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Abstract: Background: Recent advances in computational pathology have shown potential in predict-
ing biomarkers from haematoxylin and eosin (H&E) whole-slide images (WSI). However, predicting
the outcome directly from WSIs remains a substantial challenge. In this study, we aimed to investigate
how gene expression, predicted from WSIs, could be used to evaluate overall survival (OS) in patients
with lung adenocarcinoma (LUAD). Methods: Differentially expressed genes (DEGs) were identified
from The Cancer Genome Atlas (TCGA)-LUAD cohort. Cox regression analysis was performed on
DEGs to identify the gene prognostics of OS. Attention-based multiple instance learning (AMIL)
models were trained to predict the expression of identified prognostic genes from WSIs using the
TCGA-LUAD dataset. Models were externally validated in the Clinical Proteomic Tumour Analysis
Consortium (CPTAC)-LUAD dataset. The prognostic value of predicted gene expression values was
then compared to the true gene expression measurements. Results: The expression of 239 prognostic
genes could be predicted in TCGA-LUAD with cross-validated Pearson’s R > 0.4. Predicted gene
expression demonstrated prognostic performance, attaining a cross-validated concordance index of
up to 0.615 in TCGA-LUAD through Cox regression. In total, 36 genes had predicted expression in
the external validation cohort that was prognostic of OS. Conclusions: Gene expression predicted
from WSIs is an effective method of evaluating OS in patients with LUAD. These results may open
up new avenues of cost- and time-efficient prognosis assessment in LUAD treatment.

Keywords: deep learning; computational pathology; biomarkers; survival; lung adenocarcinoma

1. Introduction

Lung cancer remains one of the most commonly diagnosed cancers globally and is the
leading cause of cancer-related mortality [1]. Lung adenocarcinoma (LUAD) is particularly
prevalent representing between 50 and 60% of non-small cell lung cancers [2]. As person-
alised medicine becomes more integrated into clinical practice, prognostic and predictive
biomarkers have become indispensable tools for treatment stratification and decision-
making [3]. However, reliance on invasive tissue biopsies and costly genomic assays poses
significant challenges globally to the broader integration of cancer biomarkers in the diag-
nostic pathway. Resource limitations, prolonged processing times, and patient health status
often restrict access to recent advancements in cancer treatment. This issue is compounded
as the number of recognised cancer biomarkers expands with ongoing research.

Computational pathology aims to make use of readily available data to open new
avenues for cost-effective biomarker evaluation. In particular, machine learning applied
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to haematoxylin and eosin (H&E) stained whole-slide images (WSIs) has shown promise
in predicting various molecular biomarkers [4–7]. However, end-to-end strategies, in
which machine learning is used to directly predict clinical outcomes, remain a challenge [8].
Multiple studies have investigated the ability of deep learning methods to directly predict
genomic and tumour microenvironment features directly from WSIs [9–12]. For exam-
ple, Echle et al. previously demonstrated that microsatellite instability can be predicted
from WSIs with clinical-grade performance in colorectal tumours, while Schmauch et al.
introduced the HE2RNA model to predict bulk RNA-seq profiles from WSIs [9,13]. More
recently, Alsaafin et al. showed that a deep learning model trained to learn gene expression
patterns could be used for WSI search [14]. However, the prognostic insights that can be
drawn from predicting genomic features such as gene expression remains to be explored.

Extensive research has been dedicated to identifying prognostic gene expression signa-
tures from transcriptomic data in LUAD. Various methods such as Cox regression, random
survival forests, and deep neural networks have been implemented by researchers with
the aim of stratifying patients into low- and high-risk groups [15–20]. Researchers have
also explored the use of multimodal artificial intelligence (AI) models aimed at evaluating
survival, integrating clinical, genomic, and histopathological information [21,22]. How-
ever, comprehensive genomic profiling of tumours is not routine in clinical practice, and
therefore, it may be several years before patients benefit from such studies. Meanwhile,
gold-standard histopathological assessment carried out by a trained pathologist is widely
regarded as routine and mandatory in most cancers, resulting in a trove of readily available
information in the form of H&E-stained glass slides which are increasingly becoming digi-
tised in clinical practice and in clinical trials. Applying AI to these data will undoubtedly
open up new avenues for cost- and time-efficient diagnostics.

In this study, we investigated the clinical value of surrogate biomarkers, specifically
gene expression for overall survival (OS) as predicted directly from WSIs. We evaluated
the predictability of gene expression markers directly from WSIs using deep learning and
assessed the prognostic value of the predicted gene expression.

2. Materials and Methods
2.1. Data

Data for the TCGA-LUAD data set (n = 589) was obtained from the Genomics Data
Commons (GDC) data repository (https://portal.gdc.cancer.gov/; accessed on 25 Septem-
ber 2023). Gene expression data was acquired using the GDCquery function from the
TCGABiolinks R package with data.category and workflow.type set to ’Transcriptome profiling’
and ’STAR counts’, respectively [23]. “Unstranded” gene expression counts were used for
the analysis. Diagnostic whole-slide images (WSIs) of formalin-fixed paraffin-embedded
tumour tissue from TCGA-LUAD were used to train models. The CPTAC-LUAD dataset
was used for external validation of models trained to predict gene expression [24]. CPTAC
gene expression data were downloaded from the GDC data repository, while clinical data
were downloaded from LinkedOmics (https://linkedomics.org/login.php#dataSource; ac-
cessed on 25 September 2023). WSIs for the CPTAC-LUAD cohort were retrieved from The
Cancer Imaging Archive (https://www.cancerimagingarchive.net/; accessed on 2 October
2023 ). Differences in clinicopathological characteristics between the TCGA-LUAD and
CPTAC-LUAD cohorts were evaluated using Fisher’s exact test, the Chi-square test, and
the Mann–Whitney U test. Statistical tests were implemented using the Python scipy library
(version 1.10.1) [25].

