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Abstract: Background: Despite a considerable amount of literature on dual-energy CT (DECT) iodine
uptake of the head and neck, the physiologic iodine uptake of this region has not been defined yet.
This study aims to establish reference values for the iodine uptake of healthy organs to facilitate
clinical application. Methods: Consecutive venous DECT scans of the head and neck were reviewed,
and unremarkable exams were included (n = 617). A total of 35 region of interest measurements were
performed in 16 anatomical regions. Iodine uptake was compared among different organs/tissues
and subgroup analysis was performed (male (n = 403) vs. female (n = 214); young (n = 207) vs. middle-
aged (n = 206) vs. old (n = 204); and normal weight (n = 314) vs. overweight (n = 196) vs. obese
(n = 107)). Results: Overall mean iodine uptake values ranged between 0.5 and 9.4 mg/mL. Women
showed higher iodine concentrations in the cervical vessels and higher uptake for the parotid gland,
masseter muscle, submandibular glands, sublingual glands, palatine tonsils, tongue body, thyroid
gland, and the sternocleidomastoid muscle than men (p ≤ 0.04). With increasing age, intravascular
iodine concentrations increased as well as iodine uptake for cerebellum and thyroid gland, while
values for the tongue and palatine tonsils were lower compared to younger subjects (p ≤ 0.03).
Iodine concentrations for parotid glands and sternocleidomastoid muscles decreased with a higher
BMI (p ≤ 0.004), while normal-weighted patients showed higher iodine values inside the jugular
veins, other cervical glands, and tonsils versus patients with a higher BMI (p ≤ 0.04). Conclusion:
physiologic iodine uptake values of cervical organs and tissues show gender-, age-, and BMI-related
differences, which should be considered in the clinical routine of head and neck DECT.

Keywords: iodine contrast media; iodine quantification; iodine uptake reference values; computed
tomography; head and neck imaging

1. Introduction

CT imaging of the head and neck region has a central role in the diagnosis of acute and
non-acute inflammatory processes, trauma, and malignancies. Due to its widespread avail-
ability and low costs compared to MRI, contrast-enhanced CT is frequently the first imaging
method of choice used to obtain the necessary information in this complex anatomical
region, despite its inferiority in soft tissue visualization.

However, following technological advances in dual-energy CT (DECT), CT-based
diagnostics can be significantly enhanced and refined [1,2]. Courtesy of the dual-energy
technology and the resulting sophisticated material decomposition analysis, virtual maps
of the iodine uptake of tissues can be reconstructed and absolute values (in mg/mL) can be
obtained, presenting a highly accurate, novel quantitative parameter [3–9].
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Despite the extensive interest in utilizing iodine values as a measurable biomarker in
abdominal CT—mainly to differentiate between benign and malignant lesions or quanti-
tative perfusion analyses—there is hardly any application in the field of head and neck
imaging. This shortfall is largely due to the constrained experience with DECT in this small
yet anatomically complex region, compounded by the absence of established reference
values for iodine uptake.

Recognizing the potential of DECT to enhance diagnostic imaging by offering molec-
ular insights beyond traditional anatomical assessments, this study aims to define and
establish reference values for the iodine uptake of healthy head and neck organs and
significant anatomical landmarks. The capability to measure absolute iodine concentrations
introduces a new dimension to imaging, enabling the accurate differentiation between
pathological and non-pathological states, which is crucial for effective patient management
in the head and neck region.

The development of a normative database for iodine uptake values is a critical step to-
ward unlocking DECT’s clinical potential in the head and neck region, enhancing clinicians’
ability to interpret DECT images with greater confidence and precision. Such standardiza-
tion paves the way for the integration of iodine concentration maps into routine diagnostic
workflows and facilitates personalized treatment approaches.

Furthermore, quantifying iodine uptake through DECT could significantly advance
the early detection of diseases in the head and neck area by providing objective criteria for
assessing tissue characteristics. This early detection capability highlights DECT’s role not
only in diagnosis but also in the proactive management of health conditions, offering a tool
that improves conventional imaging modalities by identifying deviations from normal that
may indicate the onset of disease.

In conclusion, by addressing the gap in DECT application within head and neck
imaging and establishing reference iodine uptake values, this study lays the groundwork
for future research aimed at expanding the clinical utility of this innovative imaging
modality. Ultimately, the goal is to enhance the diagnostic accuracy of DECT, contributing
to the advancement of personalized medicine and improving patient outcomes.

