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Abstract: Accurate tooth segmentation and numbering are the cornerstones of efficient automatic
dental diagnosis and treatment. In this paper, a multitask learning architecture has been proposed
for accurate tooth segmentation and numbering in panoramic X-ray images. A graph convolution
network was applied for the automatic annotation of the target region, a modified convolutional
neural network-based detection subnetwork (DSN) was used for tooth recognition and boundary
regression, and an effective region segmentation subnetwork (RSSN) was used for region segmenta-
tion. The features extracted using RSSN and DSN were fused to optimize the quality of boundary
regression, which provided impressive results for multiple evaluation metrics. Specifically, the
proposed framework achieved a top F1 score of 0.9849, a top Dice metric score of 0.9629, and an mAP
(IOU = 0.5) score of 0.9810. This framework holds great promise for enhancing the clinical efficiency
of dentists in tooth segmentation and numbering tasks.

Keywords: tooth segmentation; tooth numbering; instance segmentation; deep learning

1. Introduction

Tooth segmentation and numbering are of immense significance in dental care, owing
to their critical role in assessing oral health and facilitating precise diagnosis [1]. Panoramic
radiograph (PR), a two-dimensional (2D) X-ray that captures the entire mouth in a single
image, is commonly used for the clinical diagnosis of tooth segmentation and number-
ing [2]. Cone beam computed tomography (CBCT) is an imaging technology that provides
three-dimensional (3D) images of the teeth, soft tissues, nerve pathways, and bone in a
single scan [3]. While CBCT offers superior details and a 3D perspective, panoramic radio-
graphs exhibit advantages such as lower radiation exposure and reduced imaging costs [4].
Furthermore, the latter is more commonly used, owing to its simplicity and effectiveness in
general dental evaluations, routine screenings, and initial diagnostic tasks [5]. Panoramic
radiography is particularly useful in identifying dental caries and periodontal diseases
and assessing tooth orientations, making it a versatile tool in a range of common clinical
scenarios [6,7]. Obtaining tooth segmentation and numbering is a critical aspect of dental
care and is typically performed by dental professionals to ensure accurate assessment and
treatment [8]. Normally, the accurate segmentation and numbering of teeth is difficult
and labor-intensive. The task becomes even more complicated when using panoramic
dental X-ray images as overlapping boundaries between the teeth pose difficulties in the
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annotation [9]. In addition, this procedure is often performed manually, which can be
quite time-consuming. The segmentation and numbering are not objective, and there is no
guarantee of the accuracy of the results as it relies heavily on the subjective judgment of
the dentist [10].

With the advancements in image processing technology and artificial intelligence,
automatic tooth segmentation and numbering have become feasible and have significantly
alleviated the burden of annotation for dentists [11]. Nevertheless, panoramic X-ray
images of different patients’ teeth exhibit considerable variations, encompassing diverse
pathological presentations and treatment indications [12]. In addition, the background
of panoramic X-ray images can be quite complex, incorporating redundant background
information, which may lead to incorrect segmentation [13]. The accurate segmentation
and numbering of teeth in panoramic X-ray images become quite challenging because of
these issues, thus impeding the practical utility of automated intelligent segmentation and
numbering methods in clinical settings. To overcome these challenges, there is a critical
need to develop advanced image processing techniques that can distinguish teeth from
their complex backgrounds and accommodate variations in dental conditions, ultimately
enhancing the reliability and applicability of automated dental image analysis tools in
real-world clinical scenarios.

