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Abstract: Weaning patients from mechanical ventilation (MV) is a complex process that may result in
either success or failure. The use of ultrasound at the bedside to assess organs may help to identify
the underlying mechanisms that could lead to weaning failure and enable proactive measures to
minimize extubation failure. Moreover, ultrasound could be used to accurately identify pulmonary
diseases, which may be responsive to respiratory physiotherapy, as well as monitor the effectiveness
of physiotherapists’ interventions. This article provides a comprehensive review of the role of
ultrasonography during the weaning process in critically ill patients.

Keywords: weaning; mechanical ventilation; lung ultrasound; diaphragm ultrasound; laryngeal
ultrasound; echocardiography; physiotherapy

1. Introduction

Weaning from mechanical ventilation (MV) is the gradual process of transitioning a
patient from dependence on a ventilator to breathing independently, with the ultimate goal
of successful liberation from the ventilator. This process consists of various stages, including
readiness testing, weaning proper, and extubation [1]. Successful weaning and extubation
is generally defined as the absence of need for reintubation for at least 48 h after removal of
the endotracheal tube [2,3], or, as defined by the WIND study, when the patient remains
extubated without reintubation or dies 7 days after extubation [4]. Nevertheless, outcomes
can vary depending on the patient’s readiness and underlying medical condition, with only
65% being successfully weaned, according to the most recent literature [1]. The success or
failure of weaning attempts can be influenced by various underlying pathophysiological
factors [5]. Critically ill patients often present with a combination of clinical conditions,
including lung and cardiovascular issues, chest wall changes, peripheral muscle weakness,
reduced respiratory drive, and neurological impairments that affect the transition from MV
to spontaneous breathing [6].

Defining the best time for extubating critically ill patients poses some challenges be-
cause early extubation increases the incidence of weaning failure, necessitating reintubation,
which exposes patients to hemodynamic instability and respiratory distress, which should
be avoided [7]. However, delaying extubation increases the duration of MV and carries
other risks, such as tracheal damage, ventilator-associated pneumonia, and barotrauma [8].
Therefore, ensuring patients wean safely and effectively is critical for patient outcomes.
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Current guidelines suggest several bedside indices to predict successful weaning and
extubation. However, none of these indexes has been proven to be optimal in predicting
weaning success [2]. Implementing a spontaneous breathing trial (SBT) to predict the
outcomes of weaning is also recommended [9]. SBT is defined as a period of observation
during which patients breathe through a T-piece with adequate supplemental oxygen or
with reduced pressure support (PS), whether or not supplemented by 5 cm H2O positive
end-expiratory pressure (PEEP), in individuals with a normal body mass index (BMI) [3,10].
Notably, 20% of the highest-risk patients who undergo a successful SBT still require a
subsequent re-intubation [10]. Reintubation rates did not differ where a SBT was carried
out via a T-piece or pressure support ventilation (PSV) in high-risk patients [11]. Moreover,
while SBT is generally considered safe and can reduce the duration of MV with its associated
complications and intensive care costs [12], it may not necessarily contribute to a deeper
understanding of the root causes behind weaning failure. This is where ultrasonography
becomes useful, as it allows for direct bedside evaluation of many of these causes, such
as heart, lung, or muscle dysfunction, by providing real-time, non-invasive imaging of
different body organs. It utilizes high-frequency sound waves that differ according to the
selected probe to visualize its internal structures and monitor its dynamic changes [13].

The aim of this review is to discuss the multiple uses of ultrasonography (US) in
assessing the process of weaning from MV. We will focus on its role in evaluating lung
aeration, respiratory muscle function, airway readiness, hemodynamic stability, and the
effectiveness of respiratory physiotherapy.

2. Ultrasonographic Assessment during the Weaning Process

By enabling clinicians to directly observe various organ functions at the bedside,
ultrasonography can enhance the accuracy of weaning assessments, guide clinical decision-
making, and contribute to more timely and successful liberation from MV [3]. To evaluate
these functions, intensivists need to possess basic and advanced ultrasound skills to effec-
tively assess and wean off patients from mechanical ventilation [14]. See Figure 1 for the
main ultrasonographic indices of weaning failure, the timing, and how to use US during
the weaning process.

2.1. Ultrasonographic Assessment of Lung Aeration

Lung ultrasound (LUS) has emerged as a promising tool to aid in the process of
weaning. It provides an immediate understanding of both lung aeration and ventilation
conditions at the bedside without needing to transfer patients or expose them to any
radiation. LUS is especially appropriate to identify potential factors related to changes in
lung aeration that may contribute to weaning failure [15].

LUS relies on the air-to-fluid ratio within the lung parenchyma to provide informative
images. In regions where air is entirely absent (i.e., consolidation), LUS successfully gives
an accurate image of the lung tissue, possibly indicating the presence of disease. Conversely,
when air is present in the tissue, various image artifacts can arise. Depending on the artifact
produced, it can either represent lung tissue with normal aeration or reduced relative
aeration, irrespective of the specific underlying pathological condition. Reduced relative
aeration can occur due to factors like air loss (leading to atelectasis) or the accumulation of
fluid within the interstitial or alveolar spaces [16].

