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Abstract: Background: The aim of this review is to explore the role of artificial intelligence in the
diagnosis of colorectal cancer, how it impacts CRC morbidity and mortality, and why its role in
clinical medicine is limited. Methods: A targeted, non-systematic review of the published literature
relating to colorectal cancer diagnosis was performed with PubMed databases that were scouted to
help provide a more defined understanding of the recent advances regarding artificial intelligence and
their impact on colorectal-related morbidity and mortality. Articles were included if deemed relevant
and including information associated with the keywords. Results: The advancements in artificial
intelligence have been significant in facilitating an earlier diagnosis of CRC. In this review, we focused
on evaluating genomic biomarkers, the integration of instruments with artificial intelligence, MR and
hyperspectral imaging, and the architecture of neural networks. We found that these neural networks
seem practical and yield positive results in initial testing. Furthermore, we explored the use of deep-
learning-based majority voting methods, such as bag of words and PAHLI, in improving diagnostic
accuracy in colorectal cancer detection. Alongside this, the autonomous and expansive learning
ability of artificial intelligence, coupled with its ability to extract increasingly complex features from
images or videos without human reliance, highlight its impact in the diagnostic sector. Despite this,
as most of the research involves a small sample of patients, a diversification of patient data is needed
to enhance cohort stratification for a more sensitive and specific neural model. We also examined
the successful application of artificial intelligence in predicting microsatellite instability, showcasing
its potential in stratifying patients for targeted therapies. Conclusions: Since its commencement in
colorectal cancer, artificial intelligence has revealed a multitude of functionalities and augmentations
in the diagnostic sector of CRC. Given its early implementation, its clinical application remains a fair
way away, but with steady research dedicated to improving neural architecture and expanding its
applicational range, there is hope that these advanced neural software could directly impact the early
diagnosis of CRC. The true promise of artificial intelligence, extending beyond the medical sector, lies
in its potential to significantly influence the future landscape of CRC’s morbidity and mortality.

Keywords: artificial intelligence; colorectal cancer; diagnosis; autonomous learning; advanced
neural software
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1. Introduction

Colorectal cancer (CRC) is the third most common cancer, and its malignancy is the
second deadliest for males and females combined [1]. Its rising incidence in western
countries can be attributed to obesity, which increases the levels of visceral adipose tissue,
promoting the development of proinflammatory cytokines and inducing an inflammatory
effect on the colon. Poor nutrition feeds the risk of development by up to 70%, with
red meats stimulating the formation of N-nitroso carcinogenic compounds. Recreational
smoking and the consumption of alcohol stimulates metabolite production, with nicotine
and acetaldehyde contributing as risk factors. The aetiology of CRC is thought to involve a
mutation in the adenomatous polyposis coli suppressor gene, triggering the formation of
non-malignant polyps, which can give rise to malignant states up to 10 years after polyp
formation. A hereditary predisposition involving the familial adenomatous polyposis
undergoes point mutations, stimulating multiple potentially malignant polyps to form in
the colon. Chromosomal instability, microsatellite instability, and the CpG island methylator
phenotype are major molecular pathways of colorectal cancer, which are associated with
the loss of heterozygosity, loss of DNA repair mechanism, and gene silencing [2].

The most impactful diagnostic tool for colorectal cancer is the endoscope. This al-
lows for tumour localisation and histological examination through tissue biopsy. With a
specificity and sensitivity of above 90%, it has proven to be a vital tool to reduce morbidity
and mortality. Despite this, endoscopic analysis has its drawbacks. The discomfort of
an endoscopy has a certain fear factor, which discourages patients from undergoing the
exam; moreover, the risk of intestinal perforation and bleeding makes patients unwilling
to participate [3]. In a study investigating the benefits of surveillance endoscopies in pa-
tients with CRC, the conclusion indicated that surveillance did not improve survival for
patients for local or regional CRC [4]. Imaging tests such as CT, abdominal ultrasonog-
raphy, roentgenography of the thorax, and NMR are only supportive in advanced focal
lesions, highlighting their ineffective role in the early diagnosis of CRC [3]. Therefore, it is
imperative to enhance diagnostic tools to facilitate an early diagnosis and minimise the risk
of mortality.

The emergence of artificial intelligence in medical diagnosis has a pivotal role in
early pathology discovery, which provides a more targeted and effective approach to
cancer therapy. Artificial intelligence is a novel term which encompasses a spectrum of
methodologies and neural networks that enhance existing tools or serve as a new outlook
in the prevention, diagnosis, and treatment of disease. The autonomous and expansive
learning ability of artificial intelligence, coupled with its ability to extract increasingly
complex features from images or videos without human reliance, highlights its impact in
the diagnostic sector. Its speed and specificity are enhanced when compared to human
intervention [5].

This paper aims to describe how artificial intelligence is changing the way colorectal
cancer is diagnosed, with a particular emphasis on its impact on future rates of illness and
death related to colorectal cancer. We want to thoroughly examine AI’s impact by exploring
its complexities, including the problems, potentials, and necessity of various datasets to
improve the accuracy and effectiveness of neural models.