2.2. Differential Expression Analysis

Differential expression analysis was performed between tumour (n = 530) and
normal (n = 59) samples from the TCGA-LUAD using the limma R package [26]. Before
carrying out differential expression analysis, non-protein coding genes were excluded and
lowly expressed genes were filtered using the filterByExpr function from R’s edgeR package
with default parameters [27]. Expression counts were transformed using R package limma’s

https://portal.gdc.cancer.gov/
https://linkedomics.org/login.php#dataSource
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voom function [26]. Briefly, voom converts counts to log 2 counts per million and assigns
weights to each count observation based on its estimated variance, therefore producing
data that are more suited to the assumptions of linear models. Multiple-testing correction
was performed using Benjamini–Hochberg (BH) correction. Differentially expressed genes
(DEGs) were defined as having an adjusted (adj.) p < 0.05 and a | log(FC)| > 1 [28].

2.3. Identification of Prognostic DEGs

Cox regression adjusted for age, tumour stage, and sex was carried out independently
on DEGs to identify genes associated with OS. Prognostic genes were defined as having
a 95% confidence interval that did not cross β = 0 and adj. p < 0.05, where p-values
were adjusted for multiple-testing using the BH correction. We excluded features found
to violate the non-proportional hazards assumption of a Cox regression with p < 0.05.
The resulting set of prognostic DEGs was then predicted from WSIs using attention-based
multiple-instance learning (AMIL). All Cox analyses were performed using the Python
lifelines library (version 0.27.8) [29].

2.4. WSI Processing

The pipeline for predicting gene expression and OS from WSIs can be divided into
three broad steps, image preprocessing, feature extraction, and model training.

2.4.1. Image Preprocessing

Non-overlapping patches with a size of 224× 224 pixels were extracted from WSIs at
a resolution of 0.5 µm per pixel. Background and blurry patches were filtered using Canny
edge detection with an edge threshold of two or fewer defining the rejection criteria [30].
After standardising the brightness across individual WSIs, colour normalisation of extracted
patches was carried out using the Macenko method to reduce the effect of stain variation
on model training [31].

2.4.2. Feature Extraction

Each processed 224× 224 pixel image patch was embedded into a feature vector of
size 768 using the CTransPath model [32]. CTransPath, based on the SwinTransformer
architecture, leverages both the hierarchical arrangement of convolutional neural networks
(CNNs) with the global self-attention mechanisms innate to transformers. Wang et al.
trained CTransPath with a custom contrastive learning approach that was optimised to
histopathology data by leveraging the fact that many patches both within and across
WSIs share semantically similar information. This method of pretraining was shown to
outperform a range of other feature extraction models, from Imagenet pre-trained CNNs to
other contrastive learning-based transformers, at generating meaningful representations
from histopathology data [32]. The CTransPath model and weights are publicly available
at https://github.com/Xiyue-Wang/TransPath (accessed on 20 September 2023).

2.4.3. AMIL Model Training

AMIL models were trained on the extracted patch features to predict selected targets [7,33].
The AMIL model was selected due to its ability to operate effectively in a weakly-supervised
manner (i.e., using WSI-level labels rather than region-level annotations) and relatively
efficient training time compared to other deep learning models [34]. All AMIL models
were implemented in PyTorch (version 2.1.0) [35]. Min–max standardisation, carried out
using the sklearn preprocessing library (version 1.3.1), was applied to the processed gene
expression data prior to model training [36]. Similarly, external validation data were
standardised using min–max scaling before deployment, and predicted scores were inverse
transformed to interpret and visualise results.

Before passing the patch embeddings to the attention module, a multi-layer perceptron
(MLP) with rectified linear unit (ReLU) activation was employed to embed K× 768 features
to output 256-dimensional vectors hk for each patch k, where K, the maximum number of

https://github.com/Xiyue-Wang/TransPath
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tiles randomly sampled per sample at each epoch, was set to 512. The resulting feature
vectors hk were then passed to an attention module to determine the attention score ak
for each tile using Equation (1), where h ∈ R256, V ∈ R128×256, w ∈ R128×1. The attention
module consisted of a fully connected linear layer and a tanh activation function, followed
by a second fully connected linear layer and softmax activation, resulting in an K × 1
attention score vector.

ak =
eWT tanh(Vhk)

∑K
j=1 e

WT tanh(Vhj)
(1)

The resulting attention score vector ak was multiplied by the K× 256 tile-level fea-
ture vectors via Equation (2), where hi is the i-th tile’s embedding to obtain a single
aggregated feature vector representing each WSI. This MIL pooling operation results in a
single 1× 256 feature vector hsum per WSI.

hsum =
i=1

∑
K

aihi (2)