The accurate segmentation of objects (including tooth segmentation) from images is a
key application of computer vision technology [14] and is the cornerstone of quantitative
analysis (for example, numbering) that aims to cluster the pixels of a specific category [15].
Since the development of CNN, the use of conventional segmentation methods has de-
clined [16]. Various CNN-based structures have been proposed and applied in semantic
segmentation, of which fully convolutional networks (FCNs) that have an encoder-decoder
structure are a milestone [17]. Since then, several types of CNN architectures, such as
ResNet [18], ResNext [19], VGG [20], and GoogleNet [21], have been used as encoders
and decoders. U-net [22] is based on FCN [23] and exhibits the advantages of good per-
formance, low data requirement, and high speed. Various segmentation methods based
on deep convolutional neural networks (CNNSs), including crowd counting [24,25], text
recognition [26,27], and medical image analysis [3,28-31], have been proposed and are
widely used to obtain statistics on target objects [32-34].

To further enhance the clinical utility of panoramic X-rays, the development of au-
tomated tooth segmentation and numbering methods has gained considerable attention.
Segmentation of individual teeth and their subsequent numbering can streamline the diag-
nostic process, allowing dentists to rapidly and accurately assess tooth morphology and
spatial relationships. This approach is particularly valuable in identifying tooth loss, a
critical concern, especially in the transitional dentition phase, where early intervention can
mitigate the severity of permanent tooth alignment issues. Moreover, the integration of au-
tomated assistance in dental diagnostics substantially reduces the likelihood of diagnostic
errors by oral health practitioners. Such automation aids in the meticulous documentation
of patient records, thereby enhancing the overall quality of dental care. Elif Bilgir et al.
proposed the Faster R-CNN Inception v2 model to predict the label and bounding box of
the 2482 panoramic radiographs, with an average accuracy of 0.9652 [8]. Miinevver Coruh
Kilic et al. devised a method using Faster R-CNN Inception v2 (COCO) for the automatic
detection and numbering of deciduous teeth on pediatric panoramic radiographs based on
421 panoramic images to improve the accuracy of deciduous tooth position recognition [35].
André Ferreira Leite et al. improved the accuracy of tooth segmentation and recognition in
curved panoramic radiographs of permanent dentition based on 153 radiographs using
two deep CNNs [11]. Sheng improved the accuracy of the detection and localization of
tooth tissue on panoramic radiographs using the PLAGH-BH tooth segmentation [36].
However, the above methods treated each tooth as a uniform class and failed to incorporate
information on distinct tooth shapes and positions in the analysis framework. Moreover, the
features were extracted from entire panoramic radiographs without any prior constraints;
thus, the ratio of false positives may be high.
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To overcome these problems, the proposed framework presents a two-stage network
architecture (named STSN-Net) to simultaneously segment the teeth and number them,
innovatively delineating the processes into bone window segmentation and tooth segmen-
tation with numbering. The proposed approach can considerably improve the accuracy
of feature learning and efficiently eliminate redundant data. The initial stage employed a
graph convolution neural network (GCN) to obtain the structure information hidden in
the PRs for precise bone window segmentation. The second stage incorporated a shared
2D CNN, augmented by a dual-stage detection subnetwork (DSN) and a sophisticated
refinement segmentation subnetwork (RSSN), adding robustness to the framework. The
following are the key contributions of this work:

1. A GCN for automatic bone window segmentation was proposed to generate masks of
regions to train the RSNN. This process leveraged dental segmentation annotations
for initial calibration, followed by feature extraction and mask refinement via GCN.

2. A modified DSN was proposed, which made use of a dilated convolution module in
certain specific layers to enlarge the receptive field and employed a deformable con-
volution block to compensate for the diversity in tooth morphology and distribution
among individuals.

3. The proposed RSSN aimed to accurately segment the tooth region within the images,
simultaneously suppressing the background noise and resulting in refined predictions
that substantially reduced analytical errors.

4. The high precision and strong practicability of the proposed STSN-Net were demon-
strated. The proposed two-stage structure initially deployed a GCN for bone window
extraction, followed by a multinetwork structure that performed object detection and
refinement segmentation, respectively, and simultaneously. Furthermore, STSN-Net
was adeptly optimized and adapted for real-world clinical applications in embed-
ded devices.