We are examining the existing use of AI in diagnosing CRC to establish a thorough
grasp of its strengths and weaknesses. We aim to explain how current research endeavours
focused on improving brain structures and broadening the range of AI uses have the
potential to significantly influence early CRC detection. As we begin this study, we foresee
an advanced diagnostic environment where AI, along with human expertise, significantly
influences the reduction in CRC morbidity and mortality, leading to better patient outcomes
and improvements in the quality of healthcare.

2. Method

A targeted, non-systematic review of the published literature relating to colorectal
cancer diagnosis was performed, with PubMed databases being scouted to help provide a



Diagnostics 2024, 14, 528 3 of 16

more defined understanding of the recent advances regarding artificial intelligence and their
impact on colorectal-related morbidity and mortality. Different combinations of keywords
and phrases were used to narrow down and find relevant source material. Keywords
included but were not limited to colorectal cancer diagnosis, artificial intelligence, neural
learning, machine learning, deep learning, and automation. All material published before
29th January 2024 was eligible for inclusion in this review. Articles that were not published
in English were not included in this literature review. Articles were included if deemed
relevant and including information associated with the keywords.

3. Discussion
3.1. Molecular Biomarkers

Precision oncology in colorectal cancer requires an expansive analysis of the genetic
biomarkers involved in pathology development. Targeted biomarker research is a topic of
interest for researchers, as they develop intelligent learning programs to improve pattern
recognition and data set organisation. The expansion of machine learning has provided
a breakthrough in the predication of molecular instabilities. A diagnostic study using a
deep learning model, MSINet, was developed using 100 H&E-stained, whole slide images
from patients who underwent colorectal cancer resection. The learning tool outperformed
experienced gastrointestinal pathologists in predicting microsatellite instabilities, with
the model reaching a negative predictive value of 93.7% [6]. A similar pathomic-based
model was developed through a multiple-instance-learning, deep learning model to create
an ensembled patch likelihood aggregation (EPLA) based on patch-level prediction and
whole slide images. When distinguishing the EPLA model with state-of-the-art deep
learning, it consistently outperformed its comparative model, with an AUC of 0.8848, when
analysing whole slide images. The reliability was further verified by carrying out the
experiment into two individual cohorts, which highlighted its variability when presented
with alternating data sets of patients from different continental backgrounds. To directly
compare the method with the DL-based MV in the same test set, a deep-learning-based,
majority-voting method in the TCGA-COAD cohort was developed and achieved an
AUC of 0.8457, consistent with the result in Kather’s study [7]. A further comparison
of the specificity and sensitivity of the two components of the EPLA with those of deep-
learning-based majority voting found that the bag of words technique achieved a higher
specificity (89.5% vs. 75.2%) and PAHLI sensitivity (86.4% vs. 81.8%). The ensembled EPLA
classifier combined the advantage of its two components, obtaining superior specificity and
sensitivity compared to deep-learning-based majority voting. All codes were implemented
in Python and run on a workstation with Nvidia GPUs (P40). The average time to complete
a single patient test was 0.5118 s on a P40 workstation and 20.9291 s on a regular CPU
machine (16 GB, 3.00 GHz, i5-9500). The utilisation of patient data sets from The Cancer
Genome Atlas eliminated the need for immunohistochemical and genetic testing [8]. To
establish a breakthrough in the use of conventional neural networks and advance the
sensitivity and data efficiency of deep learning networks, the integration of a transformer-
based pipeline for end-to-end biomarker prediction was created through a combination
of a pre-trained transformer encoder and a transformer network for patch aggregation.
The results from the transformer-based approach yielded a higher peak performance
compared to a classic patch approach when assessed in both large and small cohort groups.
Furthermore, a negative predictive value of 0.99 was obtained for microsatellite instability
prediction [9]. Alongside MSIs, polygenic state predictions are also vital in CRC diagnosis.
Bilal et al. used ResNet34 and ResNet 18 to report algorithms that predicted multi-gene
expression status alongside BRAF, TP53, CpG island methylation, and chromosome status.
The devices were trained on balanced datasets of tumour and non-tumour tiles, which
served as input to iterative draw and rank sampling. Informative tiles were obtained
through tissue segmentation and tile extraction. By using the same patient cohort and
splitting the dataset into training and testing groups, they compared their prediction of
microsatellite instability with that of Kather and colleagues [7]. The iterative draw and
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rank sampling method outperformed the method used by Kather and colleagues, with a
mean AUROC of 0.90 versus 0.77. The results yielded AUCs over 0.9 in internal datasets,
suggesting the viability of ResNet in pattern recognition for genomic biomarkers. The
proposed algorithm for predicting clinically valuable mutations and molecular pathways,
such as MSIs, in colorectal cancer could be used to stratify patients for targeted therapies
with quicker turnaround times compared to sequencing-based or immunohistochemistry-
related approaches [10]. Semi-supervised learning systems use both labelled and unlabelled
data and have achieved excellent results in nature image processing; furthermore, they
outperform supervised learning programs, indicating their diagnostic use for colorectal
cancer [11]. Afshar et al. investigated the application of an artificial neural network in
miRNA biomarker selection for the precise diagnosis of CRC. A MATLAB multilayer
perceptron ANN model with three layers was developed. The input layer comprised four
neurons, representing four selected miRNAs. The hidden layer had seven neurons, while
the output layer had a single neuron, indicating either a healthy control (0) or cancer (1).
To optimize training parameters, various miRNA sets were assessed. Initially, the model
was trained using the miRNA with the highest score. Then, additional miRNAs were
incrementally added based on their scores, and the model’s performance was evaluated
after each addition. This iterative process continued until the optimal performance was
attained. MiRNAs retrieved from the Gene Expression Omnibus were evaluated due
to their correlation with the signalling pathway of CRC. The outcomes of the simulation
revealed the proficient capability of the engineered Artificial Neural Network (ANN) model
in precisely discerning between cancerous and non-cancerous sample data. Moreover, the
assessment of the ANN model yielded noteworthy observations: the Area Under the ROC
curve (AUC), alongside the regression coefficient, denoting the correlation between the
ANN’s output and the anticipated output, was one. Additionally, the confusion matrix of
the ANN model conspicuously demonstrated the accurate classification of non-cancerous
patients as normal and cancerous patients as having cancer [12]. The detection of the BRAF
V600E mutation is viewed as a rapid, low-cost, and sensitive method, which utilises near-
infrared (NIR) spectroscopy enhanced by counter-propagation artificial neural networks
(CP-ANN). A total of 104 paraffin-embedded CRC samples were used to calibrate the
algorithm. The NIR detection incorporates molecular differences to discern between BRAF
V600E and wild-type mutations based on their intrinsic differences, giving the instrument
a high level of sensitivity. The CP-ANN model demonstrated a diagnostic sensitivity of
100.0%, diagnostic specificity of 87.5% and a diagnostic accuracy of 93.8%. When compared
to the time-consuming PCR and gene sequencing, the NIR detection is sensitive, does not
require sample preparation, and is inherently rapid. This standout performance reinforces
the power of AI integration with instrumental analysis in the diagnosis of CRC [13]. In
a separate study, artificial intelligence was used in a database to visually represent the
intricate connections among the various factors associated with DNA methylation in CRC.
The ANN models were able to detect connections between the studied variables, such
as MLH1 hypermethylation and right colon disposition, and the novel factors associated
with the variables. Their ability to amalgamate environmental, epigenetic, genetic, and
disease-related information could provide an opportunity to link geno-environmental
factors to CRC. Neural learning assists in stratifying large cohorts of CRC samples into
identifiable molecular subtypes for a more complete understanding of the environmental
factors linked to each of them [14].