The final classification was achieved by passing the batch of hsum vectors through a
batch normalisation layer and a dropout layer with probability set to 50%. The resulting
output was finally passed to a fully connected layer with softmax activation to obtain the
desired prediction. A schematic of the AMIL model architecture is shown in Figure 1c.
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Figure 1. (a) Preprocessing of WSIs. WSIs were tiled into patches with a size of 224× 224 pixels, and
patches were subsequently colour normalised using the Macenko method [31]. (b) CTransPath feature
extraction. Patches were fed to the three convolutional layers and four SwinTransformer blocks of
CTransPath to extract 1× 768 features per patch. (c) AMIL model architecture. Patch features were
first passed through an MLP with ReLU activation resulting in B× K× 256 feature vectors, where
B is the batch size, and K is the number of patches sampled at each epoch. Attention scores were
then computed for each of the inputs using two MLPs with hyperbolic tan and softmax activation,
respectively. The attention scores were multiplied with each patch embedding resulting in a single
1× 256 feature vector per WSI in the batch. A final MLP with sigmoid activation was used for the
final prediction.

Models were trained for 25 epochs at each fold using the Adam optimiser and a
batch size of 64 [37]. The balanced mean-squared error (Equation (3)) was used as the
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loss function for models trained to predict gene expression [38]. In Equation (3), N is the
number of samples, and wi is the sample weight assigned to the i-th sample.

BalancedMSE =
1
N

N

∑
i=1

wi(yi − ŷi)
2 (3)

The Cox proportional hazards loss function was used for the survival-based model,
as defined in Equation (4). All hyperparameters remained the same across the gene
expression- and survival-based AMIL models. In Equation (4), S denotes the set of indices
corresponding to observed events in the dataset, ĥθ denotes the risk score as obtained from
the model’s output, t refers to the survival time, xi refers to the i-th sample, and xj refers to
the j-th sample.

L(θ) = − 1
|S| ∑i∈S

ĥθ(xi)− log ∑
j:tj≥ti

exp(ĥθ(xj))

 (4)

2.4.4. Cross-Validation in TCGA-LUAD Dataset

Models were trained on the TCGA-LUAD dataset using 5-fold cross-validation. Deep
learning models in computational pathology are known to be at risk of learning confounders
in WSIs which may lead to an overestimation of model performance in cross-validation
experiments [39]. To mitigate the impact of potential confounders when evaluating model
performance, a tissue-source site-preserved cross-validation setup was implemented. This
ensured that all samples belonging to a particular tissue-source site in the TCGA were
assigned to either the training or testing fold [39]. Additionally, folds were also optimised
to maintain the representative distribution of the target variables across the dataset by
binning samples into 5 quantiles according to the target variable and maintaining an equal
representation of quantiles in each fold. For the survival-based model, the survival time of
uncensored patients was used to generate the 5 quantiles. Optimisation was carried out
using the cvxpy (version 22.1.0.0) and cplex (version 1.3.1) Python packages [40,41].

2.5. Model Evaluation

Cross-validated Pearson’s R (i.e., the mean Pearson’s R across the test sets of the
cross-validation) was used to evaluate the predictability of gene expression in the TCGA-
LUAD dataset. The prognostic value of genes that could be predicted with cross-validated
Pearson’s R greater than 0.4 was evaluated by aggregating predictions in the test sets
of each fold and fitting a Cox regression with age, sex, and stage independently to each
gene. Those genes with 95% confidence interval of the hazard ratio (HR) which did
not cross 1 and p < 0.05 were considered statistically significant and were selected for
external validation on the CPTAC-LUAD dataset. Predicted gene expression in CPTAC-
LUAD was defined as being prognostic if the 95% confidence interval of the HR did not
cross 1 and p < 0.05. A step-by-step representation of the study design workflow is
provided in Supplementary File S3. To facilitate comparison with previous literature aimed
at evaluating OS from WSIs in TCGA-LUAD, cross-validated performance in TCGA-LUAD
was evaluated according to the C-index. For each gene, a Cox regression model was fitted
to the actual gene expression of the four training folds, and its performance was evaluated
on the predicted expression in the corresponding test fold. This procedure was carried
out for each cross-validation fold, and the mean C-index across folds and the standard
deviation were reported for each gene. The survival-based AMIL model was evaluated
according to the cross-validated C-index in the TCGA-LUAD dataset to enable comparison
with concordance performance based on the Cox regression of predicted gene expression.

2.6. Patient Stratification by Real and Predicted Gene Expression

Patients in the CPTAC-LUAD dataset were stratified into low- and high-risk groups
via a gene expression cut-off determined using KMeans clustering with k set to 2 [42]. For
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each gene, risk groups were generated using real and predicted gene expression separately.
Performance at stratifying samples using either real or predicted gene expression was
compared via Kaplan–Meier plots, log-rank p values, HRs, and C-indices. To calculate HRs
and C-indices, the risk group was used as a covariate for Cox regression along with age,
sex, and stage in order to evaluate the prognostic relevance of the WSI-derived risk group.

2.7. Gene Ontology Enrichment Analysis and Protein–Protein Interactions

Gene ontology (GO) enrichment analysis was carried out to identify biological pro-
cesses significantly associated with the genes whose predicted expression was found
to be prognostic of OS in the CPTAC-LUAD external validation dataset [43,44]. The
top 20 biological processes as ranked by gene ratio were reported, where the gene ratio
was defined as the proportion of genes annotated with the respective GO term relative to
the total number of genes being analysed. GO enrichment was performed using the clus-
terProfiler R package (version 4.8.3) [45]. Protein–protein interactions (PPIs) were assessed
with STRING (version 12.0) to understand the relatedness of genes that had predicted
expression from WSIs that was prognostic of OS [46].