2. Materials and Methods
2.1. Study Population

After approval of our monocentric, retrospective study by our institutional review
board, we performed an analysis of our database for patients who had undergone clinically
indicated, contrast-enhanced DECT scans of the head and neck region between December
2016 and December 2020, with no pathologies detectable in CT imaging (scans were
performed in clinical routine, e.g., after trauma, to exclude infections or tumors, or to
exclude cervical lymphadenopathies and other suspected cervical pathologies). The absence
of pathologies was carefully confirmed by two independent radiologists before inclusion.
Common laboratory values of all patients were within the normal range. None of the
subjects had a history of known head/neck surgery, malignancy, or other known diseases.
In a follow-up period of one year, none of the patients showed cervical symptomatology
(confirmed via anamnestic interviews, clinical examinations, ultrasound examinations, or
cross-sectional imaging). Further exclusion criteria were patients younger than 18 years,
imaging artifacts, and patients with systemic treatment. Figure 1 depicts the flowchart of
patient inclusion.
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Figure 1. Flowchart of study inclusion.

2.2. DECT Imaging Technique

All examinations were performed on the same third-generation dual-energy CT scan-
ner (SOMATOM Force, Siemens Healthcare, Forchheim, Germany). Patients were examined
in the supine position and CT images were acquired from the orbital roofs to the aortic
arch. The study protocol consisted of a single venous-phase acquisition in DECT mode,
which automatically started 70 s after the beginning of the injection of Iomeprol (Imeron
350, Bracco Imaging, Konstanz/Germany). Contrast media (1.2 mL/kg body weight) was
injected into a superficial vein of the forearm at a flow rate of 3 mL/s. The following
parameters were used for DECT imaging: 90 kV and 190 mAs per rotation on tube A; Sn
150 kV with tin filter and 95 mAs per rotation on tube B; and 0.5 s rotation time, 0.6 pitch,
and 2 × 192 × 0.6 mm collimation. All image series were reconstructed using a 3.0 mm
slice thickness in a 2.0 mm increment by using a soft-tissue (Bv40) kernel.

2.3. Iodine Mapping and Uptake Measurements

Dual-energy analysis was performed by using the commercially available post-processing
software liver virtual non-contrast (VNC) (syngo.via VA30, Siemens Healthineers,
Forchheim/Germany). Initially designed for iodine measurements in the liver, the liver
VNC software has already been used for measurements in various anatomic regions [4,5,
10,11]. The basis of its algorithm is a three-material decomposition of iodine, fat, and tissue.
The liver VNC application enables the visualization of iodine (contrast agent) concentration
by decomposing the iodine content out of the Hounsfield unit value of any voxel and
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displaying the pure iodine map as a colored overlay on the gray-scale image. The iodine
slope was calculated automatically using the software at 90 keV and 150 keV. Settings were
left on default (Resolution: 2, Maximum [HU]: 3071, Iodine Ratio 3.46).

By performing circular dual-energy region of interest (ROI) measurements on the
generated maps, iodine density can be calculated (in mg/mL). The measurements were in-
dependently performed by two radiologists (with 6 and 15 years of experience, respectively)
in all patients and mean values were calculated.

Depending on the size of the organ/region, ROI measurements were targeted to
be between 0.4 cm2 and 1.0 cm2 and were carefully placed to avoid the inclusion of
surrounding tissue. In total, 35 ROIs were placed in each study by 1 investigator and
the corresponding absolute iodine concentration values for each ROI were extracted. To
minimize the influence of patient-specific perfusions on the results, additional bilateral
measurements of the intraluminal iodine concentration of the common carotid artery were
performed to achieve data normalization by calculating the iodine ratio (absolute iodine
concentration of tissue/iodine concentration in the common carotid artery). To verify the
correctness of the measurements, an additional ROI was placed in an area where iodine
uptake was not expected (inside the trachea). A detailed list of the distribution of the
measurements can be found in Table 1. Examples of ROI placements are shown in Figure 2.

Table 1. Listing of the 35 ROI measurements with a corresponding description of their placements.

Structure Number of ROI ROI Placement

Carotid artery 2 central within the vessel at the level of
the thyroid gland

Jugular vein 2 central within the vessel at the level of
the thyroid gland

Temporal lobe 2 right and left temporal lobe

Cerebellum 2 right and left cerebellum

Parotid glands 2 right and left gland, avoiding duct

Masseter muscle 2 the superficial portion on both sides

Uvula 1 distal of the soft palatine

Submandibular glands 2 right and left gland, avoiding duct

Sublingual glands 2 right and left gland, avoiding
surrounding tissue

Palatine tonsils 2 at the most prominent portion

Tongue 2 right and left half of the tongue

Lingual tonsil 1 at the most prominent portion

Vocal cords 2 at the level of arytenoid cartilage

Thyroid gland 4 upper and lower portion, both sides

Cervical lymph nodes 5 one on each cervical lymph node level

Sternocleidomastoid muscle 2 common muscle belly
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Figure 2. Exemplary demonstration of ROI measurements on iodine maps: (A) The right submandibu-
lar gland; (B) A lymph node in cervical level II on the left side; (C) The right jugular vein; (D) The
right lobe of the thyroid gland.