3.2. Instrumental Integration of Artificial Intelligence

With the colonoscopy being the lead in the diagnostics of colorectal cancer, methods
must be devised to incorporate it with artificial intelligence. GI-Genius is based on a convo-
lutional neural network that pools data from a large cohort of patients with histologically
confirmed polyps. When GI-Genius is used during the insertion and withdrawal phases, it
identified any suspicious lesions or polyps through computer-aided diagnosis endoscopy.
The AI tool demonstrated a reduced risk of miss rate by around 50% compared to a regular
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endoscopy, primarily associated with its increased detection rate in polyps < 10 mm. The
reduction in false negative rate, compared to a regular endoscopy (6.8% vs. 29.6%), high-
lights its identifying role in adenoma detection [15]. Incidentally, the adenoma miss rate
was investigated in a multi-centre randomized tandem colonoscopy in the United States,
with the results reinforcing the use of deep learning [16]. The complexities of deep learning
architecture were explored by Wang et al. when creating a deep neural network based on
SegNet architecture. With preliminary studies highlighting promising results, specificity
reached 95.92% and per-image sensitivity reached 94.39%. The study demonstrated a
significant rise in PDR, ADR, and average polyps and adenomas per colonoscopy within
the CADe group compared to the control group. However, the elevated adenoma detection
primarily stemmed from the detection of more diminutive adenomas. The CADe system
predominantly identified smaller diminutive adenomas, aligning with the conventional
understanding that smaller polyps are more prone to being visually overlooked. Despite
diminutive adenomas posing lower malignancy risks than larger ones, the overall increase
in adenoma detection rate through CADe technology could potentially reduce the risk of
interval CRC. The increase in adenoma detection rate relative to a regular endoscopic exam
highlights the reliability of the tool [17]. To access the true benefits of artificial intelligence,
Song et al. utilised 12,480 image patches of 624 polyps to train the computer-aided diagnos-
tic system. To create a more sensitive computer model, the intelligent system was trained
to classify the pictures into three histological types: serrated polyps, benign adenomas,
and deep submucosal cancer. As a result, the Kappa values shot up for trainees using
the artificial intelligence to aid in polyp detection, from 0.368 to 0.655, with the overall
diagnostic accuracy increasing from 63.8–71.9% to 82.7–84.2%. The average inference time
for histological assessment was 0.02 s with ResNet-50 and 0.04 s with DenseNet-201. The
rapid interference times reinforce its ability to be used in a clinical scenario where diagnosis
must be rapid and early diagnosis has a strong impact on patient health [18]. Despite
the success of the computer-aided diagnostic system, Yao et al. [19] set out to further in-
crease the adenoma detection rates by finetuning the system through combining it with
computer-aided quality-improvement systems, which further sharpened its detection rates
by up to 30.60% compared to the 21.27% enhancement achieved using a computer-aided
diagnostic system and 24.54% obtained using a computer-aided quality-improvement sys-
tem. In 2020, Gong et al. [20] employed a neural network system involving ENDOANGEL,
which advanced adenoma detection rates by up to 16% compared to control groups, who
achieved an enhancement 8% [21]. In a pilot study conducted by Misawa and colleagues,
a dataset composed of 73 colonoscopy videos was utilized, featuring 155 polyps. Within
the dataset, flat lesions comprised around 64.5% of the cases, and each frame containing a
polyp was retrospectively annotated and analysed by two specialised endoscopists, which
served as the reference for polyp presence. The dataset was split into 155 polyp-positive
and 391 polyp-negative short videos, which were randomly assigned for training and
assessing the Convolutional Neural Network. The algorithm outperformed four novice
endoscopists (with less than one year of colonoscopy experience) and demonstrated a
comparable performance to two experts. The DNN-CAD provided diagnoses in 0.45 s,
significantly faster than both expert endoscopists (1.54 s) and non-experts (1.77 s). The
algorithm outperformed four novice endoscopists (with less than one year of colonoscopy
experience) and demonstrated a comparable performance to two experts. The DNN-CAD