In a typical LUS assessment, twelve thoracic regions are examined, six for each side of
the chest. These regions are delineated using the anterior and posterior axillary lines as
references, and subsequently, each zone is subdivided into upper and lower segments. The
ultrasound probe is then passed along each intercostal space within these twelve regions,
providing a standardized method for imaging the entire thorax [17,18].
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Figure 1. How to integrate ultrasound (US) into the process of weaning from mechanical ventilation. 
ACWD=air column width difference, BP=blood pressure, CLT=cuff leak test, EF=ejection fraction, 
E/e’= left ventricular filling pressure, FiO2=fraction of inspired oxygen, GCS=Glasgow coma scale, 
HR=heart rate, LUS=lung ultrasound, MIP=maximal inspiratory pressure, MV=mechanical 
ventilation, NIF=negative inspiratory force, PEEP=positive end-expiratory pressure, PMI=pressure 
muscle index, PS=pressure support, P0.1=airway occlusion pressure to detect inspiratory effort at 
the bedside, RDOS=respiratory distress observation scale, RR=respiratory rate, RSBI=rapid shallow 
breathing index, SBT=spontaneous breathing trial, SpO2=peripheral saturation of oxygen, 
TFdi=diaphragmatic thickening fraction, TFic=intercostal muscle thickening fraction. 
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Figure 1. How to integrate ultrasound (US) into the process of weaning from mechanical ventilation.
ACWD = air column width difference, BP = blood pressure, CLT = cuff leak test, EF = ejection fraction,
E/e’ = left ventricular filling pressure, FiO2 = fraction of inspired oxygen, GCS = Glasgow coma scale,
HR = heart rate, LUS = lung ultrasound, MIP = maximal inspiratory pressure, MV = mechanical
ventilation, NIF = negative inspiratory force, PEEP = positive end-expiratory pressure, PMI = pressure
muscle index, PS = pressure support, P0.1 = airway occlusion pressure to detect inspiratory effort
at the bedside, RDOS = respiratory distress observation scale, RR = respiratory rate, RSBI = rapid
shallow breathing index, SBT = spontaneous breathing trial, SpO2 = peripheral saturation of oxygen,
TFdi = diaphragmatic thickening fraction, TFic = intercostal muscle thickening fraction.

The results of the LUS assessment can be classified into four identifiable patterns, each
representing varying degrees of lung aeration. To semi-quantify these variations, multiple
scoring systems have been proposed. In the intensive care unit (ICU), the most employed
system is the “Bedside Lung Ultrasound in Emergency” (BLUE) protocol, which assigns a
specific score (from 0 to 3) to each stage, as detailed in Table 1 [3,19,20].
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Table 1. Lung ultrasound findings, interpretation, and corresponding scores according to the Bedside
Lung Ultrasound in Emergency (BLUE) protocol.

Pattern Interpretation/Degree
of Aeration Score

A-lines (horizontal
artifacts parallel to
the pleural line) or
2 or fewer B-lines.

Normally aerated
lung tissue 0
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The total LUS score is the sum of the scores from the twelve thoracic regions, with
the lowest possible score of 0 (indicating normal aeration in all regions) and the highest
possible score of 36 (suggesting consolidation in all regions) [19]. Bouhemad et al. originally
introduced the LUS score to assess patterns of lung aeration. Subsequently, it has also been
used to predict the success of weaning patients from MV [8].

2.1.1. Application of LUS to Predict the Outcome of Weaning from Mechanical Ventilation

As previously discussed, the decision regarding the optimal time to initiate the wean-
ing process remains a dilemma for most mechanically ventilated patients. Hence, recent
research has focused on the potential role of LUS in evaluating patient readiness and
predicting weaning outcomes. A prospective study by Soummer et al. aimed to predict
post-extubation distress following discontinuation of MV, which encompasses the need
for reintubation or rescue noninvasive ventilation (NIV) within 48 h. The researchers
examined 100 patients and utilized LUS to evaluate lung aeration before and after a 60-min
SBT, in addition to 4 h post-extubation. The LUS score was used to quantify lung aeration.
Significant lung derecruitment occurred during a one-h SBT, and this was more pronounced
in patients who developed post-extubation distress. Moreover, among patients successfully
passing the SBT, a LUS score of ≤12 at the end of the SBT strongly indicated a higher
likelihood of post-extubation success. Conversely, a LUS score of ≥17 at the end of the SBT
was highly predictive of post-extubation distress [20].

In a complementary study conducted by Shoaeir et al., the potential of LUS in predict-
ing weaning outcomes was examined in 50 intubated patients aged 18 years and older who
had been intubated for at least 48 h and met the criteria for SBT. Lung aeration scoring using
LUS was performed before, during the SBT, and after extubation. The patients were closely
monitored for 48 h post-extubation to assess the outcome and subsequently divided into
two distinct groups: the weaning failure group and the weaning success group. Patients
in the weaning success group exhibited significantly lower baseline LUS aeration scores
when compared to those in the weaning failure group. Additionally, important changes in
aeration scores were observed during the SBT in the weaning failure group. Ultimately, the
results demonstrated that a LUS aeration score shows promising potential in forecasting
weaning failure in critically ill patients, as scores ≥ 18 had a good predictive value for
weaning failure, while a LUS aeration score ≤ 11 had a good prediction for weaning success.
Scores between these values were inconclusive in predicting weaning outcomes [21].