2.4. Statistical Analysis

Mean values were calculated for each organ and structure. For the overall analysis
and the subgroup analyses, mean values and standard deviations (SD) were calculated.
Numerical values of continuous variables were listed as mean values ± standard deviation.
Gaussian data distribution was assessed using the Kolmogorov–Smirnov test. An unpaired
t-test and analysis of variance (ANOVA) with Tukey multiple comparison post hoc tests
were performed for normally distributed data. A Mann–Whitney U test and Kruskal–
Wallis tests were applied in case of non-normal distribution. A statistically significant
difference was defined by a p-value less than 0.05. Statistical analysis was performed by
using GraphPad Prism Version 7.0 (GraphPad Software; La Jolla, CA, USA) and IBM SPSS
Statistics Version 28 (IBM SPSS statistics; Armonk, NY, USA).
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3. Results
3.1. Patient Collective

The final study cohort consisted of 617 patients (Caucasian: 596, Asian: 13, Black: 4,
Hispanic: 4; mean age, 55.0 ± 18.1 years; range, 18–98 years), including 214 women (mean
age, 54.4 ± 18.6 years; range, 18–98 years) and 403 men (mean age, 55.3 ± 17.8 years; range,
18–91 years).

Subgroups were defined regarding sex (male (n = 403) vs. female (n = 214)), age (18–48
(n = 207) vs. 49–64 (n = 206) vs. 65–98 (n = 204) years), and BMI (24.9 or below (n = 314) vs.
25–29.9 (n = 196) vs. 30.0 and above (n = 107) kg/m2).

3.2. Overall Iodine Values

There were no side differences in the same subjects for paired structures and organs
regarding absolute iodine values (p > 0.43). Therefore, mean values were calculated for
paired organs/structures.

Besides the contrast-media-enhanced jugular vein with 6.66 ± 2.7 mg/mL and the
carotid artery with 5.88± 2.0 mg/mL, the highest absolute iodine concentration values were
documented for the thyroid gland with mean values of 4.68 ± 1.5 mg/mL. The temporal
lobes with mean values of 0.82 ± 0.4 mg/mL and the neck muscles (sternocleidomastoid:
0.76 ± 0.3 mg/mL; masseter: 0.99 ± 0.4 mg/mL) demonstrated low iodine uptake. The
same trend was seen in the normalized iodine ratios. No iodine uptake was recorded in the
control measurements inside the trachea (air).

A detailed overview of the overall mean absolute iodine values and iodine ratios is
demonstrated in Table 2 and illustrated in Figure 3.

Table 2. Absolute iodine concentration and normalized iodine ratio values for the different structures
of the head and neck.

Structure Absolute Iodine Concentration in mg/mL
(Mean ± SD)

Normalized
Iodine Ratio

Carotid artery 5.88 ± 2.0 1

Jugular vein 6.66 ± 2.7 1.29 ± 1.2

Temporal lobe 0.82 ± 0.4 0.17 ± 0.1

Cerebellum 1.41 ± 0.4 0.29 ± 0.2

Parotid glands 1.84 ± 0.8 0.36 ± 0.3

Masseter muscle 0.99 ± 0.4 0.21 ± 0.2

Uvula 1.90 ± 0.9 0.37 ± 0.3

Submandibular glands 2.37 ± 1.2 0.46 ± 0.4

Sublingual glands 3.41 ± 1.0 0.67 ± 0.5

Palatine tonsils 1.62 ± 0.7 0.33 ± 0.3

Tongue 1.45 ± 0.5 0.29 ± 0.2

Lingual tonsil 1.20 ± 0.5 0.23 ± 0.2

Vocal cords 2.18 ± 0.9 0.43 ± 0.4

Thyroid gland 4.68 ± 1.5 0.93 ± 0.9

Cervical lymph nodes 1.72 ± 1.0 0.35 ± 0.3

Sternocleidomastoid muscle 0.76 ± 0.3 0.15 ± 0.1
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Figure 3. Absolute iodine values and normalized iodine ratios for the different organs and tissues of
the head and neck.

3.3. Impact of Sex

Women showed higher iodine concentrations in the carotid artery (6.31 ± 2.1 vs.
5.66 ± 1.8 mg/mL, p < 0.001) and in the jugular vein (7.56 ± 3.1 vs. 6.18 ± 2.3 mg/mL,
p < 0.001) as well as higher iodine uptake for all cervical glands: the parotid glands
(2.00 ± 0.8 vs. 1.76 ± 0.7 mg/mL, p < 0.001), submandibular glands (2.57 ± 1.3 vs.
2.27 ± 1.2 mg/mL, p = 0.004), sublingual glands (3.53± 1.0 vs. 3.35± 0.9 mg/mL, p = 0.04),
and the thyroid glands (5.07 ± 1.6 vs. 4.48 ± 1.4 mg/mL, p < 0.001). Furthermore, absolute
iodine values for masseter muscles (1.06 ± 0.4 vs. 0.96 ± 0.4 mg/mL, p = 0.003), the
tongue (1.52 ± 0.5 vs. 1.41 ± 0.5 mg/mL, p = 0.04), and palatine tonsils (1.74 ± 0.7 vs.
1.57 ± 0.6 mg/mL, p = 0.02) were higher in women than men.
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Regarding iodine ratios, women and men differed in the values for the jugular vein
(higher values for women), cerebellum (higher values for men), uvula (higher values for
male patients), and sublingual glands (higher ratio for men) (p < 0.05).