provided diagnoses in 0.45 s, significantly faster than both expert endoscopists (1.54 s) and
non-experts (1.77 s). A threshold of 15% probability was established for polyp detection
based on a receiver operating characteristic analysis. The convolutional neural network
(CNN) system reached a sensitivity of 90.0%, a specificity of 63.3%, and an accuracy of
76.5% through image-frame-based analysis of a test set comprising 135 short videos [22].

3.3. Neural Enhancement of MRIs

In cancer diagnosis, a precise interpretation of the findings is necessary for staging
and therapeutic management. The segmentation of rectal cancer was enhanced through
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an artificial intelligence software, which estimated the area of the tumour, rectum, and
mesorectum. The network comprises encoder and decoder sections with skip connections.
Each convolutional block includes a 3D convolution layer, batch normalization, and ReLU
activation. Deconvolution blocks use transposed convolution operators. Skip connections
involve 1 × 1 × 1 convolutions, batch normalization, and ReLU. Input is a 3D MR image
and output matches input dimensions with three channels each for mesorectum, rectum,
and tumour probabilities. Segmentation is achieved by thresholding at 0.5. The algorithm
calculates the T stage, following the binary segmentation results. As T2 MR images are
more commonly used by radiologists in the preoperative diagnosis of colorectal cancer,
the study was performed in 3D through T2-weighted MR images using a U-Net deep
neural network. Analysis was performed on the images of 201 patients who underwent pre-
operative MRI scans for data training. The algorithm evaluated segmentation accuracy and
staging accuracy. It successfully estimated the area of the tumour, rectum, and mesorectum.
In diagnostics, differentiation between stage T2 and T3 is imperative from a therapeutic
standpoint. Therefore, when investigating the diagnostic differentiation capacity of the
AI, the T-stage sensitivity, specificity, and accuracy at 0.773, 0.768 and 0.771, respectively,
demonstrated an enhanced T stage performance when compared to a baseline model, which
achieved scores of 0.765, 0.756, and 0.761, respectively. The objective analysis of the AI
algorithm demonstrates its aid risk stratification and tailoring of individual treatments due
to its ability to individualise T stages [23]. Fang et al. opted to use dark-lumen magnetic
resonance imaging based on an AI algorithm to explore the diagnostic impact in colon
cancer. The study involved 98 patients with ulcerative-type colon cancer, with the study
aiming to establish the diagnostic efficacy and value of the dark-lumen-based MRI and its
neural integration. The apparent diffusion coefficient values of patients in the algorithm
group had comparatively higher values (1.55 ± 0.31 mm2/s) compared to the control group
(0.92 ± 0.14 mm2/s), which indicated a statistically significant difference, highlighting the
AI algorithms’ efficacy. ME and Er indicators displayed diagnostic value by evaluating
the lesion signal display effect of the two groups of MR colonography with the algorithm
that exceeded both values when compared to the control group. Furthermore, the mean
value for the algorithm (10.42) was almost double that of the control (5.27), reinforcing
its accuracy in the judgement of invasion depth [24]. Faster, region-based, convolutional
neural networks divided the MRIs into three planes (coronal, sagittal, and horizontal),
demonstrating two components, tumour segmentation and stage detection, for each. The
faster CNN is composed of region proposal networks (RPN), convolutional layers, a region
of interest, pooling, and classification. The RPN was utilised to train the network, with
finetuning performed by the convolutional layers. A combination of advanced autonomic
features provides the AI with a stable platform for image recognition and judgement.
After 50 epochs of learning, the AI code reached 100% accuracy in automatic image plane
identification, which suggests that the algorithm could correctly distinguish the projection
plane of the CRC data collected from the MRI. AUC analysis fortified the platform’s
excellent performance for every plane in every stage [25]. The fusion of AI and medical
imaging yielded a synergistic effect. Within the realm of computational science, this
innovative AI integration extends the scope and diversifies the application landscape of
artificial intelligence. It empowers AI to bolster productivity and foster advancement
within a novel domain, bolstering the influence of computational technology.