A comprehensive systematic review and meta-analysis conducted by Llamas-Álvarez
et al. in 2017, which involved a cohort of 1071 patients admitted to ICUs and subjected to
MV for at least 24 h, reported that the use of lung and diaphragmatic ultrasound can aid in
predicting the outcomes of weaning. However, the limited number of studies may lead to a
degree of uncertainty when interpreting these findings [22]. A recent observational study
by Kundu et al. also underlined the promising ability of LUS to anticipate the outcomes
of the weaning process. The study demonstrated that employing an inclusive ultrasound
protocol incorporating lung, diaphragm, and cardiac sonography reliably predicted the
likelihood of weaning failure [23].

As a suggestion, we advocate for the routine integration of LUS in clinical protocols
for ventilatory management. Given its effectiveness in providing real-time insights into
lung function during both controlled and assisted ventilation, as well as during SBT, LUS
stands as a valuable tool. Specifically, its application before extubation proves crucial in
informing decisions such as whether to implement positive end expiratory pressure (PEEP)
after extubation. This non-invasive approach offers clinicians a practical means of tailoring
interventions and optimizing respiratory care in critical settings. However, it is essential to
emphasize the need for rigorous clinical trials to affirm the efficacy and reliability of LUS in
these contexts, ensuring evidence-based integration into standard clinical practice.
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2.2. Ultrasonographic Assessment of Diaphragmatic Function

The diaphragm has a significant role as a primary inspiratory muscle involved in
breathing. This muscle accounts for about 75% of the ventilation process at rest. However,
critical conditions such as hypotension, insufficient oxygen levels, systemic infections, and
the requirement of MV may impair diaphragm function [24].

MV can cause diaphragmatic atrophy and dysfunction. This condition, referred to as
ventilator-induced diaphragmatic dysfunction (VIDD), may affect the ability of the patient
to discontinue MV [25]. VIDD may occur shortly after the initiation of ventilation and
worsen over time, depending on the mode of ventilation used and other associated risk
factors [26]. As a result, it is important to assess diaphragmatic function to predict the
patient’s ability to wean from MV and sustain spontaneous breathing.

Ultrasound has been implemented as a non-invasive bedside tool to visualize the
diaphragm for at least four decades. Nevertheless, only recently has ultrasound been used
to assess the size and function of the diaphragm when the patient is under MV [27,28].
Ultrasound imaging has two main modes: brightness mode (B-mode) and motion mode
(M-mode). B-mode provides detailed two-dimensional images of structures for anatomical
assessment, while M-mode focuses on capturing the movement of structures over time
using a dynamic graph and can accurately measure the diaphragmatic displacement over
the respiratory cycle. Applying these modes to visualize the diaphragm allows assessment
of diaphragmatic thickness (Tdi), primarily using the B-mode, and diaphragmatic excursion
(E), mainly using the M-mode [29,30]. When examining critically ill patients, it is typically
sufficient to assess only the right diaphragm unless there is suspicion of dysfunction on the
left side, in which case both sides should be assessed [31]. It is generally easier to obtain
a clear view of the right side due to the liver providing an excellent ultrasound window
compared to the left side due to the poor acoustic window of the spleen [29,32].

2.2.1. Diaphragmatic Thickness (Tdi) and the Thickening Fraction (TFdi)

To assess diaphragmatic atrophy and contraction, it is essential to assess diaphragmatic
thickness (Tdi) and diaphragmatic thickening fraction (TFdi), respectively [33,34].

Tdi is measured using a high-frequency linear probe (≥10 MHz) placed on the zone of
apposition (ZA) where a patient’s diaphragm meets the thoracic cage. The probe should
be angled perpendicular to the lateral chest wall and placed between the midaxillary and
anterior axillary lines at the eighth or ninth intercostal space [29,35]. The estimated distance
between the skin and the diaphragm in this area ranges from 0.8 cm to 4.9 cm. Individuals
with a higher body mass index exhibit an increase in the depth of the diaphragm [31]. The
reference values for Tdi in critically ill patients were reported in various studies. Goligher
et al. found that the mean Tdi was 2.4 ± 0.8 mm [36], whereas Schepens et al. reported it
was slightly lower, 1.9 ± 0.4 mm [37].

The diaphragm is identified as a hypoechoic structure surrounded by two hyperechoic
lines: the peritoneum and pleura membranes. These lines representing the outer layers are
excluded when measuring thickness as they serve as borders. The fibrous layer located
in the center of the diaphragm is often identified by a third hyperechoic line that can be
observed within the non-echogenic layer [35]. Tdi is measured at the end of expiration
(Tdi-exp) and inspiration (Tdi-insp) as the distance between the diaphragmatic pleura and
the peritoneum using the B-mode or M-mode [26].

The diaphragmatic function is closely linked to inspiratory thickening. As a conse-
quence, for better detection of diaphragmatic dysfunction (DD), it is essential to measure
diaphragmatic thickness both at the end of inspiration (Tdi-insp) and at the end of expira-
tion (Tdi-exp). This measurement is referred to as the thickening ratio (TR), i.e., thickness at
end inspiration divided by thickness at end expiration. Additionally, some researchers used
the concept of thickening fraction (TFdi), calculated using the formula below multiplied by
100 [35]:

TFdi =
(Tdi − insp)− (Tdi − exp)

(Tdi − exp)
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2.2.2. Diaphragmatic Excursion (E)