The rest of the paper comprises four parts. The materials and methods are described
in Section 2. Section 3 summarizes the experimental results. The discussion is presented in
Section 4, and the conclusion is presented in Section 5.

2. Materials and Methods
2.1. Dataset TSNDS

This paper introduces a new dataset, the tooth segmentation and numbering dataset
(TSNDS), which comprises 2116 oral panoramic X-ray images from patients with per-
manent dentition, encompassing 2D imaging data points of all teeth, the mandible, and
parts of the maxilla. The initial 116 images were obtained from the publicly available
dataset, and the subsequent 2000 images were retrospectively selected from panoramic
radiographs acquired at the Beijing Stomatological Hospital between March 2019 and April
2022. These 2000 PRs were produced using a Sirona digital machine (ORTHOPHOS XG 5
DS Ceph, Bensheim, Germany) with standard parameters, operating with tube voltages of
60-90 kV and tube operating currents of 1-10 mA. A default program of the device with
a predetermined magnification of 1.9x and a rotation time of 14.1 s was used for X-ray
exposures with a resolution of 2440 x 1280, and the PRs were in portable network graphics
(PNG) format. During the data processing phase, the original DICOM files inherently
contained sensitive patient information, such as name and age. To address privacy issues,
a method was adopted for converting the image data into the PNG file format for storage.
The dataset covers a wide range of dental conditions as observed in dental radiographs,
which can be broadly categorized into two main types: permanent dentition and primary
dentition. Within these categories, various conditions may coexist, including missing teeth,
dental crowding, impacted teeth, and teeth with fillings or restorations. Annotation was
performed using the online tool “Label Studio”, ensuring a consistent and precise approach
to data labeling. Two dental practitioners, each with over 15 years of clinical experience,
independently annotated the radiographs. To ensure that the annotations were accurate
and reliable, a senior dentist with more than 25 years of clinical experience reviewed and
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revised the data. The finalized annotated dataset was then used in the study. The anno-
tations adhered to the FDI tooth notation system established by the International Dental
Federation in 1970. Each image within the dataset included segmentation annotations for
individual teeth and bone windows, along with eight types of positional information on
the teeth. The dataset was categorized into three parts: a training part (Train), a valida-
tion part (Validation), and a test part (Test) using the train—test—split function (TTSF) of
the scikit-learn library. The distribution and details of the dataset split are presented in
Tables 1 and 2.

Table 1. Details of the dataset split.

Category Train Validation Test Total
Permanent Dentition 1115 228 228 1571
Primary Dentition 422 86 87 595
Total 1500 300 316 2116

Table 2. Distribution of the dataset.

Subcategory Train Validation Test Total
Missing Teeth 427 87 88 602
Dental Crowding 837 171 172 1180
Impacted Teeth 528 108 108 744
Teeth with Fillings 384 78 79 541
Teeth with Restorations 328 67 67 462

2.2. Data Augmentation

The panoramic X-ray images were subjected to a multitude of enhancement processes
to augment the dataset while preserving relevant dental features. Via this augmentation
pipeline (as shown in Figure 1), diverse transformations such as rotation, scaling, flipping,
and contrast adjustments were applied, which facilitated the extraction of robust features
and enhanced the ability of the model to generalize. The effectiveness of these augmen-
tation strategies was evaluated and demonstrated via comprehensive experimentation
with the section results, showcasing notable improvements in the learning capacity and
generalization of the model across diverse dental conditions and variations.

(c) contrast (d) rotation
adjust adjust

Figure 1. Examples of data augmentation. (a) Original image; (b) image after horizon flipped aug-
mentation; (c) image after contrast adjustment; (d) image after rotation adjustment.