3. Results
3.1. Data and Participant Characteristics

Clinicopathological characteristics for the TCGA-LUAD and CPTAC-LUAD cohorts
are described in Table ??. Of the 530 cases in TCGA-LUAD, 478 had WSIs available,
and 517 had gene expression data available for analysis. After excluding 16 cases for
failing to have the required metadata for processing, a total of 462 cases had WSI and gene
expression data available. The CPTAC-LUAD cohort consisted of 110 participants, of which
99 had paired tumour WSI and gene expression data available and were therefore used for
external validation.

Table 1. Clinicopathological characteristics for patients in TCGA-LUAD and CPTAC-LUAD cohorts.
p-values denoting differences between the TCGA-LUAD and CPTAC-LUAD cohorts were derived
using Fisher’s exact test for age, sex, and OS status; the Chi-square test for stage, T stage, and N stage;
and the Mann–Whitney U test for follow-up months. OS: overall survival; NA: not available.

Characteristic

TCGA-LUAD CPTAC-LUAD
p-Value

N Mean
(SD) % %

Missing N Mean
(SD) % %

Missing

Age 12.54% 0.00% 2.3× 10−1

> 65 255 - 45.05% 45 - 40.54%
≤ 65 240 - 42.40% 65 - 58.56%

Sex 9.19% 0.00% 3.4× 10−3

Male 239 - 42.23% 72 - 64.86%
Female 275 - 48.59% 38 - 34.24%

Stage 9.54% 0.00% 2.0× 10−1

Stage I 278 - 49.11% 58 - 52.73%
Stage II 124 - 21.91% 30 - 27.27%
Stage III 83 - 14.66% 21 - 19.09%
Stage IV 27 - 4.77% 1 - 0.91%

T 9.19% 0.00% 3.5× 10−1

T1 169 - 29.86% 27 - 24.32%
T2 277 - 48.94% 70 - 63.06%
T3 46 - 8.13% 12 - 10.81%
T4 19 - 3.36% 1 - 0.90%
TX 3 - 0.53% 0 - 0.00%

M 9.89% 100% NA
M0 345 - 60.95% NA NA NA
M1 25 - 4.41% NA NA NA
MX 140 - 24.73% NA NA NA
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Table 1. Cont.

Characteristic

TCGA-LUAD CPTAC-LUAD
p-Value

N Mean
(SD) % %

Missing N Mean
(SD) % %

Missing

N 9.36% 0.00% 4.6× 10−1

N0 331 - 58.48% 75 - 67.57%
N1 97 - 17.14% 17 - 15.32%
N2 73 - 12.90% 18 - 16.27%
N3 2 - 0.35% 0 - 0.00%
NX 10 - 1.77% 0 - 0.00%

OS Status 9.19% 0.90% 5.6× 10−5

Alive 328 - 57.95% 82 - 73.87%
Dead 186 - 32.86% 24 - 26.63%

Follow-up Months - 29.73
(29.52) - - - 24.78

(17.75) - - 2.1× 10−1

3.2. Evaluating OS Directly from TCGA-LUAD WSIs

To establish a baseline and enable comparison against using predicted gene expression
to evaluate OS in LUAD patients, OS was evaluated directly from the WSIs using the
survival-based AMIL model. A cross-validated C-index of 0.562 (±0.067) was attained in
the TCGA-LUAD dataset using the Cox proportional hazards loss function.

3.3. Prognostic Gene Expression in LUAD

Of the 60,660 transcripts downloaded from the GDC data repository, 9047 were
brought forward for differential expression analysis after initial filtering of non-protein
coding and lowly expressed genes. A total of 3307 DEGs were identified between tu-
mour and normal tissue in the TCGA-LUAD cohort (adj. p < 0.05; | log(FC)| > 1), of
which 1291 were upregulated, and 2016 were downregulated. After applying univariate
Cox regression, 318 of the 3307 DEGs failed the non-proportional hazards test and were
therefore excluded from further analysis. Of the remaining genes, 239 were prognostic of
OS through adjusted univariate Cox regression (95 % confidence interval that does not cross
HR of 1; adj. p < 0.05). This set of 239 genes was subsequently used for training AMIL mod-
els in TCGA-LUAD using preserved site cross-validation to predict gene expression directly
from WSIs. Results of all Cox regression analyses are provided in Supplementary File S1.