A detailed listing of all differences regarding sex is presented in Table 3 and Figure 4.

Table 3. Absolute iodine concentration and normalized iodine ratio values for female vs. male
(asterisk indicates statistical significance).

Structure
Absolute Iodine Concentration in mg/mL

(Mean ± SD) p-Values

Female Male

Carotid artery 6.31 ± 2.1 5.66 ± 1.8 <0.001 *

Jugular vein 7.56 ± 3.1 6.18 ± 2.3 <0.001 *

Temporal lobe 0.86 ± 0.5 0.80 ± 0.3 0.199

Cerebellum 1.42 ± 0.3 1.42 ± 0.4 0.926

Parotid glands 2.00 ± 0.8 1.76 ± 0.7 <0.001 *

Masseter muscle 1.06 ± 0.4 0.96 ± 0.4 0.003 *

Uvula 1.88 ± 1.0 1.91 ± 0.8 0.387

Submandibular glands 2.57 ± 1.3 2.27 ± 1.2 0.004 *

Sublingual glands 3.53 ± 1.0 3.35 ± 0.9 0.041 *

Palatine tonsils 1.74 ± 0.7 1.57 ± 0.6 0.018 *

Tongue 1.52 ± 0.5 1.41 ± 0.5 0.041 *

Lingual tonsil 1.25 ± 0.5 1.17 ± 0.4 0.078

Vocal cords 2.24 ± 0.9 2.14 ± 0.9 0.100

Thyroid gland 5.07 ± 1.6 4.48 ± 1.4 <0.001 *

Cervical lymph nodes 1.83 ± 1.3 1.66 ± 0.8 0.053

Sternocleidomastoid muscle 0.87 ± 0.3 0.70 ± 0.3 <0.001 *

Structure
Normalized Iodine Ratios

p-Values
Female Male

Jugular vein 1.38 ± 1.3 1.24 ± 1.1 0.008 *

Temporal lobe 0.17 ± 0.2 0.17 ± 0.1 0.073

Cerebellum 0.27 ± 0.2 0.30 ± 0.3 <0.001 *

Parotid glands 0.36 ± 0.2 0.37 ± 0.4 0.54

Masseter muscle 0.20 ± 0.2 0.21 ± 0.2 0.99

Uvula 0.34 ± 0.3 0.39 ± 0.3 0.001 *

Submandibular glands 0.46 ± 0.3 0.46 ± 0.4 0.53

Sublingual glands 0.65 ± 0.4 0.71 ± 0.6 0.049 *

Palatine tonsils 0.31 ± 0.2 0.34 ± 0.3 0.76

Tongue 0.29 ± 0.3 0.29 ± 0.2 0.48

Lingual tonsil 0.23 ± 0.1 0.24 ± 0.2 0.18

Vocal cords 0.41 ± 0.3 0.45 ± 0.5 0.35

Thyroid gland 0.94 ± 0.9 0.93 ± 0.9 0.72

Cervical lymph nodes 0.34 ± 0.3 0.36 ± 0.5 0.67

Sternocleidomastoid muscle 0.16 ± 0.1 0.15 ± 0.1 0.22
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Figure 4. Column bars (mean with SD) of absolute iodine values for female vs. male with p-values
(green indicating significant differences).

3.4. Impact of Age

Comparing all three age groups, the greatest differences in absolute values were
observed between the youngest and oldest groups. For the carotid artery (5.48 ± 2.0 vs.
6.39 ± 2.1 mg/mL, p < 0.001), jugular vein (5.75 ± 1.8 vs. 7.48 ± 3.2 mg/mL, p < 0.001), the
cerebellum (1.36 ± 0.4 vs. 1.45 ± 0.3 mg/mL, p = 0.02), and thyroid gland (4.10 ± 1.2 vs.
5.18 ± 1.7 mg/mL, p < 0.001) older patient showed higher values than the young group,
while being lower for the masseter muscle (1.06 ± 0.4 vs. 0.91 ± 0.4 mg/mL, p < 0.001),
palatine tonsils (1.74 ± 0.7 vs. 1.57 ± 0.6 mg/mL, p = 0.03), and lingual tonsil (1.24 ± 0.4
vs. 1.13 ± 0.5 mg/mL, p = 0.02). Fewer significant differences can be reported between the
young and middle-aged groups (carotid artery, jugular vein, cerebellum, palatine tonsils,
vocal cords, and thyroid gland) (p ≤ 0.03). The closest groups were the middle-aged and
old age groups, with the only changes occurring in iodine uptake for the masseter muscle
(p = 0.009), thyroid gland (p = 0.01), and the cervical vesicles (p ≤ 0.02). However, when
normalized iodine ratios were analyzed, the oldest group showed the most frequently
significant differences and lowest iodine ratios compared to the other age groups (p ≤ 0.03).
A detailed demonstration of all data can be found in Table 4 and Figure 5.