3.4. Hyperspectral Imaging

Hyperspectral imaging (HSI) is a non-invasive imaging technique that uses a broad-
band light source to measure optical tissue properties across different electromagnetic
bands. Due to their complex nature, algorithms such as convolutional neural networks,
support vector machines (SVM), and multilayer perceptron (MLP) learn patterns in a hierar-
chal way, which takes advantage of a 3D data structure and helps to discriminate between
CRCs. Collins et al. explored the imaging technique on a dataset of twelve patients, with
three parameters evaluated to determine its application in a practical scenario. The ROC-
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AUC of the 3DCNN exceeded the SVM and MLP by an area of 0.04. With a dice score of
0.41, the 3DCNN had the best scoring relative to the other models tested. The performance
of both the RBF and MLP models showed an improvement when trained on the combined
dataset compared to training solely on the esophagogastric dataset. This improvement was
consistent regardless of whether a patient-generic or a patient-specific decision threshold
was used. Notably, across all models, employing a patient-specific decision threshold
resulted in a significantly better performance compared to a patient-generic threshold.
The 3DCNN performed significantly better relative to the other models without training
on the combined dataset. When trained on the combined dataset, improved results were
obtained by the RBF and MLP models for the esophagogastric dataset. These optimistic
results suggest that a spectral-based CAD system using an interactive decision threshold
has the potential to be valuable. Moreover, with experiments combining colorectal and
esophagogastric datasets, the results showed a drastic improvement in the SVM and MLP
models [26]. Research into combined Fourier transform infrared (FTIR) hyperspectral
imaging has become a point of interest due to its role in representing different pathological
states in biopsy slides. Furthermore, the training procedure spanned 500 epochs with a
batch size of 5120, considering an overall count of 67,500 voxels. With a six-layer, fully
connected, neural network architecture, the deep learning model, alongside the micro-
FTIR-HSI, demonstrated spectacular pattern recognition capabilities, with a clear ability to
distinguish between cancerous, healthy, and inflammatory tissue, allowing it to achieve
up to 100% accuracy in most of the tested folds. When compared to other benchmark
neural learning software, HSI outperformed the traditional neural networks with linear
SVM, achieving the highest comparable accuracy of 96.48% [27]. In a separate four-layer
perceptron neural network, Winkeln et al. investigated the ability of the algorithm to
individualize tissue states into cancer, adenomatous margins around the central tumour,
and healthy mucosa. Their classification resulted in an 86% sensitivity, with a specificity of
95% for cancer and adenomatous margins. Moreover, an AUC score of 97 demonstrates its
sharp differentiation between adenoma and healthy mucosa. Specific spectral signatures
developed by the tissue-light interactions mediate for tissue perfusion assessment and
tissue differentiation. Physiological tissue parameters, including tissue oxygenation (StO2),
near-infrared perfusion index (NIR PI), tissue water index (TWI), and organ haemoglobin
index (OHI), were assessed with healthy mucosa, showing a lower TWI, OHI, and StO2
than cancer, whereas adenomas displayed a higher TWI, OHI, and StO2 than healthy
mucosa. The interpretation of tissue physiology allows for a well-rounded evaluation of
the cancer history, providing a more thorough diagnostic and therapeutic standpoint [28].