3.4. Predicting Prognostic Gene Expression Directly from Whole-Slide Images

Separate AMIL models were trained to predict the expression of 239 prognostic genes
directly from WSIs. Of the 239 genes, 126 (52.3%) could be predicted with cross-validated
R > 0.4 and therefore had predicted expression subject to univariate Cox regression adjusted
for age, sex, and stage. In total, 114 (90.5%) of the subset of 126 genes had predicted
expression that was prognostic of OS. Predicting the expression of these 114 genes was
externally validated in the CPTAC-LUAD dataset using the best-fold model from the cross-
validation in TCGA-LUAD, as evaluated by Pearson’s R. Of the 114 genes, 112 (98.2%) were
externally validated in CPTAC-LUAD with a Pearson’s R > 0.4. For illustrative purposes,
correlation plots of the top nine genes as ranked by Pearson’s R are shown in Figure 2a–i.
Full results of correlation analyses in TCGA-LUAD and CPTAC-LUAD are provided in
Supplementary File S2.
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Figure 2. External validation on CPTAC-LUAD dataset. Correlation plots for the top 9 genes as
ranked by Pearson’s R are shown. (a) TPX2. (b) CDCA5. (c) PRR11. (d) CDC20. (e) CKAP2L.
(f) KPNA2. (g) KIF4A. (h) TROAP. (i) FOXM1. (j) Forest plot of the 36 genes that had predicted
expression from WSIs in the CPTAC-LUAD dataset that was found to be prognostic of OS.

3.5. Evaluating the Prognostic Relevance of Gene Expression Predicted Directly from WSIs

The prognostic relevance of predicted gene expression was evaluated in the TCGA-
LUAD dataset using the cross-validated C-index. This meant that Cox regression models
were fitted to training sets and deployed on the predicted expression of the corresponding
test sets, and the mean C-index across folds was determined for each gene independently.
The highest mean C-index in the TCGA-LUAD dataset was attained using predicted
GAPDH expression (C-index = 0.615 ± 0.052). Cross-validation results for the top 20 genes
as ranked by the mean C-index are shown in Figure 3.

Figure 3. Prognostic relevance of predicted gene expression in TCGA-LUAD using cross-validated
C-index. Box plots of cross-validated C-index for the top 20 genes are shown. Red diamonds represent
the mean C-index across folds.
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Of the 112 genes that were predictable from WSIs with R > 0.4 in the CPTAC-LUAD
dataset, 36 had predicted expression that was prognostic of OS as evaluated through
univariate Cox regression adjusted for age, sex, and stage. All 36 predicted gene expressions
passed the non-proportional hazards test (p > 0.05). Log HRs and corresponding p-values
for genes with predicted expression that was found to be prognostic in CPTAC-LUAD are
shown in Figure 2.

3.6. Stratifying Patient-Based Gene Expression Predicted from WSIs

For each of the 36 genes that had predicted expression that was prognostic of OS,
stratification according to real expression was compared with stratification according to
predicted expression. Risk group was used as a covariate in Cox regression adjusting for age,
sex, and stage to calculate statistics. The best-performing stratification in CPTAC-LUAD, as
measured by the C-index, based on predicted gene expression was attained with PIMREG
(C-index = 0.806). For comparison, using only the PIMREG expression-derived risk group
as a covariate in the Cox regression yielded a C-index of 0.616 (Supplementary File S1).
On average, the C-index experienced a minimal decrease of 0.00495 when comparing
stratification using real gene expression against gene expression predicted from WSIs.
Notably, 14 genes (highlighted in bold in Table 2) exhibited statistically significant HRs for
the risk group established from predicted gene expression (95% CIs on HR not crossing 1,
and p-values less than 0.05), highlighting their prognostic value when adjusting for age,
sex, and stage. These genes consisted of CCNB2, CCNA2, HJURP, KPNA2, FAM83D, SGO1,
MELK, SAPCD2, SLC2A1, PIMREG, TPX2, GAPDH, CDKL2, and ZNF540. The C-indices,
HRs, CIs, and corresponding p-values of the Cox regressions for the risk group derived
from real and predicted gene expression of the 36 genes are shown in Table 2. Statistics for
Cox regressions carried out directly on gene expression values, as well as risk group, are
provided in Supplementary File S1.

Table 2. Stratification of CPTAC-LUAD patients into high- and low-risk groups based on real
and predicted gene expression. HRs with CIs and p-values are reported as well as C-indices and
differences in the C-index between each the Cox regression, with real and predicted expression for
each gene. HRs and C-indices were computed using risk group as a covariate in Cox regression along
with age, sex, and stage. Genes that had HR 95% CIs for risk group from predicted gene expression
that did not cross 1 and p-value from the Cox regression less than 0.05 are highlighted in bold.

Gene Real HR [CI] Real p Real C-Index Pred. HR [CI] Pred. p Pred.C-Index ∆ C-Index