2.3. The Pipeline of the Proposed STSN-Net

The proposed STSN-Net for simultaneous tooth segmentation and numbering com-
prised three parts: an automatic annotation method for bone window segmentation, a
modified DSN that predicted the bounding boxes and number of teeth, and an RSSN that
extracted refinement segmentation information from the regions of interest (as shown in
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Figure 2). The details of these three parts of the proposed method are described in the

following subsections.
o -
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Figure 2. The pipeline of the proposed STSN-Net.
2.4. Automatic Segmentation of Mandibular Morphology

To obtain an accurate boundary annotation of the target area, a novel network archi-
tecture was proposed. The annotation of the bounding boxes was used as an initialization.
The spatial and gray-level information were subsequently propagated via a multilayer
GCN. In the initialization phase, N points were selected randomly to form a graph G. The
propagation process for a node g; was defined as follows:

Y =wpf Y wh! 1)
SiEN(g;)

where wjj and w! represent the weight matrices and N(g;) is a set that contains all the
nodes connected to node g;. The parameters of the pretrained GCN model were fed into the
model for rapid convergence. After the initialization, the nodes extracted from the edges
of the segmentation annotations were used as target values for mandibular morphology
segmentation. The network structure and processing pipeline are illustrated in Figure 3.

Panoramic X-ray
images

Initialization Graph convolution Mask prediction

Figure 3. The pipeline of the GCN.

2.5. STSN-Net Structure

The proposed STSN-Net architecture comprised three blocks (shared convolution
layers, a modified DSN, and an RSSN), as shown in Figure 2. Block I represents the two-
layer shared convolution layers; 64 convolution filters with a size of 3 x 3 were used in
this subnetwork to generate feature maps with 64 channels. The inputs to the shared
convolution layers were the PRs, and the output was the feature map named shared
features. The extracted shared features, usually identified as shallow characteristics, were
concurrently inputted into Block II and III to enhance the efficiency of feature reuse and
considerably reduce the overall model complexity and size. Block Il was the proposed DSN,
which had an improved convolution filter capable of adapting to perspective changes and
obtaining a large receptive field. Block III was the proposed RSSN, which distinguished
between the foreground and background while generating the instance mask of each tooth
from the previous mandibular morphology segmentation generated by the GCN block
described in Section 2.4 and shared spatial information on the target region with the DSN
via an element-wise sum operation before the RPN in the DSN.
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2.6. Detection Sub-Network

The proposed DSN is a modified two-stage detection network. The input of the
subnetwork was generated using a two-layer shared convolution block in the STSN-Net
structure. The DSN is also a multitask network that has certain shared convolution layers
and two parts that perform recognition and bounding box regression. In the shared
convolution layers, the normal 3 x 3 convolution filter was replaced with a deformable
convolution filter in the second layer to handle the different perspectives. The deformable
convolution filter comprised two parts: the convolution and the offset. It is a variant of
the normal convolution filter. The formulation of the deformable convolution filter was
defined as follows:

y(po) = Y. w(pu) - x(po+ pun+ Apn) )
pn€R

where p, is a location on the feature map y, and Ap;, is an extra offset added to the input
feature map. In this way, the convolution filter extracts features in a deformable manner to
handle the changes in the perspective. A dilated convolution filter, which was originally
used for semantic segmentation, was employed in the fifth layer to obtain a large receptive
field. This filter inserted empty cells into the convolution output. This procedure was
defined as follows:

fut1 = D(fn) 3)

where f,, represents the input feature map of the dilated convolution layer, f,,11 represents
the output feature map of the dilated convolution layer, and D represents the dilated filter
that filters the input feature map by inserting cells with a value of 0 in the convolution
output. The filter size was increased from 3 x 3 to 5 X 5 so as to expand the receptive
field without adding extra computational burden. The architecture of the proposed DSN is
shown in Figure 4.

Region proposal
nel\\ ork laver

Recognmon softmax)
f s ) ‘?Q“jj
_ J ] 4B
y \ g \ g
. ; .
/ \

Shared nhm(rcgreumn)
Roi FC FC
/ \
/ / \
/ \ / ‘ \
Conv Offset field ‘

Features
pooling layer layer
Dilated conv

Feature map
Ia\cr

Figure 4. The architecture of the DSN.