Table 4. Absolute iodine concentration and normalized iodine ratio values for young vs. middle-aged
vs. old subgroups (asterisk indicates statistical significance).

Structure

Absolute Iodine Concentration in mg/mL
(Mean ± SD) p-Values

18–48
Years

49–64
Years

65–98
Years

18–48 vs.
49–64

18–48 vs.
65–98

49–64 vs.
65–98

Carotid artery 5.48 ± 2.0 5.77 ± 1.7 6.39 ± 2.1 0.027 * <0.001 * 0.008 *

Jugular vein 5.75 ± 1.8 6.73 ± 2.6 7.48 ± 3.2 <0.001 * <0.001 * 0.024 *

Temporal lobe 0.82 ± 0.3 0.85 ± 0.5 0.80 ± 0.3 0.69 0.74 0.45

Cerebellum 1.36 ± 0.4 1.45 ± 0.4 1.45 ± 0.3 0.032 * 0.022 * 0.93

Parotid glands 1.75 ± 0.7 1.92 ± 0.8 1.85 ± 0.8 0.099 0.86 0.86

Masseter muscle 1.06 ± 0.4 1.02 ± 0.4 0.91 ± 0.4 0.53 <0.001 * 0.009 *
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Table 4. Cont.

Structure

Absolute Iodine Concentration in mg/mL
(Mean ± SD) p-Values

18–48
Years

49–64
Years

65–98
Years

18–48 vs.
49–64

18–48 vs.
65–98

49–64 vs.
65–98

Uvula 1.83 ± 0.7 1.99 ± 0.9 1.87 ± 1.0 0.35 0.83 0.26

Submandibular glands 2.32 ± 1.1 2.44 ± 1.3 2.37 ± 1.3 0.39 0.93 0.54

Sublingual glands 3.34 ± 1.0 3.50 ± 0.9 3.40 ± 1.0 0.22 0.78 0.58

Palatine tonsils 1.74 ± 0.7 1.55 ± 0.7 1.57 ± 0.6 0.008 * 0.031 * 0.75

Tongue 1.65 ± 0.4 1.39 ± 0.5 1.29 ± 0.5 <0.001 <0.001 0.034

Lingual tonsil 1.24 ± 0.4 1.21 ± 0.4 1.13 ± 0.5 0.94 0.015 * 0.22

Vocal cords 2.01 ± 0.7 2.33 ± 1.0 2.19 ± 1.0 0.003 * 0.43 0.21

Thyroid gland 4.10 ± 1.2 4.79 ± 1.4 5.18 ± 1.7 <0.001 * <0.001 * 0.01 *

Cervical lymph nodes 1.79 ± 1.2 1.75 ± 0.9 1.62 ± 0.9 0.75 0.53 0.31

Sternocleidomastoid muscle 0.71 ± 0.3 0.78 ± 0.3 0.78 ± 0.4 0.083 0.28 0.61

Structure

Normalized Iodine Ratio
(Mean ± SD) p-Values

18–48
years

49–64
years

65–98
years

18–48 vs.
49–64

18–48 vs.
65–98

49–64 vs.
65–98

Jugular vein 1.27 ± 1.4 1.27 ± 0.9 1.32 ± 1.0 0.11 0.099 0.87

Temporal lobe 0.18 ± 0.2 0.17 ± 0.2 0.15 ± 0.1 0.54 0.004 * 0.023 *

Cerebellum 0.29 ± 0.2 0.30 ± 0.3 0.29 ± 0.4 0.75 0.034 * 0.077

Parotid glands 0.35 ± 0.2 0.37 ± 0.3 0.36 ± 0.4 0.92 0.03 * 0.023 *

Masseter muscle 0.22 ± 0.2 0.21 ± 0.2 0.18 ± 0.3 0.041 * <0.001 * 0.001 *

Uvula 0.38 ± 0.2 0.39 ± 0.4 0.34 ± 0.4 0.78 0.004 * 0.01 *

Submandibular glands 0.47 ± 0.3 0.47 ± 0.4 0.44 ± 0.4 0.52 0.038 * 0.21

Sublingual glands 0.68 ± 0.3 0.71 ± 0.7 0.66 ± 0.7 0.86 <0.001 * 0.004 *

Palatine tonsils 0.35 ± 0.2 0.32 ± 0.3 0.33 ± 0.4 <0.001 * <0.001 * 0.83

Tongue 0.36 ± 0.3 0.28 ± 0.2 0.23 ± 0.2 <0.001 * <0.001 * <0.001 *

Lingual tonsil 0.26 ± 0.2 0.24 ± 0.2 0.21 ± 0.2 0.035 * <0.001 * 0.009 *

Vocal cords 0.43 ± 0.4 0.46 ± 0.4 0.42 ± 0.4 0.95 0.085 0.004 *

Thyroid gland 0.94 ± 1.2 0.92 ± 0.6 0.95 ± 0.9 0.035 * 0.12 0.69

Cervical lymph nodes 0.37 ± 0.3 0.36 ± 0.4 0.33 ± 0.5 0.91 0.001 * 0.033 *

Sternocleidomastoid muscle 0.15 ± 0.1 0.16 ± 0.1 0.14 ± 0.1 0.65 0.25 0.082
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3.5. Impact of BMI

The three subgroups defined using BMI showed the least differences in absolute and
normalized data (Table 5 and Figure 6).