Diaphragmatic excursion (E) is measured using a low-frequency convex or phased
array probe (1–5 MHz) positioned on the front subcostal area between the mid-clavicular
line and the anterior axillary line. The lower frequency provides enhanced depth, albeit at
the cost of reduced spatial resolution [29,38]. The assessment of the left and right hemidi-
aphragms can be carried out using the spleen and liver windows, respectively. To assess the
right hemi-diaphragmatic excursion, the probe should be angled medially, cranially, and
dorsally so that the ultrasound beam reaches the posterior third of the diaphragm, showing
the right hemidiaphragm as a thick, curved, hyperechoic line in B-mode. Then, the M-mode
exploration line must be placed perpendicular to the diaphragmatic dome in order to obtain
maximum excursion. The transducer must be held in place, and the patient is instructed
to perform quiet breathing (QB), deep breathing (DB), and voluntary sniffing (VS). The
measurement of diaphragmatic excursion amplitude involves positioning calipers at the
lower and upper points of the inspiratory slope of the diaphragm [38]. Movement of the
liver and spleen can be used as an alternative when visualizing the diaphragm is difficult
from the subcostal window. For this reason, an intercostal window is recommended at
the zone of apposition in B- or M-mode, using a low-frequency probe [39,40]. Since there
can be differences in how the diaphragm and the area below it move together [41,42], this
approach is better for describing how the diaphragm moves rather than trying to measure
it precisely [32].

Measuring excursion can only be carried out in spontaneously breathing patients,
as during assisted ventilation, passive displacement cannot be distinguished from active
displacement due to driving pressures [29]. Excursion positively correlates with lung
inspiratory volumes; thus, its values increase during forced inspiratory breathing [28].
Furthermore, in healthy volunteers, diaphragmatic excursion varies with height, weight,
sex, and age and can be reliably measured in a recumbent or supine position [43]. In a
study published in 2022, Kabil et al. defined the normal range of diaphragmatic excursion
for the normal population in 757 healthy volunteers. They found out that the mean hemi-
diaphragmatic excursion on the right side was 5.54 ± 1.26, 2.90 ± 0.63, and 2.32 ± 0.54
cm for deep breathing, sniffing, and quiet breathing, respectively, while the mean hemi-
diaphragmatic excursion on the left side was 5.30 ± 1.21, 2.97 ± 0.56, and 2.35 ± 0.54 cm
for deep breathing, sniffing, and quiet breathing, respectively [43].

During inspiration, the diaphragm moves downwards towards the probe. If there is
absent or reduced movement that falls below normal reference values or movement that
goes against the probe, it indicates dysfunction of the diaphragm [26]. The success rate
for visualizing E during tidal breathing (>95%) is high, while during maximal breathing
visualization is more difficult, especially on the left side [44].

Lastly, we found variation in using diaphragmatic measurements (TFdi, E) in defining
diaphragm dysfunction, as detailed in Table 2.

Table 2. Differences in definitions of diaphragmatic dysfunction using diaphragm measurements.
* indicative of paradoxical diaphragm movement.

Thickening Fraction (TFdi) Excursion (E)

Vivier et al. [45] <30% <10 mm

Lu et al. [46] <20% _____

Kim et al. [47] _____ <10 mm or negative *

Mariani et al. [48] _____ <11 mm

2.2.3. Application of Diaphragmatic Ultrasound in Weaning from Mechanical Ventilation

During the weaning process, clinicians use objective clinical criteria and sometimes
physiological tests like diaphragmatic ultrasonography to predict whether a patient is likely
to tolerate weaning in a process called readiness testing. When considering the predictive
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role of diaphragmatic ultrasonography in assessing the preparedness for weaning from MV,
findings are conflicting [26]. Numerous studies suggested that diaphragmatic excursion
cut-off values of 10 mm to 13 mm or more [49–52] and diaphragmatic thickening fraction
values of 20 to 30% or more are predictable for successful extubation [52–54]. However,
considerable heterogeneity across the studies regarding the definitions of weaning or
extubation failure, patient position during ultrasonography, type of SBT, and the type of
measure used to assess the outcome (E, TFdi, or both) is found, thus creating challenges
in forming definitive conclusions about the effectiveness of diaphragmatic ultrasound for
predicting weaning success. In recent years, multiple systematic reviews and meta-analyses
were conducted to establish evidence on the usefulness of diaphragmatic ultrasound
in predicting the success or failure of weaning in patients undergoing MV, and their
results suggested adequate accuracy of diaphragmatic ultrasound in predicting weaning
success [55–57]. In this line, in 2023, Parada Gereda et al. included 19 studies in a meta-
analysis of 1204 patients. The sensitivity and specificity of diaphragmatic excursion to
predict weaning success were both 80%, and the area under the summary receiver operating
characteristic (ROC) curve was 0.87. For the TFdi, sensitivity and specificity were 85% and
75%, respectively, and the area under the ROC curve was 0.87. However, these studies
showed a great heterogeneity, suggesting that further studies are needed to better evaluate
the role of diaphragm ultrasound as a predictor of weaning from MV [58].