2.7. Refinement Segmentation Sub-Network

The proposed RSSN is a multiscale CNN-based network that comprised three com-
ponents: a skip connection component that fused the shallow feature map with the deep
feature map, a max pool component that performed downsampling of the high-resolution
feature map to obtain global features, and an up-convolution component that restored
scale information while generating the segmentation map. As depicted in Figure 5, a max
pooling filter with a size of 2 x 2 was adopted for downsampling, a convolution filter with
a size of 3 x 3 was employed to extract the features in each subnet, an up-convolution filter
was applied to perform upsampling, and the skip connection operation was performed
using the copy and paste operation. In the last phase, a 1 x 1 convolution filter was used to
reduce the dimension of the feature map and generate the final segmentation map.



Diagnostics 2024, 14, 497

7 of 15

__________

'
\ (Input) 1
: Shared b >
| Features 1
\ R
64 64 (Output)
64 128 128 ? Segmentation
map
1 Max pool 2x2
0 256 256 256 256 2 128 128 =  Conv3x3, Relu
7 Up conv 2x2
128 = Conv 1x1
=

GGG

7
Copy & paste
256 512 512 512 512

Figure 5. The architecture of the RSSN.

2.8. Loss Function

The entire framework was trained end-to-end using a batch training method. The loss
function of the network consisted of two main parts, defined as follows:

Lay = aLget + ,BLseg 4)

where « and B are the weight parameters of the two tasks. In this study, the values are 0.8
and 0.2, respectively.
The loss of the DSN was defined as follows:

Lget = Liassification + Lreg (5)

The classification loss of the DSN is a logarithmic loss, which was defined as follows:

Lclassification = - log(p i) (6)

where p; represents the probability of the output belonging to class i . The regression loss
of the DSN was defined by a smooth L1 function, as follows:

Lyeg = Z smoothy, (tf - gi) (7)
ie{xywh}
where t;‘ is a set xi-‘, yé‘, wf?, h;‘ that forms a bounding box of class k, and g; represents the
ground truth of the predicted value.
The smooth L1 function was defined as follows:

0.5x2 if x| <1
smoothy, (x) = 8
L (%) { |x| —0.5 otherwise ®)
The segmentation loss is a cross-entropy (CE) loss function, defined as follows:
Lseg = CE(my, mg) )

where m,, is the predicted segmentation map and i, is the ground truth of the mask map.
The CE function for each pixel in the two-class segmentation map was defined as follows:

CE(p, p) = —(plog(p) + (1 — p)log(1 —p)) (10)

where p is the ground truth probability of the target belonging to class 0, and p is the
prediction probability of the target belonging to class 1. The optimization function was
obtained by the stochastic gradient descent (SGD) method.
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3. Results
3.1. Evaluation Metrics

The F1 score was used as the evaluation metric because it considers the accuracy and
recall of the model and can be regarded as a harmonic average of the model accuracy and
recall for tooth numbering. R was used to represent recall, and P was used to represent
accuracy. R was defined as follows:

TP+ TN
R= —F—F— 11
s a1

P is defined as follows:
_ TP+ TN
~ TP+TN+FP+FN

where N represents the number of all targets. TP represents the true positive, TN represents
the true negative, FP represents the false positive, and FN represents the false negative. True
and false were determined by calculating the numbering results and the intersection over
union (IOU), which is a metric that compares the similarity and diversity of the detection
and segmentation results. The IOU was defined as follows:

P

(12)

Area of overlap

I =
ou Area of Union

(13)
where the area of overlap is the overlap between the predicted bounding box and the
actual bounding box, and the area of union is the union of the predicted bounding box
and the ground truth. A threshold parameter was set to determine whether the result was
true. If the IOU score was >0.5, it was considered a true detection, otherwise, it was a
false detection. The DICE coefficient is a common evaluation metric used in segmentation
tasks to measure the accuracy of segmentation results. It quantifies the degree of overlap
between the predicted segmentation and the ground truth. The DICE coefficient was
defined as follows:

2 x |ANB|

| Al +[B]

where A is the prediction and B is the ground truth. The F1 score was defined as follows:

DICE = (14)

2PR
Fl-score = PIR (15)

3.2. Experiment Results

Multiple experiments were performed to verify the contribution of each part of the
proposed method. In our experiments, a two-stage architecture network was adopted,
with a backbone network of convolutional neural networks as the baseline. Furthermore,
the performance achieved using the multitask learning instance segmentation framework
named Mask RCNN [37] and the single-stage detection architecture named YOLOVS [38]
on the dataset was determined for a comprehensive comparison.

Each part of the proposed method was evaluated separately to obtain a better under-
standing of the proposed method. Common image augmentation operations, including
rotation, horizontal flipping, and vertical flipping, were performed to enlarge the training
dataset. Network training was performed with two NVIDIA GeForce RTX 4090 GPUs
(NVIDIA Corporation: Santa Clara, CA, USA) for 30 epochs. The learning rate was ini-
tialized as 0.01, and the factor was decreased by 0.1 after 24 and 29 epochs, respectively.
A batch training scheme utilizing the stochastic gradient descent (SGD) optimizer was
adopted for training, with a batch size of 16. The base width and height of the images
were altered to 1333 and 800, respectively, without changing the aspect ratio. A multiscale
training scheme was adopted in the training procedure, with scaling factors of 1.0x, 1.2x,
1.4x, and 1.6x. In the test phase, each scale was evaluated separately, and the same scaling
factors were used (Table 3). F1 represents the F1 score as defined in Section 3.1. The
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following test results were obtained using a single GPU (4090). The experimental results
are presented in Table 3.

Table 3. F1 score obtained by the baseline, Mask R-CNN (using Swin Transformer as backbone
network), YOLOv8 and the proposed network (contributions of different steps of the proposed
network were also demonstrated).

Base Size (1333 x 800) F1 (1.0x) F1 (1.2x) F1 (1.4x) F1 (1.6x)
Baseline 97.36% 97.53% 97.64% 97.88%
+ Deformable convolution 98.09% 98.14% 98.19% 98.23%
+ Dilated convolution 98.08% 98.13% 98.14% 98.16%
+ Region segmentation 98.11% 98.12% 98.15% 98.22%
Mask R-CNN 97.49% 97.62% 97.82% 97.89%
YOLOvVS8 96.49% 96.78% 96.89% 97.02%
The proposed network 98.30% 98.32% 98.38% 98.49%

The F1 score measures the harmonic mean of precision and recall, reflecting the accu-
racy and robustness of the model in detecting instances (as shown in Figure 6). Furthermore,
it is imperative to focus on instance segmentation metrics, including mAP (mean average
precision) and DICE (Dice similarity coefficient). The mAP metric evaluates the overall
detection accuracy across multiple object categories, whereas DICE primarily concerns
pixel-level similarity in image segmentation tasks. The experimental results of mAP metrics
(IOU = 0.5) and DICE scores are presented in Table 4.

Comparison of F1 scores at F1 (1.0x)

YOLOvE - 96.49%
Mask R-CNN - 97.49
+ Region segmentation | 98.11%
+ Dilated convolution 4 98.08%
+ Deformable convolution 98.09%
Baseline 97.36'
0 2‘0 4‘0 6b BID 160

F1 Score (%)

Figure 6. The F1 score comparison.

Table 4. mAP and DICE scores obtained by the Mask R-CNN (using Swin Transformer as backbone
network), YOLOvVS, and the proposed network.