NDC80 6.29 [1.92, 20.67] 0.0024 0.79 2.61 [0.91, 7.49] 0.0750 0.78 −0.0036
CCNB2 4.63 [1.58, 13.59] 0.0053 0.78 3.05 [1.10, 8.47] 0.0323 0.78 −0.0004
DEPDC1 4.36 [1.56, 12.18] 0.0049 0.78 1.95 [0.78, 4.88] 0.1513 0.78 0.0022
CCNA2 4.36 [1.55, 12.27] 0.0052 0.80 3.25 [1.13, 9.33] 0.0285 0.77 −0.0260
RRM2 4.16 [1.56, 11.13] 0.0045 0.79 1.99 [0.76, 5.22] 0.1631 0.77 −0.0228
PLK4 3.92 [1.37, 11.23] 0.0011 0.79 2.13 [0.82, 5.53] 0.1218 0.77 −0.0197
HJURP 3.75 [1.39, 10.12] 0.0092 0.81 2.91 [1.09, 7.78] 0.0329 0.78 −0.0322
KPNA2 3.58 [1.34, 9.55] 0.0108 0.79 2.79 [1.01, 7.71] 0.0480 0.79 −0.0058
SKA1 3.42 [1.28, 9.10] 0.0140 0.80 2.40 [0.89, 6.42] 0.0820 0.78 −0.0242
FAM83D 3.09 [1.13, 8.43] 0.0277 0.77 3.50 [1.27, 9.68] 0.0156 0.79 0.0170
BIRC5 2.93 [1.14, 7.55] 0.0255 0.79 2.48 [0.94, 6.53] 0.0655 0.79 −0.0004
FOXM1 2.90 [1.15, 7.31] 0.0236 0.81 2.00 [0.77, 5.18] 0.1552 0.78 −0.0260
SGO1 2.86 [1.10, 7.45] 0.0310 0.78 3.05 [1.10, 8.46] 0.0325 0.78 0.0072
MELK 2.67 [1.04, 6.87] 0.0414 0.79 3.21 [1.17, 8.84] 0.0236 0.78 −0.0094
SAPCD2 2.66 [1.06, 6.66] 0.0368 0.79 3.42 [1.19, 9.87] 0.0228 0.79 −0.0076
TYMS 2.60 [1.02, 6.65] 0.0455 0.78 2.61 [0.98, 6.92] 0.0541 0.77 −0.0054
SLC2A1 2.56 [0.96, 6.83] 0.0595 0.78 4.28 [1.40, 13.12] 0.0109 0.80 0.0228
PIMREG 2.49 [0.96, 6.45] 0.0596 0.78 4.29 [1.50, 12.22] 0.0065 0.81 0.0210
TK1 2.41 [0.95, 6.12] 0.0641 0.76 1.70 [0.66, 4.39] 0.2727 0.77 0.0130
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Table 2. Cont.

Gene Real HR [CI] Real p Real C-Index Pred. HR [CI] Pred. p Pred.C-Index ∆ C-Index

TPX2 2.40 [0.94, 6.12] 0.0678 0.79 2.97 [1.07, 8.25] 0.0367 0.78 −0.0134
ANLN 2.39 [0.89, 6.37] 0.0825 0.78 2.50 [0.92, 6.85] 0.0738 0.78 0.0040
CCNB1 2.35 [0.91, 6.06] 0.0779 0.79 2.49 [0.89, 6.98] 0.0825 0.77 −0.0134
GAPDH 2.31 [0.83, 6.43] 0.1076 0.80 3.71 [1.22, 11.30] 0.0209 0.78 −0.0130
CDCA3 2.24 [0.84, 6.01] 0.1081 0.79 2.40 [0.92, 6.28] 0.0751 0.78 −0.0098
DLGAP5 2.21 [0.86, 5.70] 0.1017 0.80 1.95 [0.74, 5.11] 0.1774 0.77 −0.0269
CDCA5 2.14 [0.83, 5.49] 0.1140 0.78 2.18 [0.76, 6.26] 0.1466 0.78 −0.0022
DEPDC1B 1.75 [0.71, 4.31] 0.2259 0.78 2.40 [0.89, 6.42] 0.0820 0.78 −0.0013
ATAD2 1.29 [0.52, 3.16] 0.5843 0.77 2.20 [0.84, 5.78] 0.1088 0.78 0.0107
CDKL2 0.97 [0.39, 2.38] 0.9391 0.77 0.37 [0.14, 0.96] 0.0419 0.78 0.0134
CHIA 0.58 [0.23, 1.44] 0.2372 0.77 0.44 [0.17, 1.15] 0.0924 0.78 0.0143
VEGFD 0.54 [0.22, 1.33] 0.1811 0.77 0.50 [0.19, 1.35] 0.1720 0.77 0.0027
ZNF540 0.35 [0.13, 0.91] 0.0315 0.78 0.33 [0.12, 0.93] 0.0364 0.79 0.0134
ESYT3 0.33 [0.13, 0.85] 0.0224 0.79 0.45 [0.15, 1.28] 0.1348 0.78 −0.0054
PRDM16 0.22 [0.08, 0.59] 0.0025 0.80 0.21 [0.07, 0.70] 0.0104 0.78 −0.0233
HLF 0.20 [0.07, 0.54] 0.0016 0.79 0.39 [0.14, 1.08] 0.0690 0.79 −0.0076
SLC15A2 0.15 [0.05, 0.45] 0.0008 0.82 0.22 [0.07, 0.66] 0.0069 0.80 −0.0201

Pred.: predicted HR: hazard ratio; p: log-rank p-value; C-index: concordance index

Kaplan–Meier survival analysis further validated the patient stratification based on
both real and predicted gene expression. Figure 4 shows Kaplan–Meier plots for the top
two genes where upregulation was associated with a survival benefit and the top two genes
where downregulation correlated with improved survival, as ranked by HR (corresponding
plots for all 36 genes can be found in Supplementary File S3). C-indices, log-rank p-values,
and HRs of risk group from adjusted Cox regression for both real and predicted expression
are shown for each of the four genes. Predicted overexpression of PIMREG (Figure 4a) and
SLC2A1 (Figure 4b) was found to be associated with poorer OS, as evidenced by the HRs of
4.29 and 4.28, respectively. Meanwhile, predicted underexpression of SLC15A2 (Figure 4c)
and ZNF540 (Figure 4d) were found to be associated with poorer OS.