Assisted mechanical ventilation (AMV), exemplified by pressure support ventilation
(PSV), is commonly applied to critically ill patients to relieve the respiratory muscles and
prevent muscle atrophy [59]. The patient’s inspiratory muscles generate a variable amount
of work, with the ventilator supplying the remainder [60]. Under-assistance may result in
fatigue and discomfort, while over-assistance can lead to patient-ventilator asynchrony [61]
and ventilator-induced diaphragm dysfunction [62]. Measuring the patient’s effort during
assisted breathing is challenging in clinical settings, and direct clinical assessment of
the diaphragm is not feasible. This is when researchers began considering the use of
diaphragmatic ultrasonography for this purpose. Umbrello et al. conducted a pilot study
aimed at evaluating the performance of TFdi and E to assess the relative contribution
of patients’ effort during AMV. They concluded that, in patients undergoing AMV, TFdi
proved to be an effective indicator of alterations in inspiratory muscle effort in response to
adjustments in the PS level, in contrast to E, which should not be used for the quantitative
assessment of diaphragmatic contractile activity. Additional investigations are needed
to determine if this remains valid in a larger patient population encompassing various
diseases [63].

In summary, we suggest including diaphragm ultrasound in MV weaning protocols.
This can be especially beneficial during the shift from controlled to assisted ventilation,
achieving smoother transitions in mechanical ventilation to optimize patient response in
the weaning process. Rigorous investigations will contribute to a more comprehensive
understanding of the potential benefits and applications of diaphragm ultrasound in
clinical practice.

2.2.4. Tissue Doppler Imaging

Tissue Doppler imaging (TDI) is an ultrasonographic technique used to detect al-
terations in the frequency of ultrasound signals reflected by mobile structures. While it
has been extensively employed for evaluating cardiac performance, its application for
diaphragm assessment in both adults and neonates has been a more recent develop-
ment [64,65]. Recently, Soilemezi et al. and Cammarota et al. demonstrated that TDI-
derived parameters effectively distinguished between patients who successfully completed
the weaning trial and those who did not [66,67]. However, to confirm these results, further
clinical trials should be conducted to address the role of TDI in predicting extubation failure.
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2.2.5. Speckle Tracking Ultrasound

Speckle Tracking Ultrasound (STUS), also known as strain imaging, involves tracking
ultrasound speckles over time. These speckles represent regions of muscle tissue with
relatively stable gray patterns in ultrasound imaging. STUS software works by tracking
a group of speckles throughout the contractile cycle and measuring their displacement
and deformation in relation to each other. The extent of deformation is referred to as
‘strain,’ while “strain rate” quantifies the deformation velocity [26,32]. A recent study by
Oppersma et al. has shown a strong correlation between strain, strain rate, and trans-
diaphragmatic pressure in healthy individuals [68]. STUS offers a significant advantage
over TDI because it remains unaffected by the angle between the ultrasound beam and
the tissue motion direction. While STUS applicability has been investigated for assessing
diaphragm movement in various scenarios, further research is warranted, particularly in
individuals with abnormal diaphragmatic function or critical illness. Comparisons with
electromyography or trans-diaphragmatic pressure measurements may also be necessary
to validate its applicability [26,32].

2.2.6. Shear Wave Elastography

Shear wave elastography (SWE) is an innovative technique that has recently been
employed for diaphragm evaluation. This technique involves inducing tissue deformation
through the generation of a focused acoustic impulse beam by the ultrasound probe. As a
result, a measurable shear wave is produced, which can be converted into a shear modulus
(SM). The higher the SM, the greater the tissue stiffness [26]. Utilization of SWE for
assessing the diaphragm could hold clinical significance, as variations in muscle stiffness
may mirror changes in muscle physiology, such as injury or fibrosis [32]. In a recent study
on healthy subjects, Bachasson et al. found that the mean trans-diaphragmatic pressure
(Pdi) correlated with the mean SM and that any change in diaphragmatic stiffness evaluated
by SWE reflected changes in Pdi [69]. In a more recent study by Fossé et al., researchers
confirmed the conclusion of Bachasson et al. that there is a correlation between Pdi and SM
of the diaphragm, demonstrating that SWE has the potential to substitute Pdi in patients
who are on mechanical ventilators [12]. Therefore, SWE may be a new technique to gauge
diaphragmatic effort. Moreover, SWE is a more precise and consistent method compared
to the assessment of echogenicity, which can be greatly influenced by ultrasound settings
such as gain and contrast adjustments [32].

2.3. Ultrasonographic Assessment of Parasternal Intercostal Muscles

Patients who have weakness of the diaphragm may compensate for diaphragmatic
dysfunction with parasternal muscle activity. The use of ultrasound to measure parasternal
intercostal muscle thickening (Tic) and intercostal muscle thickening fraction (TFic), and
the combination of these measurements with diaphragmatic ultrasound, has been used to
predict the ability of patients to wean from MV [70].

The parasternal intercostal muscles can be assessed by a linear probe (10–15 MHz),
positioned at a lateral distance of 3–5 cm from the sternum. The probe should be oriented
transversally in the sagittal plane, precisely between the 2nd and 3rd ribs. For example,
in a patient positioned supine with a 20◦ head-up angle, the linear probe is placed at a
right angle to the front surface of the thorax in the longitudinal scan [70,71]. Ultrasound
assessment of the parasternal intercostal muscles is performed mostly on the right side,
as it is more feasible [72]. Similar to diaphragmatic ultrasound, the use of M-mode and
B-mode ultrasonographic techniques can be applied to evaluate intercostal muscles.