Metrics Mask R-CNN YOLOvVS STSN-Net
mAP(object detection) 96.58% 95.61% 98.90%
mAP(instance segmentation) 95.88% 94.60% 98.10%
DICE 94.98% 94.02% 96.29%

The mAP (object detection) results are illustrated in Figure 7 for clear representation.
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mAP (object detection) Comparison

98.9%

mMAP (object detection)

Mask R-CNN YOLOv8
Models

Figure 7. Comparison of mAP (object detection) results.

The mAP (instance segmentation) results are illustrated in Figure 8 for clear represen-
tation.

mMAP (instance segmentation) Comparison

98.1%

MAP (instance segmentation)

Mask R-CNN YOLOv8
Models

Figure 8. Comparison of mAP (instance segmentation) results.

The DICE score results are illustrated in Figure 9 for clear representation.

DICE Comparison

98

96.29%

DICE

Mask R-CNN YOLOv8
Models

Figure 9. Comparison of DICE score.
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The inference times in milliseconds (ms) are depicted in Table 5.

Table 5. Inference times of the baseline and different steps of the proposed method (the numbers
represent the average inference time per image).

Base Size (1333 x 800) F1 (1.0x) F1 (1.2x) F1 (1.4x) F1 (1.6x)
Baseline 85 89 94 100
+ Deformable convolution 100 110 115 120
+ Dilated convolution 95 98 100 110
+ Region segmentation 90 95 99 104
The proposed network 110 115 118 121

4. Discussion

This study demonstrated the use of an STSN-Net framework comprising a modified
DSN and an RSSN to obtain accurate segmentation and numbering of teeth in a crowded
environment. The performances of the deformable convolution filter and dilated convolu-
tion filter in the DSN were analyzed. These filters ensured that different perspectives could
be handled and that the receptive field was sufficiently large for a better representation of
the panoramic X-ray images. The RSSN aided in determining the region with the highest
probability of occurrence of the target while simultaneously reducing the rate of false
positives. The STSN-Net architecture improved the performance of the detection task using
information provided by the RSSN with an element-wise sum operation. Block I was a
shared convolution block that extracted primary features, such as edges, lines, and corners.
The extracted shared features were characterized as shallow features, which were generic
in different networks and universally applicable for downstream tasks. These extracted
features served as the building blocks for more complex patterns in the subsequent DSN
and RSSN, which enhanced the feature reusability and reduced the model size. The inclu-
sion of Block I in the network architecture facilitated initial data processing and ensured
that downstream blocks received preprocessed, feature-rich inputs. This strategy not only
streamlined the overall computational process but also enhanced the ability of the network
to generalize across different tasks by providing a versatile feature set. Block II was the
modified DSN that employed the deformable convolution filter and dilated convolution
filter to handle various perspectives of the target and provided a large receptive field to
understand the contextual information around the target. Block III was the RSSN that
simultaneously processed the shared feature maps. Multiscale features were extracted and
fused in a specific manner. A 3 x 3 convolution filter was used to extract the features while
maintaining a high resolution. Features of different scales were fused using max-pooling,
and up-convolution was performed depending on the source and target resolution. A skip
connection was employed to make full use of the features at each resolution while reducing
the number of network parameters. The RSSN provided useful information on the spatial
location of the target and not only optimized the quality of the proposed regions obtained
from the DSN but also minimized the background noise. Overall, the STSN-Net framework
provided excellent performance for multiple tasks, and the F1 score of the detection task
was 98.49% (best F1 score), the mAP (object detection) score was 98.90%, the mAP (instance
segmentation) score was 98.10%, and the DICE score was 96.29%, which outperformed the
two state-of-the-art models (Mask RCNN with Swin Transformer backbone network and
the YOLOVS for instance segmentation).