3.5. Deep Neural Network Architecture

Dulf et al. explored neural networks, with the aim of reducing the accuracy lost during
the decisional process, which is associated with an increase in the number of modulatory
factors. Five different types of architecture were tested and compared through typical clas-
sification problems. Sensitivity and F1 were the most weighted criteria in choosing decisive
networks, with Inception-v3 being selected and outscoring the other algorithms (a sensitiv-
ity of 98.13% and an F1 score of 98.14%). Inception-v3 is based on the GoogleNet model,
Inception-v1, and works to reduce the degree of “strangulation” of the network caused by
the convolutional layers. This allows for a mitigation in the number of parameters by a
further 33%. With 42 layers, its computation effort is 2.5 times greater, but its efficiency
surpasses that of the VGGNet model. For the identification of malignant areas, the F1 score
and Jaccard index were the preferred indices due to their varying classification metrics. The
model trained on the “Kvasir-Seg” set with augmentation was selected for use in the appli-
cation, obtaining an F1 score of 54.01% and a Jaccard index of 75.18% [29]. As endoscopic
techniques were highly operator-dependent, the results of the instrumental analysis varied
and could highlight human error. To overcome this, Choi et al. applied deep learning
to computer-aided diagnostics trained with 3000 images, dividing the results into four
categories: normal, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma. They
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used Inception-v3, ResNet-50, and DenseNet-161 as baselines. However, the researchers
altered the models to improve their balancing and transfer learning. To determine the mark
and accuracy of the models, they were compared to endoscopists of varying experience,
with the neural networks all outperforming the expert group. Furthermore, the model
visualization results showed regions of interest to explain the classification decision of the
pathology, allowing for an analysis of the models’ reasoning [30]. Deep neural networks
with fragment length and methylation signatures were implemented for blood-based assays
in the development of SPOT-MAS, which provides a high accuracy for early CRC detection.
This is vital due to the aggressive nature of the cancer. The model attained a 0.989 AUC
and a sensitivity of 96.8% whilst maintaining a 97% specificity in detecting CRC. At the
same time, the model’s external validation demonstrated similar effectiveness, yielding a
0.96 area under the curve. Its ability to differentiate blood samples from healthy patients
and patients with cancer is imperative when considering a personalised therapeutic ap-
proach to reduce mortality [31]. To truly grasp the fundamental importance of deep neural
networks, we need to evaluate their use in other areas outside of the CRC to serve as a
cross-reference for its viability. Fekri-Ershad et al. developed a tuned three-layer perceptron
fed with trained deep CNNs for cervical cancer diagnosis. The utilization of ResNet34
and ResNet50 with VGG-19 yielded promising results, with the CNN being trained on
images using the Adam optimizer. Machine learning approaches typically involve two key
stages: feature extraction and classification. In these methods, features are initially derived
from Pap smear images, followed by a training phase. During training, the system learns
to discern patterns from the extracted features. Subsequently, in the classification phase,
the trained system assigns labels to test images based on these learned patterns. In deep
learning methods, feature extraction occurs within the learning phase itself, seamlessly
integrating the process into the network architecture. Unlike traditional approaches, deep
networks utilize various layers, such as fully connected or SoftMax layers, in the final
stages to classify test images based on the extracted features. The proposed method was
evaluated using the Herlev benchmark database and provided a 99.23 percent accuracy
for the two-classes case and 97.65 percent accuracy for the seven-classes case. The results
demonstrate a higher accuracy compared with the baseline networks and many existing
methods [32]. Fekri-Ershad et al. further introduced an efficient method for diagnosing
cervical cancer in pap smear images by employing a multistage algorithm: initially, a basic
thresholding technique eliminates the cytoplasm part, encompassing the nucleus, from
the intracellular fluid in cervix cells. As a result, the study reveals significant changes in
the nuclear texture and cytoplasm of cancer cells compared to healthy cells, prompting
the introduction of a novel local texture descriptor named modified uniform local ternary
patterns (MULTP) for extracting discriminative local texture features. Finally, a multi-layer
neural network was embedded for classification and enhanced using a genetic algorithm to
optimize the neural network’s architecture, specifically the number of hidden nodes and
layers, thereby improving overall performance. The promising extra-CRC involvement of
deep neural networks further proved its efficacy in an expanding the AI-based diagnostic
future in medicine [33].

Table 1 was created to highlight individual AI models to distinguish between the
studies and their independent conclusions.



Diagnostics 2024, 14, 528 9 of 16

Table 1. AI Models and Independent Conclusions in Highlighted Studies.

Study Publication
Year Method Data Participants AI Model Used Conclusion

Yamashita
R et al. [6] 2021

The MSINet model was trained on 100 H&E-stained WSIs
(50 MSS, 50 MSI) from patients at Stanford University
Medical Centre and internally validated on 15 WSIs.

Externally, it was validated on 484 WSIs from The Cancer
Genome Atlas. Performance metrics included sensitivity,

specificity, NPV, and AUROC, compared with five
pathologists’ assessments of a subset of 40× magnification

WSIs (20 MSS, 20 MSI).

15 internally
validated patients
and 484 externally

validation
patients.

MSINet
The deep learning model exceeded the performance

of experienced gastrointestinal pathologists in
predicting MSI on H&E-stained WSIs.

Cao R et al. [8] 2020

Establishing the pathomics model, EPLA, based on two
consecutive stages: patch-level prediction and WSI-level

prediction. The initial model was formed and validated in
TCGA-COAD, then generalized in Asian-CRC through
transfer learning. The pathological signatures generated

from the model were inspected with genomic and
transcriptomic profiles for model interpretation.