2.3.1. B-Mode Ultrasonography

Using the B mode, the pleural line is easily visualized, forming a component of the
recognizable “bat sign” [72]. Slightly above the pleural line, the parasternal intercostal
muscle can be recognized as a biconcave structure with three layers. These layers consist of
two linear hyperechoic membranes extending from the anterior and posterior aspects of the
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adjacent ribs, along with a central portion displaying muscle echotexture [70,73]. With this
mode, intercostal muscle thickness (Tic) can be measured between the inner and outermost
hyperechogenic layers of the muscle fascial borders. However, thickness measurements
should be performed at the craniocaudal midpoint between the ribs, where the difference
in the curvature between the two surfaces is the least [74].

Furthermore, using the grayscale, ultrasound indirectly gives qualitative information
on muscle composition [75]. Additionally, higher muscle echogenicity indicates poorer
muscle quality [73]. However, when compared to other measures, echogenicity measure-
ments are more influenced by observer-dependent factors, and so, a rigorous ultrasound
setting must be selected before obtaining the image to standardize the methods [74].

2.3.2. M-Mode Ultrasonography

By employing M-mode ultrasonography, it is possible to identify the inspiratory
contraction of the muscles, following a similar approach used for assessing the TFdi.
Specifically, during the phase of inhalation, an observable augmentation in muscle thickness
occurs due to the contraction of muscle fibers. This contraction leads to the upward and
forward displacement of the rib cage, while the muscle’s overall mass remains consistent.
Parasternal intercostal muscle-thickening fraction (TFic) can be calculated similarly to the
diaphragm thickening fraction (TFdi) using the formula below multiplied by 100 [74]:

TFic =
(Tic − insp)− (Tic − exp)

(Tic − exp)

2.3.3. Application of Parasternal Intercostal Muscle Ultrasound in the Weaning Process

Numerous studies in the literature have studied the role of using diaphragmatic ultra-
sound to predict weaning from MV [52–54]. Nevertheless, there are few studies that evaluate
the use of parasternal intercostal muscle ultrasound to evaluate the weaning process.

As previously noted, patients with diaphragmatic weakness may compensate by
exhibiting increased parasternal muscle activity. Dres et al. observed a correlation between
TFic values and the inability to successfully complete a SBT in mechanically ventilated
patients. Patients who failed the SBT displayed higher TFic values and lower TFdi values
compared to those who successfully underwent the trial. Moreover, individuals with
diaphragmatic dysfunction exhibited higher TFic values than those without dysfunction,
and these values varied based on the degree of ventilation assistance. A TFic measurement
exceeding 8% suggested the presence of diaphragm dysfunction, with a measurement
surpassing 10% indicating an anticipated failure in the weaning process [70]. In agreement
with these findings, Umbrello et al. reported that high TFic values were associated with low
TFdi values, thus suggesting the recruitment of intercostal muscles because of increased
respiratory workload when there is diaphragmatic dysfunction, as confirmed by the Gilbert
index. However, it is significant to note that lower TFdi values may either reflect a low
inspiratory effort or an increased inspiratory effort performed by accessory respiratory
muscles, based on the level of mechanical support. Using ultrasound to assess TFic could
help us distinguish between the two scenarios during weaning from MV. Moreover, this
study showed higher TFdi (>30%) and lower TFic (<5%) in patients without diaphragmatic
dysfunction [71]. Umbrello et al. also studied if a change in TFdi or TFic can be used
to assess inspiratory effort in critically ill patients when decreasing levels of mechanical
support are applied. They found that TFdi provided only an acceptable assessment of
inspiratory effort, which significantly improved when patients with diaphragm dysfunction
were excluded from the analysis. Moreover, they found that TFic was beneficial in the
bedside evaluation of inspiratory effort, particularly in cases where the TFdi was low [71].

Given the preliminary nature of the available evidence, parasternal intercostal ultra-
sound might be suggested to help clinicians predict weaning outcomes, particularly when
combined with other parameters following adequate training and especially in under-
assisted patients who use their accessory respiratory muscles. However, evidence is still
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scarce to establish the best reference values for predicting weaning outcomes with greater
confidence. Moreover, we recommend future studies investigate the impact of combining
parasternal intercostal ultrasound with diaphragm ultrasound to assess patients’ improve-
ment during the transition from controlled to assisted mode of ventilation and establish
evidence-based protocols in the ICU setting.

2.4. Ultrasonographic Assessment of the Airway for Weaning Readiness

Patients undergoing endotracheal intubation may sustain various laryngotracheal
injuries [76]. One of the most common complications is laryngeal edema, with an incidence
ranging from 3 to 30% [77]. Clinically, it can present as an inspiratory stridor or respiratory
distress. Sequelae of this complication include reintubation, which, in turn, increases the
incidence of nosocomial pneumonia, length of ICU stay, and mortality [78,79].

Multiple studies have suggested possible factors that may raise a patient’s risk for
developing laryngeal edema during intubation, such as female sex [80], as well as factors
related to the intubation process, including difficult or traumatic intubation, prolonged
intubation, and self-extubation [81]. Therefore, an objective evaluation of airway readiness
is needed to allow early detection of patients with laryngeal edema and thus decrease the
incidence of extubation failure and reintubation.