In addition to the aforementioned features of the STSN-Net framework, it is crucial
to address the challenge of class imbalance in dental imaging, notably, the less frequent
occurrence of certain tooth types. Class imbalance is a significant concern in medical
imaging, as it can skew the performance of the model, leading to suboptimal detection
and segmentation of less-represented classes. The proposed STSN-Net framework tackled
this challenge in multiple ways. First, the modified DSN, with its deformable and dilated
convolution filters, was adept at handling varying perspectives and tooth morphologies.
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This flexibility ensured that even less common tooth types were accurately captured and
represented, thus mitigating the impact of class imbalance on the performance of the model.

Furthermore, the ability of RSSN to focus on regions with the highest probability
of target occurrence played a pivotal role in addressing class imbalance. By prioritiz-
ing the regions likely to contain the target, the RSSN effectively enhanced the detection
of underrepresented tooth types. This selective focus, combined with the reduction of
false positives, ensured a balanced treatment of all tooth classes in the segmentation and
numbering process.

Additionally, the multiscale feature extraction and fusion in the RSSN contributed to
this balance. By extracting and combining features at different scales, the network ensured
high-resolution representations of all tooth types regardless of their frequency in the dataset.
The use of skip connections further guaranteed that features from each resolution were fully
utilized, thereby augmenting the sensitivity of the network to less frequent tooth types.

Furthermore, most existing studies in dental arch classification rely on bounding box
annotations without segmenting teeth based on their morphology. Additionally, samples
with significant dental crowding are often excluded, which leads to reduced practicality
in clinical application. In contrast, our study utilized a dataset comprising panoramic
radiographs across various age groups. This dataset encompassed common pathological
imaging features encountered in clinical practice, such as deciduous teeth, residual crowns,
roots, restorations, root canal treatments, periapical lesions, impacted teeth, implants,
brackets, and titanium plates. Because of the inclusion of these features, our model adeptly
handled various complex clinical scenarios, thus enhancing its effectiveness in segmentation
and tooth position recognition.

The application of artificial intelligence in automatic segmentation and identification
of teeth in panoramic radiographs has considerably boosted diagnostic efficiency across
various dental specialties. Rapid tooth position identification has assisted clinicians in
diagnosing the number and location of missing teeth, thus preventing diagnostic errors,
aiding in medical decision-making, and facilitating the documentation of case histories. In
large-scale epidemiological surveys, automated tooth position recognition has permitted
the analysis of extensive panoramic radiograph data, providing valuable insights into the
oral health status of specific populations at a reduced cost.

Moreover, rapid automatic tooth segmentation serves as the foundation for various
Al-assisted diagnostic models. By accurately identifying the tooth morphology, the crown-
root ratio can be calculated, the completeness of tooth crowns can be ascertained, the type
of impaction in wisdom teeth can be determined, and alveolar bone height can be assessed.
In instances of radiographic overlap between teeth, segmentation aids in distinguishing
pathological issues or restorations specific to each tooth. Moreover, segmenting the alveolar
ridge line enables the quick assessment of alveolar bone height and, combined with tooth
segmentation results, facilitates the diagnosis of periodontal conditions.

5. Conclusions

This study has described a unique STSN-Net architecture for the accurate segmenta-
tion and numbering of teeth with a best F1 score of 98.49%, an mAP score of 98.10%, and
a DICE score of 96.29%, which is well suited for use in oral clinical practice and has the
potential to assist doctors. This method can help doctors obtain an objective and accurate
segmentation and numbering of the teeth and standardize the oral clinical process while si-
multaneously reducing their workload. The proposed STSN-Net framework for automatic
segmentation and tooth numbering in panoramic radiographs marks a significant advance-
ment in augmenting diagnostic and therapeutic efficiency across various dental specialties.
Furthermore, in the context of large-scale epidemiological studies, the proposed STSN-Net
offers a promising avenue to analyze extensive datasets of panoramic radiographs. Such
automation aids in acquiring comprehensive oral health data for specific populations at a
reduced cost. In the future, the performance of this method should be evaluated in more
clinical practices to further validate the application potential of the proposed framework.
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