429 patients
MIL deep

learning to
create an EPLA

Effective MSI prediction from histopathological
imaging, which is transferable to a new patient

cohort.

Wagner SJ et al. [9] 2023

Developing a new transformer-based pipeline for
end-to-end biomarker prediction from pathology slides by

combining a pre-trained transformer encoder with a
transformer network for patch aggregation.

>13,000 patients
Convolutional

Neural
Networks

A sensitivity of 0.99 and a negative predictive value
> 0.99 were achieved for the prediction of MSIs on

surgical resection specimens. Resection
specimen-only training reached clinical-grade

performance on endoscopic biopsy tissue, solving a
long-standing diagnostic problem.

Bilal M et al. [10] 2021

Tumour tiles were processed by models trained using
iterative draw and rank sampling to predict molecular

labels such as high mutation density, microsatellite
instability, chromosomal instability, CpG island methylator

phenotype (CIMP)-high (vs. CIMP-low), BRAFmut,
TP53mut, and KRASWT. The resulting scores identified
top-ranked tiles, which were then analysed by model 3

(HoVer-Net) for cell nuclei segmentation and classification.
Model performance was assessed using the area under the
convex hull of the receiver-operating characteristic curve

(AUROC) and compared with prior methods.

499 patients ResNet18 and
ResNet34

After large-scale validation, the proposed algorithm
for predicting clinically important mutations and

molecular pathways, such as MSI, in colorectal
cancer could be used for targeted therapies for

patients.
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Table 1. Cont.

Study Publication
Year Method Data Participants AI Model Used Conclusion

Yu G et al. [11] 2021 An SSL-based method on the mean teacher architecture
using WSIs of colorectal cancer from 8803 subjects. 8803 patients SSL

SSL achieved results comparable to that of SL, with
massive annotations. SSL dramatically reduces the
annotations, which has great potential to effectively

build sophisticated pathological AI platforms in
practice.

Afshar S et al. [12] 2019

An artificial neural network model was proposed in this
work. Among the miRNAs retrieved from the Gene

Expression Omnibus dataset, four miRNAs with the best
miRNA score were selected by ANN units.

200 patients ANN

The ANN model effectively distinguished between
cancerous and non-cancerous samples with high

accuracy. Additionally, upon evaluation, the ANN
model demonstrated an area AUC of 1, indicating

excellent predictive performance. Furthermore, the
regression coefficient between the ANN’s output

and the expected output was also 1. The confusion
matrix revealed that all non-cancerous patients

were correctly identified as normal, while cancerous
patients were accurately classified as having cancer.

Zhang X et al. [13] 2019

The NIR spectral data from 104 paraffin-embedded CRC
tissue samples consisting of an equal number of the BRAF
V600E mutant and wild-type ones calibrated and validated

the CP-ANN model.

312 tissue patient
samples CP-ANN

The CP-ANN model achieved a calibration
classification accuracy of 98.0% and a validation

classification accuracy of 94.4%. The model
demonstrated a diagnostic sensitivity of 100.0% for
the BRAF V600E mutation, a diagnostic specificity

of 87.5%, and an overall diagnostic accuracy of
93.8%. Furthermore, it successfully distinguished

between the BRAF V600E mutant and the wild type
based on inherent differences, leveraging a dataset

comprising 312 CRC tissue samples that were
paraffin-embedded, deparaffinized, and stained.

Coppede
F et al. [14] 2015

Promoter methylation was evaluated using
methylation-sensitive, high-resolution melting and

genotyping through the PCR-RFLP technique. The data
underwent analysis using the Auto Contractive Map, a

unique type of artificial neural network (ANN) capable of
determining the strength of each variable’s association with
all others. Additionally, it visually depicted the map of the

primary connections within the data.

83 tissue patient
samples ANN

ANNs revealed the complexity of the
interconnections among factors linked to DNA

methylation in CRC.
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Table 1. Cont.

Study Publication
Year Method Data Participants AI Model Used Conclusion

Wallace
MB et al. [15] 2022

Patients participating in colorectal cancer (CRC) screening or
surveillance across eight centres (Italy, UK, US) were

randomized into two groups. Each group underwent two
consecutive colonoscopies on the same day, one with AI and

one without AI. The order of colonoscopies with or without AI
varied between the groups. The adenoma miss rate was

calculated as the ratio of histologically confirmed lesions found
during the second colonoscopy to the total number of lesions

detected during both the first and second colonoscopies.

230 Patients Gi-Genius

AI resulted in a two-fold reduction in miss rate of
CRC neoplasia, supporting AI-benefit in reducing
perceptual errors for small and subtle lesions at

standard colonoscopy.