One such method is the cuff leak test (CLT), which measures air leakage around the
endotracheal tube after deflating the cuff, thereby providing an indirect assessment of
upper airway patency. This test has been suggested as a simple method for predicting
laryngeal edema post-extubation. As observed by Miller and Cole, a reduced cuff leak
volume indicates a higher risk of developing post-extubation stridor due to laryngeal
edema [82]. However, Engoren et al. found that while the CLT has a high negative
predictive value, its positive predictive value is low. Consequently, although the CLT is a
safe and straightforward procedure, its controversial results may affect the decision of the
physicians, mainly when the CLT yields a positive result [83]. As an alternative, ultrasound
has emerged as a valuable and noninvasive tool for assessing and visualizing the upper
airways [84]. Laryngeal ultrasound can measure the air column width (ACW), which is
represented by the width of the acoustic shadow seen at the level of the vocal cords, both
with the endotracheal balloon cuff inflated and deflated, and calculate the air column width
difference (ACWD). These measurements have been proposed as a method for predicting
post-extubation laryngeal edema.

Ding et al. conducted a prospective study to investigate the correlation between
post-extubation stridor and upper airway ultrasound measurements of the ACW. Measure-
ments from 51 patients were obtained within 24 h before the scheduled extubation. The
authors reported that patients with an ACW of 4.5 (0.8) mm after cuff deflation went on to
develop post-extubation stridor, while patients who did not develop stridor had an ACW
of 6.4 (2) mm [85]. Sutherasan et al. performed an observational study and reported that
both ACWD and CLT are predictors of the development of laryngeal edema. Furthermore,
the researchers determined a cut-off point of 1.6 mm for ACWD, above which extubation
may be performed safely. The sensitivity and specificity of this value were 70.6% and
70.2%, respectively. In short, ACWD emerges as a promising tool for anticipating successful
extubation in relation to laryngeal edema [86].

In a prospective clinical trial conducted by Sahbal et al., an ultrasound measure of
ACWD was compared to CLT for predicting post-extubation laryngeal edema, with stridor
serving as a clinical indicator of this condition. Values below 0.9 mm for ACWD were
associated with an increased risk of post-extubation stridor. This threshold demonstrated
an impressive sensitivity of 88%, specificity of 82%, positive predictive value (PPV) of 86%,
and negative predictive value (NPV) of 83%. Additionally, a proposed cut-off point of
110 mL for the CLT was identified, below which the possibility of post-extubation stridor
was markedly higher. This 110 mL cut-off exhibited a sensitivity of 68%, a specificity of
89%, a PPV of 69%, and an NPV of 87% [87].
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A recent systematic review conducted by Tsai et al., which encompassed 11 obser-
vational studies, revealed lower ACWD measurements in patients who developed post-
extubation stridor, demonstrating a sensitivity and specificity of 80% and 81%, respec-
tively [88]. These findings underscore the pivotal contribution of ultrasound, particularly
ACWD measurement, in predicting post-extubation stridor occurrence following extuba-
tion. Nonetheless, it is important to note that additional multicenter studies with standard-
ized definitions and cutoff values are needed to precisely define the role of upper airway
ultrasonography in the weaning process.

Lastly, in assessing weaning readiness, we suggest integrating laryngeal ultrasound
to assess for laryngeal edema after performing the CLT, particularly when the leak is less
than 110 mL. This can aid in determining the necessity of administering corticosteroids to
relieve the edema or to proceed with the assessment (see Figure 1).

2.5. Hemodynamic Assessment through Echocardiography

Understanding the changes in cardiopulmonary physiology that take place during
MV and its discontinuation is essential for promptly identifying weaning failure due to
cardiovascular issues and for effectively managing patients. Achieving successful weaning
is dependent on the capacity of both the respiratory system and the heart’s pumping
function to withstand these changes [89]. Weaning from MV is similar to a cardiac stress
test wherein spontaneous ventilation is an exercise for the heart, and so hemodynamic
compromise may occur during the weaning process in patients who are critically ill [89].

During the weaning process, there is a shift from positive pressure MV to spontaneous
breathing. This shift causes a negative intrathoracic pressure, which increases the venous
return pressure gradient, the right ventricular preload, and the left ventricular preload. In
addition, the negative pressure raises the left ventricular afterload due to the increased
pressure surrounding the left ventricle. Moreover, the shift causes an increase in the work
of breathing as well as adrenergic tone, the latter due to increased serum catecholamine
levels [90,91]. This in turn may cause cardiovascular dysfunction, which manifests clinically
by increasing pulmonary arterial occlusion pressure (PAOP), left ventricular filling pressure,
and lastly, pulmonary edema [89,92]. These hemodynamic changes may have damaging
consequences in patients suffering from cardiovascular diseases, or they may unmask
cardiovascular dysfunction in patients who have normal resting cardiovascular function,
affecting the systolic and diastolic functions of the heart during the weaning process [89].

Trans-thoracic echocardiography (TTE) is a non-invasive, real-time, and cost-effective
means of monitoring key hemodynamic parameters that can be used to predict the out-
comes of weaning. TTE may be used to assess the systolic and diastolic function of the
heart to predict the outcomes of weaning. The systolic function can be easily assessed by
the ejection fraction. Diastolic function assessment can be carried out by (a) analyzing
the mitral inflow profile using pulse wave Doppler, where the early wave (E) represents
passive ventricular filling and the late wave (A) signifies active atrial contraction, and
(b) assessing the mitral annulus through tissue Doppler imaging in individuals without
mitral abnormalities, enabling precise evaluation of left ventricular relaxation (e’ wave) and
left ventricular filling pressure (E/e’ ratio). Low filling pressures or impaired relaxation
patterns are indicated by E/A ≤ 1 and E/e’ ≤ 13. High filling pressures or pseudo-normal
patterns are identified when E/A > 1 and E/e’ > 13. The presence of E/A > 2 signifies
increased filling pressure with restrictive patterns [13,93].

