by employing a wider range of machine learning models,
which includes artificial neural networks (ANN), adaptive neuro-fuzzy inference systems
(ANFISs), and multi-linear regression (MLR). This comprehensive strategy yields extremely
precise disease forecasts as well as variable coverage, indicating its superior effectiveness
in solving malaria-related difficulties.

In conclusion, the study highlights how crucial it is to take testing and training perfor-
mance into account when assessing machine learning algorithms. ANN performed very
well in training, while Random Forest performed better in testing in terms of resilience
and generalization. These results add to the continuing discussion about which models are
best for predicting malaria with ramifications for the distribution of resources and health-
care choices. Subsequent investigations may investigate group techniques or combined
models to use the advantages of several algorithms for improved prognostic precision in
malaria cases.

This study has a few drawbacks that should be mentioned. To begin, the study focused
solely on machine learning methods for detecting malaria parasites, perhaps overlooking
other relevant factors. Second, due to the unique dataset used, the findings may not be
broadly applicable, limiting generalizability. Finally, the comparison was limited to MLR,
ANN, ANFIS and Random Forest models, with no additional approaches considered. These
constraints highlight the need for more research to close gaps and enhance the accuracy
and usefulness of malaria prediction systems.

5. Conclusions

The results highlight how important it is to take algorithm performance into account in
both learning and real-world contexts. The particular needs and features of the dataset may
influence the best prediction model selection. These revelations advance our knowledge of
machine learning uses in healthcare as it relates to malaria predictions. Investigating hybrid
models or ensemble techniques as future research could improve prediction accuracy even
more. In summary, this research offers significant insights for medical professionals and
legislators, enabling well-informed choices about the control of malaria and the distribution
of available resources.

Author Contributions: Validation, I.O.; Investigation, B.U.; Data curation, I.O.; Writing—original
draft, B.B.D.; Writing—review & editing, D.U.O. and B.U.; Supervision, D.U.O. and B.U. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data is available upon the requests from the authors and it is shared
in an open source platform which is cited in the article.

Conflicts of Interest: There is no conflict of interest between the authors.



Diagnostics 2024, 14, 385 12 of 13

References
1. Kassim, Y.; Yang, F.; Yu, H.; Maude, R.; Jaeger, S. Diagnosing Malaria Patients with Plasmodium Falciparum and Vivax Using

Deep Learning for Thick Smear Images. Diagnostics 2021, 11, 1994. [CrossRef]
2. WHO. Calls for Reinvigorated Action to Fight Malaria. Available online: https://www.who.int/news/item/30-11-2020-who-

calls-for-reinvigorated-action-to-fight-malaria (accessed on 14 October 2022).
3. The “World Malaria Report 2019” at a Glance. Available online: https://www.who.int/news-room/feature-stories/detail/

world-malaria-report-2019 (accessed on 14 October 2022).
4. Parveen, R.; Jalbani, A.H.; Shaikh, M.; Memon, K.H.; Siraj, S.; Nabi, M.; Lakho, S. Prediction of malaria using artificial neural

network. Int. J. Comput. Sci. Netw. Secur. 2017, 17, 79–86.
5. Dye-Braumuller, K.; Kanyangarara, M. Malaria in the USA: How Vulnerable Are We to Future Outbreaks? Curr. Trop. Med. Rep.

2021, 8, 43–51. [CrossRef] [PubMed]
6. Bharambe, A.A.; Kalbande, D.R. Techniques and approaches for disease outbreak prediction: A survey. In Proceedings of the

ACM Symposium on Women in Research 2016, Indore, India, 21–22 March 2016; ACM: New York, NY, USA, 2016; pp. 100–102.
7. Satish, S.; Smitha, G.R. Epidemic Disease Detection and Forecasting: A Survey. Int. J. Adv. Res. Ideas Innov. Technol. 2017, 3,

384–386.
8. Chanda-Kapata, P.; Kapata, N.; Zumla, A. COVID-19 and malaria: A symptom screening challenge for malaria endemic countries.

Int. J. Infect. Dis. 2020, 94, 151–153. [CrossRef] [PubMed]
9. Ahrens, W.; Pigeot, I. Handbook of Epidemiology, 2nd ed.; Springer Science +Business Media: New York, NY, USA, 2014; p. 2489.
10. Abdalal, S.A.; Yukich, J.; Andrinoplous, K.; Harakeh, S.; Altwaim, S.A.; Gattan, H.; Carter, B.; Shammaky, M.; Niyazi, H.A.;

Alruhaili, M.H.; et al. An insight to better understanding cross border malaria in Saudi Arabia. Malar. J. 2023, 22, 37. [CrossRef]
[PubMed]

11. Phang, W.K.; Hamid, M.H.B.A.; Jelip, J.; Chuang, T.W.; Lau, Y.L.; Fong, M.Y. Predicting Plasmodium knowlesi transmission risk
across Peninsular Malaysia using machine learning-based ecological niche modeling approaches. Front. Microbiol. 2023, 14,
1126418. [CrossRef]

12. Datilo, P.M.; Ismail, Z.; Dare, J. A review of epidemic forecasting using artificial neural networks. Epidemiol. Health Syst. J. 2019, 6,
132–143.

13. Duwa, B.B.; Ozsoz, M.; Al-Turjman, F. Applications of AI, IoT, IoMT, and Biosensing Devices in Curbing COVID-19. In AI-Powered
IoT for COVID-19; CRC Press: Boca Raton, FL, USA, 2020; pp. 141–158.

14. Ra, P.K.; Nathawat, M.S.; Onagh, M. Application of multiple linear regression model through GIS and remote sensing for malaria
mapping in Varanasi District, INDIA. Health Sci. J. 2012, 6, 731.

15. Oladele, T.O.; Ogundokun, R.O.; Awotunde, J.B.; Adebiyi, M.O.; Adeniyi, J.K. Diagmal: A malaria coactive neuro-fuzzy expert
system. In Proceedings of the Computational Science and Its Applications–ICCSA 2020: 20th International Conference, Cagliari,
Italy, 1–4 July 2020; Proceedings, Part VI 20. Springer International Publishing: New York, NY, USA, 2020; pp. 428–441.

16. Ozsahin, D.U.; Mustapha, M.T.; Bartholomew Duwa, B.; Ozsahin, I. Evaluating the performance of deep learning frameworks for
malaria parasite detection using microscopic images of peripheral blood smears. Diagnostics 2022, 12, 2702. [CrossRef]

17. Yadav, S.S.; Kadam, V.J.; Jadhav, S.M.; Jagtap, S.; Pathak, P.R. Machine learning based malaria prediction using clinical findings.
In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7
March 2021; IEEE: New York, NY, USA, 2021; pp. 216–222.

18. Morang’a, C.M.; Amenga–Etego, L.; Bah, S.Y.; Appiah, V.; Amuzu, D.S.; Amoako, N.; Abugri, J.; Oduro, A.R.; Cunnington, A.J.;
Awandare, G.A.; et al. Machine learning approaches classify clinical malaria outcomes based on haematological parameters.
BMC Med. 2020, 18, 375. [CrossRef]

19. Uzun Ozsahin, D.; Balcioglu, O.; Usman, A.G.; Ikechukwu Emegano, D.; Uzun, B.; Abba, S.I.; Ozsahin, I.; Yagdi, T.; Engin, C.
Clinical Modelling of RVHF Using Pre-Operative Variables: A Direct and Inverse Feature Extraction Technique. Diagnostics 2022,
12, 3061. [CrossRef] [PubMed]
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