(a)

Figure 4. Cont.
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(b)

(c)

(d)

Figure 4. Kaplan–Meier Plots of CPTAC-LUAD patients as stratified by real and predicted gene
expression. Gene expression cut-offs were determined via KMeans clustering. Hazard ratios, log-rank
p-values, and concordance indices were determined using risk group, age, sex, and stage as covariates
in a Cox regression. (a) Patients stratified by real and predicted PIMREG expression. (b) Patients
stratified by real and predicted SLC2A1 expression. (c) Patients stratified by real and predicted
SLC15A2 expression. (d) Patients stratified by real and predicted ZNF540 expression. HR: hazard
ratio; p: log-rank p-value; C-index: concordance index
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3.7. GO Enrichment and PPI Network of Predictable Prognostic Genes

GO enrichment analysis of the 36 genes that had prognostic predicted expression
in CPTAC-LUAD revealed a high number of biological processes involved in cell cy-
cle regulation. The processes with the highest gene ratios included “chromosome seg-
regation” (Gene Ratio = 0.306; adj. p = 2.30 × 10−7), “mitotic cell cycle phase tran-
sition” (Gene Ratio = 0.306; adj. p = 2.43 × 10−7), “nuclear chromosome segregation”
(Gene Ratio = 0.250; adj. p = 2.61× 10−6), “chromosome localization” (Gene Ratio = 0.167;
adj. p = 3.45× 10−6), and positive regulation of cell cycle process (Gene Ratio = 0.222;
adj. p = 3.85× 10−6). The top 20 enriched biological processes are shown in Figure 5a.
Figure 5b shows the PPI network of the 36 genes that had predicted expression in the exter-
nal dataset that was prognostic of OS. The cluster of highly connected nodes represents
genes that were upregulated in patients with poor survival, while the eight genes that
were downregulated in patients with poor survival have nodes with few connections to
other nodes.

Figure 5. Analysis of the 36 genes that had predicted expression in CPTAC-LUAD that was prognostic
of OS. (a) Top 20 enriched biological processes for prognostic genes predicted from WSIs in LUAD as
ranked by gene ratio. Genes are ranked by the proportion of genes annotated with the respective
GO term relative to the total number of genes associated with that process. Each dot represents
a GO term related to biological processes, where the size of the dot indicates the count of genes
involved, and the colour denotes the adjusted p-value significance levels. (b) PPI network of the
predictable prognostic genes shows the complexity of interactions among the proteins they encode.
Nodes represent individual proteins, while the thickness of the edges reflects the strength of evidence
supporting each interaction.

4. Discussion

LUAD is a heterogeneous disease characterised by unique molecular and histologi-
cal subtypes [47]. While histopathological assessment by a trained pathologist is widely
regarded as routine in cancer diagnostics, comprehensive molecular profiling remains
cost-prohibitive in many clinical settings. Computational pathology promises to stream-
line future cancer diagnostic pipelines by enabling cost- and time-efficient evaluations of
biomarkers and prognosis from readily available H&E tissue sections. Extensive research
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in recent years has been dedicated to evaluating genomic biomarkers such as mutations
and microsatellite instability directly from WSIs using classification-based models. How-
ever, performance in end-to-end tasks, such as evaluating OS, has proved to be more
challenging [8]. In this study, we show that a machine learning model aimed at predict-
ing gene expression from LUAD WSIs can attain sufficient accuracy to have a tangible
clinical application.

4.1. Unsupervised Contrastive Learning Pretreained Feature Extraction and AMIL Regression Can
Effectively Predict Gene Expression in LUAD WSIs

In this study, we show that a machine learning framework consisting of CTransPath
feature extraction and AMIL prediction can effectively learn to predict the expression of
a number of genes directly from WSIs [32]. A key advantage of this method lies in its
weakly supervised nature, relying only on WSI-level labels without the need for detailed
annotations. Furthermore, manual annotations can introduce a source of bias in models,
particularly when it is unclear which tissue type might express certain genes. Developing
generalisable machine learning models in computational pathology is vital for the future
clinical translation of such methods. In this study, we achieved a high degree of general-
isability for models trained to predict gene expression in TCGA-LUAD when evaluated
in CPTAC-LUAD. Of the 114 genes that had expression that could be predicted with an R
greater than 0.4, 112 could also be predicted in CPTAC-LUAD with an R greater than 0.4.

4.2. Gene Expression Predicted from WSIs Can Stratify Patients with LUAD According to OS

Gene expression signatures have been widely used in research to evaluate OS in
LUAD [15–20,28]. For example, Zhou et al. established a three-gene signature that achieved
a C-index of 0.638 in TCGA-LUAD [28]. Through Kaplan–Meier analysis, we further
confirmed that gene expression could effectively classify patients into high- and low-risk
groups using KMeans clustering. For a number of genes, this relationship remained
consistent in the predicted expression data, underlining the AMIL models’ ability to
replicate clinically relevant trends observed in the actual gene expression data.