Absolute iodine concentrations in patients with a normal BMI were higher for the
jugular vein (p < 0.001), parotid glands (p < 0.001), sublingual glands (p ≤ 0.02), and the
sternocleidomastoid muscle (p < 0.001) when compared to the overweight and obese group.
Additionally, the obese group had lower values for palatine tonsils, lingual tonsils, and
the thyroid when compared to the group with a BMI lower than 25 (p ≤ 0.02). Comparing
overweight patients and obese patients, the parotid gland and the lingual tonsils showed a
decline with a higher BMI (p < 0.004).

Even less differences were documented in the iodine ratios with the jugular vein
ratio in obese patients being higher than in normal-weighted patients (p = 0.02), parotid
glands showing higher iodine values for normal-weighted patients (vs. overweight and
obese) (p ≤ 0.003), and the sternocleidomastoid muscle having a lower iodine perfusion for
overweight and obese patients, when compared to normal-weighted patients (p ≤ 0.004).

Table 5. Absolute iodine concentration and normalized iodine ratio values for normal-weighted vs.
overweight vs. obese subgroups (asterisk indicates statistical significance).

Structure

Absolute Iodine Concentration in mg/mL
(Mean ± SD) p-Values

No
BMI < 25

Ov
25–29.9

Ob
BMI > 29.9 No vs. Ov No vs. Ob Ov vs. Ob

Carotid artery 6.1 ± 2.0 5.84 ± 1.6 5.96 ± 2.0 0.91 0.59 0.84

Jugular vein 7.24 ± 2.7 6.37 ± 2.1 6.16 ± 2.5 <0.001 * <0.001 * 0.87

Temporal lobe 0.83 ± 0.4 0.82 ± 0.3 0.83 ± 0.3 0.83 0.54 0.50

Cerebellum 1.44 ± 0.4 1.39 ± 0.3 1.45 ± 0.3 0.67 0.79 0.69

Parotid glands 2.10 ± 0.8 1.76 ± 0.7 1.46 ± 0.6 <0.001 * <0.001 * 0.004 *

Masseter muscle 1.03 ± 0.4 0.98 ± 0.4 0.98 ± 0.3 0.22 0.60 0.79
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Table 5. Cont.

Structure

Absolute Iodine Concentration in mg/mL
(Mean ± SD) p-Values

No
BMI < 25

Ov
25–29.9

Ob
BMI > 29.9 No vs. Ov No vs. Ob Ov vs. Ob

Uvula 1.97 ± 1.0 1.91 ± 0.9 1.78 ± 0.7 0.56 0.51 0.39

Submandibular glands 2.59 ± 1.4 2.29 ± 1.1 2.26 ± 1.1 0.08 0.092 0.69

Sublingual glands 3.57 ± 1.0 3.33 ± 0.9 3.33 ± 0.9 0.014 * 0.024 * 0.87

Palatine tonsils 1.72 ± 0.7 1.61 ± 0.6 1.47 ± 0.6 0.29 0.014 * 0.29

Tongue 1.45 ± 0.5 1.48 ± 0.5 1.41 ± 0.5 0.83 0.63 0.53

Lingual tonsil 1.24 ± 0.5 1.21 ± 0.4 1.10 ± 0.4 0.58 0.006 * 0.038 *

Vocal cords 2.27 ± 0.9 2.14 ± 0.8 2.27 ± 1.2 0.40 0.40 0.80

Thyroid gland 4.99 ± 1.5 4.65 ± 1.5 4.41 ± 1.3 0.068 0.002 * 0.52

Cervical lymph nodes 1.85 ± 1.2 1.65 ± 0.8 1.64 ± 0.8 0.062 0.11 0.92

Sternocleidomastoid muscle 0.86 ± 0.4 0.70 ± 0.3 0.64 ± 0.3 <0.001 * <0.001 * 0.64