2.5.1. Application of Echocardiography during the Weaning Process

There are numerous studies in the literature discussing the role of hemodynamic
parameters in predicting weaning outcomes in mechanically ventilated patients. In a study
conducted by Caille et al., researchers aimed to identify predictive indices of weaning
failure of cardiac origin. They found out that when examining patients before SBT, patients
with an ejection fraction of the left ventricle < 35% and an E/e’ ratio > 7.8 were more likely
to experience weaning failure [94]. Additionally, Moschietto et al. concluded that E/e’ may
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aid in the prediction of weaning failure at the bedside with a cut-off value of 14.5, which
had a specificity of 95.8% and a sensitivity of 75%, which suggests an association between
diastolic dysfunction and weaning failure. However, in contrast to the findings of Caille
et al., they found that systolic dysfunction had no association with weaning outcomes [95].
Moreover, Lamia et al. and Papanikolaou et al. also showed a positive association between
TTE parameters of diastolic failure, specifically E/e′, and weaning failure [96,97]. Lately,
there have been inconsistent findings reported in the literature. Sanfilippo et al. performed
a meta-analysis to assess if there is an association between hemodynamic parameters and
the outcomes of weaning from MV. They found that failure of weaning was associated
with parameters that indicate worse diastolic function in the left ventricle (E wave, e’ wave,
E/e’) and a high E/e’ ratio. No association between left ventricular systolic dysfunction
and weaning failure was observed [98].

Based on existing literature, assessment of the diastolic function, such as the E wave,
e’ wave, and E/e’ ratio, could be essential to assessing a patient’s readiness for ventilator
weaning. However, given the paucity of evidence, the literature should focus on clarifying
the role of left ventricular ejection fraction and right ventricular function and setting clear
E/e’ cut-off values that help us determine patients who are at high risk of weaning failure.

2.6. Ultrasonographic Assessment of Respiratory Physiotherapy

Respiratory physiotherapy stands as an important component in the comprehensive
care of critically ill patients within the ICU. The expertise of physiotherapists helps decrease
the incidence of complications linked to MV, such as ventilator-associated pneumonia [99],
by enhancing lung volumes, removing respiratory secretions, and improving overall ven-
tilation. Some of the most commonly used techniques are percussion, chest vibrations,
positioning, mobilization, suctioning, manual hyperinflation, and specialized cough maneu-
vers [100–102]. Nevertheless, to gain the greatest benefit from these techniques, effective
assessment tools can be necessary.

The use of ultrasonography may help identify lung diseases that are responsive to
respiratory physiotherapy, as well as monitor the effectiveness of treatment. The tools tra-
ditionally used in their assessment are lung auscultation and chest radiographs. However,
some studies have shown that the diagnostic accuracy of these tools is limited [103,104].
For that, LUS emerged as an accurate, dependable, and sensitive alternative for diagnosing
prevalent chest pathologies and monitoring the effectiveness of respiratory physiother-
apy [105,106].

For instance, in cases where ultrasound imaging reveals lung consolidation featuring
fluid bronchograms in mechanically ventilated patients, physiotherapists can employ tech-
niques aimed at enhancing expiratory flow rates, such as huffing or exsufflation, in addition
to alterations to the ventilator settings as part of their management strategy. Throughout
this process, LUS can also be used to assess the efficacy of treatment. Reductions in the size
of the consolidation and visualization of air bronchograms instead of fluid bronchograms
serve as indicators of the treatment’s effectiveness [105].

In an observational study carried out by Battaglini et al., which focused on assessing
the impact of respiratory physiotherapy (RPT) on the oxygenation levels of 20 severely
ill COVID-19 patients who were receiving MV during the weaning phase, although RPT
led to improved oxygenation in these patients, this improvement was not associated with
a statistically significant reduction in LUS scores. This may be attributed to the study’s
relatively small sample size and the distinctive pattern of aeration loss commonly observed
in COVID-19 patients. Nonetheless, a positive correlation was observed between improved
LUS scores and the percentage of lung gas volume as determined by CT scans. This
observation suggests that RPT techniques may be particularly advantageous for patients
with better lung aeration. These results support the potential role of LUS when assessing
lung aeration both before and after RPT [107].

Hansell et al. conducted a prospective cohort study highlighting the advantages
of employing LUS in evaluating changes in lung aeration during RPT. They examined
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43 mechanically ventilated patients in the ICU and reported that LUS was able to detect lung
aeration after respiratory physiotherapy. Nevertheless, it is important to note that this study
was not designed to evaluate the efficacy of particular respiratory physiotherapy treatments
or to explore the utilization of LUS in guiding physiotherapy practices. Therefore, larger,
more precisely designed studies are needed to delineate the exact role of LUS during RPT
in mechanically ventilated patients and to establish its reliability [108].

3. Conclusions

Ultrasound is a readily accessible, non-invasive imaging modality that can be used in
bedside weaning assessments. Although it shows promise, further high-quality research is
needed to better establish its role during the weaning process and to set clear cut-off values
that can help identify patients who have a high probability of experiencing weaning failure.
Additionally, larger, well-designed studies are required to precisely delineate the role of
lung ultrasound during respiratory physiotherapy in mechanically ventilated patients and
confirm its reliability.
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