Chen et al. previously performed an ablation study to compare the performance of
a number of deep learning models at evaluating OS in TCGA-LUAD directly from WSIs
using a survival cross-entropy loss function [48]. To compare the results of this study
with those obtained by Chen et al., for each gene, the predicted gene expression from
the training set was used to fit a univariate Cox regression, and the model was tested on
the predicted expression of patients in the corresponding test set. This procedure was
carried out for each fold of the cross-validation experiments, and the mean C-index across
folds was evaluated (Supplementary File S1). In this study, we found that fitting and
deploying a Cox regression on predicted GAPDH gene expression using cross-validation in
TCGA-LUAD achieved a mean C-index of 0.615 (±0.052). Meanwhile, of the five models
used by Chen et al. to evaluate OS directly from TCGA-LUAD WSIs, the graph CNN
multiple-instance learning model achieved the highest C-index with 0.592 (±0.070) [48,49].
Since potential differences may exist in hyperparameters and model training protocols
between this study and prior work, we evaluated the performance of a survival-based
AMIL model. The survival-based model only differed from the gene expression models
by its loss function. The objective of the survival-based AMIL model was to generate a
risk score for each patient, offering a direct prognostic assessment based on the WSI. This
model served as a benchmark to evaluate the prognostic performance of the AMIL models
aimed at predicting gene expression. The cross-validated C-index of 0.562 achieved by the
survival-based model in this study is substantially lower than the performance attained
when using predicted gene expression to evaluate OS. This highlights that using machine
learning to predict surrogate biomarkers of OS can outperform machine learning models
trained to evaluate OS directly from WSIs.
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4.3. Cell Cycle-Related Biological Processes Correlate with Tumour Histopathology

The GO enrichment analysis conducted on the 36 prognostic genes identified from the
CPTAC-LUAD dataset underlines the influence of cell cycle-related biological processes on
prognosis in LUAD. For instance, the enrichment of “positive regulation of cell cycle process”
and “mitotic cell cycle phase transition” processes suggests that the deregulation of cell-
cycle control plays an important role in tumour progression and patient outcomes, a finding
that has been reported in several previous studies in the context of lung cancer [50–54].
Dysregulation of cell-cycle controls can lead to unchecked cellular proliferation, a hallmark
of cancer, and could be captured by the model through features such as increased cell
density and mitotic figures [51,55]. The predictive capacity of the AMIL model to infer
gene expression from histopathological slides may be partially explained by its ability to
recognise such nuclear features, which are the phenotypic manifestations of underlying
genetic activity. Other enriched biological processes, such as “chromosome segregation”
and “chromosome localization” processes suggest that the spatial dynamics and accurate
segregation of chromosomes may be correlated with tumour aggressiveness and patient
outcome. These enriched terms may reflect the genetic instability of the tumour cells, a hall-
mark that has been previously described as a risk factor for LUAD [56,57]. Chromosomal
instability has been previously correlated with histopathological features such as nuclear
size and abnormal mitotic figures, pointing to a potential mechanism through which the
AMIL model was able to learn to predict the expression of genes [58–60]. The prognostic
capability obtained from the model’s predictions suggests that these histopathological
patterns are not only reflective of tumour’s genomic state but also of its future behaviour.

4.4. Limitations and Future Directions

Despite the robustness of surrogate biomarker prediction for evaluating OS directly
from WSIs in the external validation dataset, our study has certain limitations. Firstly, we
restricted our analysis to a single cancer subtype. The predictability of gene expression
from WSIs, as well as the prognostic value of genes, is likely to differ between cancer
types. Secondly, despite including several hundred genes in our analysis, only 36 genes
were found to have predicted expression from WSIs that was prognostic of OS. Many
prognostic genes in LUAD did not have expression that could be reliably predicted from
WSIs. Furthermore, many of the predictable prognostic genes showed a high degree of
collinearity (Supplementary File S3). This indicates that the final set of 36 genes tend to be
differentially expressed together, limiting their potential use in constructing downstream
multi-gene prognostic models. Thirdly, while GO enrichment of predictable prognostic
genes reveals potential mechanisms by which the AMIL models may learn to predict gene
expression, further research into the histopathological basis for such predictions is required
to support these claims. Finally, our analysis has only considered LUAD patients as a
single cohort without accounting for the molecular and histological heterogeneity that
exists within LUADs. Each subtype of LUAD is likely to reveal a distinct set of significantly
prognostic genes; however, due to currently available sample sizes with paired WSI and
gene expression data, reliably interrogating the histological basis for these subtype-specific
prognostic genes remains a challenge. As larger datasets become available, we anticipate
that subsequent studies will be able to dissect the landscape of genes with predictable
prognostic expression in LUAD with a finer-grained approach.

5. Conclusions

While multiple studies have reported biomarkers that are predictable from WSIs, many
of these have focused on classification-based methods that fail to reach a performance that
is in a clinically relevant range [61]. In this study, the successful prediction of gene expres-
sion from WSIs and the demonstrated stratification of patients based on predicted gene
expression underscores the potential of deep learning models to capture clinically relevant
information from histopathology data. We show that using predicted gene expression from
WSIs to evaluate OS in LUAD patients performed better than predicting OS directly from
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the WSIs. The observed enrichment of cell cycle-related biological processes in predictable
prognostic genes provides a plausible link to histopathology features, such as mitotic rates
and nuclear atypia. This study sets a foundation for future research to explore the use of
surrogate biomarkers evaluated from WSIs to assist in assessing patient prognosis and to
extend these methodologies across other cancer types.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics14050462/s1. File S1: Cox Results; File S2: Expression
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Assignemnt; File S5: TCGA-LUAD Best-fold Models
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