Structure

Normalized Iodine Ratio
(Mean ± SD) p-Values

No
BMI < 25

Ov
25–29.9

Ob
BMI > 29.9 No vs. Ov No vs. Ob Ov vs. Ob

Jugular vein 1.39 ± 1.3 1.15 ± 0.6 1.26 ± 1.3 0.051 0.017 * 0.70

Temporal lobe 0.17 ± 0.2 0.16 ± 0.1 0.18 ± 0.2 0.48 0.36 0.85

Cerebellum 0.29 ± 0.3 0.27 ± 0.3 0.32 ± 0.3 0.73 0.23 0.53

Parotid glands 0.41 ± 0.4 0.34 ± 0.3 0.32 ± 0.3 0.003 * <0.001 * 0.69

Masseter muscle 0.20 ± 0.2 0.20 ± 0.3 0.22 ± 0.2 0.51 0.65 0.87

Uvula 0.39 ± 0.4 0.35 ± 0.2 0.37 ± 0.3 0.99 0.99 0.97

Submandibular glands 0.50 ± 0.4 0.41 ± 0.2 0.45 ± 0.4 0.37 0.16 0.63

Sublingual glands 0.69 ± 0.5 0.64 ± 0.6 0.72 ± 0.7 0.69 0.99 0.92

Palatine tonsils 0.34 ± 0.3 0.32 ± 0.4 0.33 ± 0.3 0.49 0.33 0.31

Tongue 0.29 ± 0.3 0.27 ± 0.1 0.31 ± 0.3 0.40 0.37 0.61

Lingual tonsil 0.23 ± 0.2 0.23 ± 0.1 0.24 ± 0.2 0.87 0.52 0.40

Vocal cords 0.44 ± 0.4 0.40 ± 0.3 0.46 ± 0.5 0.41 0.61 0.98

Thyroid gland 0.98 ± 0.9 0.87 ± 0.5 0.94 ± 0.9 0.43 0.71 0.74

Cervical lymph nodes 0.36 ± 0.4 0.33 ± 0.5 0.36 ± 0.4 0.34 0.75 0.75

Sternocleidomastoid muscle 0.17 ± 0.1 0.14 ± 0.1 0.14 ± 0.1 0.003 * 0.004 * 0.92
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4. Discussion

In this pioneering study, we investigated the iodine concentration of cervical organs
and anatomical structures to define physiologic reference values for the iodine uptake of
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healthy head and neck organs and tissues in a big data cohort. As indicated using DECT
iodine maps, we measured absolute iodine concentrations and normalized iodine ratios for
16 structures in head and neck CT scans and identified differences related to age, gender,
and weight. We discovered a broad range of iodine concentrations across the examined
structures from 0.1 mg/mL to 25.1 mg/mL (13.2 mg/mL excluding the cervical vessels),
with the thyroid gland exhibiting the highest uptake. Significant differences were noted
regarding the iodine distribution of cervical organs concerning sex, age, and BMI.

All cervical glands showed higher absolute uptake in the female body than in men.
Also, both investigated muscles showed a higher iodine density in women compared to
men. Even though the amount of applied contrast agent was proportioned according to
body habitus, a lower amount of contrast agent could potentially be sufficient in women
when integrating iodine maps in clinical routine. This could be beneficial in reducing
the risk of contrast-induced nephropathy, especially in patients with pre-existing kidney
diseases, and potentially reducing the risk/severity of allergic and anaphylactic reactions
to intravascular iodinated contrast media in young females, who have a higher allergic risk
compared to males of the same age [12–14].

We observed a notable decrease in iodine uptake with age in the masseter muscle
and palatine, contrasting with increased thyroid perfusion, suggesting age-related changes
in iodine metabolism. A weaker and slower circulation could be the reason for the con-
tinuous increase in iodine concentrations in the vessels among young, middle-aged, and
elderly groups.

Although a higher BMI results in lower iodine values in the parotid gland, there
were only limited effects of weight, mainly between the normal-weighted and obese
groups (significant differences regarding the sublingual gland, palatine tonsil, lingual
tonsil, thyroid gland, and sternocleidomastoid muscle). We hypothesized that body habitus
affects the iodine concentration in various organs and tissues due to differences in tissue
composition, metabolic activity, and vascularity. Adipose tissue has a lower blood supply
than lean tissue and this could impact the delivery and uptake of iodine.

The variability in iodine uptake highlights DECT’s role in enabling more personalized
diagnostic and treatment strategies, aligning with the goals of precision medicine. By
establishing reference values for iodine uptake, clinicians can potentially personalize
diagnostic thresholds based on patient-specific factors such as age, gender, and BMI,
enhancing the accuracy of diagnoses. This approach could lead to more effective treatment
plans, optimized for individual patient characteristics, thereby improving outcomes.

One fundamental challenge in head and neck imaging for radiologists consists of
prompt and accurate detection and interpretation of pathologies. In the last decade, ap-
proaches in DECT technology have significantly improved the visualization of tissue
alterations and pathologic processes by utilizing material decomposition algorithms to
investigate the atomic composition of the tissue and calculate iodine maps. Aside from
morphologic, size, and shape changes, iodine quantification has enabled an additional
targeted analysis of tissue characteristics and organ perfusion in contrast-enhanced CT
images [2]. Lam et al. [15] reported on an improved delineation of tumor edges of squa-
mous cell carcinoma (one of the most common malignancies of the head and neck) on iodine
overlay maps [16]. In another study on squamous cell carcinoma, Kuno et al. significantly
increased the specificity of CT in the differentiation between healthy and tumor-infiltrated
laryngeal cartilage via the application of iodine maps. Furthermore, the quantification
of iodine concentration introduced a new, highly accurate, and reproducible parameter
besides Hounsfield units, the latter of which are dependent on photon energy levels, mass
density, and the attenuation coefficient [3,6,17–19]. The application of DECT and iodine
quantification in detecting and characterizing head and neck pathologies, as evidenced
by the improved delineation of tumor edges and differentiation of healthy from tumor-
infiltrated tissue, represents a significant advancement in diagnostic radiology. Continued
development of DECT applications could lead to the establishment of new diagnostic
markers and tools, facilitating early detection and treatment of malignancies.
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Even though many approaches in abdominal dual-energy CT have already demon-
strated that iodine quantification can determine diagnostic thresholds for benign/malignant
characterization or various disease states, the application in the head and neck field is
still very limited [20–23]. The up-to-date literature on DECT application in head and
neck imaging is sparse, mostly focusing on categorizing different malignant cervical
lymphadenopathies [24]. A study from Sauters et al.—one of the few studies where healthy
structures of the head and neck area were analyzed—investigated healthy lymph nodes in
the body, including cervical lymph nodes [25]. Their results (n = 297) of 2.09 ± 0.44 mg/mL
are consistent with our definition for healthy cervical lymph nodes (1.72 ± 1.0 mg/mL).
Our study, furthermore, showed that the cervical glands have a high individual variability
in their iodine uptake, which may be due to several factors, for example individual glan-
dular sizes and shapes, glandular function, and iodine uptake kinetics. This underscores
the need for further investigations that facilitate a more reliable clinical application of this
quantification technique in the head and neck area. In this context, our aim was to enable a
more reliable clinical application of this quantification technique and, ultimately, potential
implementation in future guidelines.

In our study, we observed significant variability in iodine uptake values among the
normal population, underscoring the complexities of defining abnormal uptake thresholds.
This variability presents challenges in distinguishing between normal physiological varia-
tions and potential pathological conditions. We propose that abnormal iodine uptake could
be defined as values exceeding the mean + 2 standard deviations (SD) in a demographically
matched population, a method commonly used in clinical practice for outlier detection.
This approach, while statistically robust, requires careful consideration of individual pa-
tient factors such as age, gender, BMI, and overall health status. We acknowledge that this
criterion, inspired by traditional clinical thresholds, may not capture all nuances of iodine
metabolism but serves as a preliminary guideline. Further research is needed to validate
these thresholds and to refine diagnostic criteria, considering the wide range of normal
variability and the specific context of iodine-related disorders. This study highlights the
importance of a nuanced approach to interpreting iodine uptake values, advocating for a
balance between statistical guidelines and clinical judgment. Based on the provided data of
this study, the interpretation of iodine uptake measurements and detection of pathologies
in the head and neck region may be potentially optimized.

There are limitations of this study that need to be addressed. Due to biodynamical
and size changes with age, not every structure could be included, e.g., pharyngeal tonsils
being prominent in younger patient groups and often not measurable in older groups.

We—to the best of our knowledge—excluded all patients with known diseases or
pathologies. However, there could be pre-existing or specific patient characteristics (like
muscle mass, previous meals, or muscular activity and other factors) which might not have
been taken into account in this study. For instance, conditions such as hypertension and
diabetes can affect the delivery and distribution of contrast media, due to alterations in
microvasculature and blood flow patterns. This can lead to alterations in iodine uptake in
tissues, but conclusive evidence regarding the impact of these morbidities on DECT iodine
uptake is currently lacking.

We would like to clarify that the main focus of our study is on iodine uptake in the
cervical region. Brain structures were included in the analysis because they were in the
scan field and constituted part of the imaging datasets. We acknowledge that the inherent
nonhomogeneity of the brain structures, due to gray and white matter as well as location,
and the presence of the blood–brain barrier may affect iodine uptake.

CT scans, as well as post-processing, were performed using one manufacturer (Siemens
Healthineers), restricting the generalization of our results to other systems. Differences
may also occur when different scan and contrast media application protocols are chosen. It
should be noted that the presented study was applied to portal venous CT datasets; using
different scan phases will cause different outcomes.



Diagnostics 2024, 14, 496 16 of 17

In this study, a predominantly Caucasian study population was included; there is
a need for more diverse studies to establish more comprehensive referencing. Because
no statistical error propagation was performed, the results could have been affected by
calculation errors.

5. Conclusion

In conclusion, this study provides reference values of iodine concentrations in healthy
head and neck structures, valid for examinations with a delay of 70 s after injection.
The scatter and the differences between sex, age groups, and BMI should be considered
when performing iodine measurements. Particularly, care should be taken during the
interpretation of iodine values in clinical settings.
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