Glissen Brown
JR et al. [16] 2022

A prospective, multi-center, single-blind randomized tandem
colonoscopy investigation was conducted to assess a

deep-learning-based Computer-Aided Detection (CADe)
system. The study enrolled patients from four academic

medical centres in the United States between 2019 and 2020.
Participants undergoing CRC screening or surveillance were

randomly assigned to either receive CADe colonoscopy or
high-definition white light colonoscopy first. They underwent
the other procedure immediately afterward, performed by the

same endoscopist in tandem.

232 patients Endoscreener

In this U.S., multicentre, tandem colonoscopy,
randomized, controlled trial, a decrease in AMR
and SSL misses rate, and an increase in first-pass

APC with the use of a CADe-system, was
observed when compared with HDWL

colonoscopy alone.

Wang P et al. [17] 2019

In an open, non-blinded trial, consecutive patients were
prospectively randomized to undergo diagnostic colonoscopy,
either with or without the aid of a real-time automatic polyp
detection system. This system provided simultaneous visual
cues and sound alarms upon detecting polyps. The primary

measured outcome was the adenoma detection rate.

1058 patients SegNet

In a low-prevalence adenoma detection rate
population, an automatic polyp detection system
during colonoscopy resulted in major increases in
the number of diminutive adenomas detected, as

well as an increase in the rate of hyperplastic
polyps.

Hamabe
A et al. [23] 2022

MRI images were utilized as training data, and the resected
specimen from 103 cases was processed into a circular shape.
Ground-truth labels were created by annotating MR images

with segmentation labels representing the tumor area, based on
pathologically confirmed lesions. Furthermore, labels were

assigned to the rectum and mesorectum areas. Subsequently,
an automatic segmentation algorithm was developed,

employing a U-net deep neural network.

201 patients U-Net

This algorithm can provide an objective analysis
of MR images at any institution, and aid in risk
stratification in rectal cancer and the tailoring of
individual treatments. Moreover, it can be used

for surgical simulations.
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Table 1. Cont.

Study Publication
Year Method Data Participants AI Model Used Conclusion

Wu QY et al. [25] 2021

Data were collected from patients retrospectively as
research objects. Faster R-CNNs were used to build the

platform and the platform was evaluated according to the
receiver operating characteristic curve.

183 patients Faster R-CNN
Utilizing Faster R-CNN AI could potentially serve
as an efficient and unbiased approach to establish a
platform for predicting T-staging in rectal cancer.

Collins T et al. [26] 2021

A dataset comprising 12 patients with colon data and 10
patients with esophagogastric data was used to train

various state-of-the-art machine learning techniques for
cancer tissue detection through hyperspectral imaging.
These methods include Support Vector Machines with

radial basis function kernels, Multi-Layer Perceptrons, and
3D Convolutional Neural Networks (3DCNNs).

22 patients

3DCNN, SVM,
MLPs and radial

basis function
kernels.

In this study, the 3DCNN model demonstrated
better accuracy compared to classical machine

learning models (MLP and RBF-SVM) in detecting
esophagogastric and colon cancer. Despite the

limited sample size, the findings show promise.
While combining datasets could significantly

enhance the performance of MLP and RBF-SVM
models, the 3DCNN model did not benefit from this
approach. This contradicts the common belief that

CNNs necessitate larger datasets for training
compared to other methods.

Muniz
FB et al. [27] 2023

The proposed method consists of modelling hyperspectral
data into a voxel format for pattern detection of each voxel

using fully connected deep neural network.
55 patients FCNN

The experiments utilized the K-fold cross-validation
protocol with an interpatient approach, yielding an

impressive overall accuracy of 99% with a deep
neural network and 96% with a linear support
vector machine. These results underscore the

method’s exceptional ability to characterize tissues
through deep learning and hyperspectral images.

Choi K et al. [30] 2020

By applying deep learning to develop a computer-aided
diagnostic (CAD) system of colorectal adenoma, 3000
colonoscopic images were divided into 4 categories
according to the final pathology: normal, low-grade

dysplasia, high-grade dysplasia, and adenocarcinoma.
Through the implemention of three convolutional neural

networks using Inception-v3, ResNet-50, and DenseNet-161
as baseline models, the models were adjusted using several
strategies: replacement of the top layer, transfer learning

from pre-trained models, fine-tuning of the model weights,
rebalancing and augmentation of the training data, and

10-fold cross-validation.

3000 colonoscopic
patient images

CNN model
using

Inception-v3,
ResNet-50 and
DenseNet-161

In the experiments, the CNN-CAD system
demonstrated the highest performance, achieving a

classification accuracy rate of 92.48%. Across all
criteria, the CNN-CAD results surpassed those of

endoscopic experts. The model’s visualization
outcomes revealed reasonable regions of interest,

aiding in explaining pathology classification
decisions. The study concluded that the CNN-CAD

system effectively discerns colorectal adenoma
pathology, outperforming the group of endoscopic

experts.
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3.6. The Lack of Clinical Practicality in AI

With the dramatic and unprecedented rise of artificial intelligence, its use has been
hindered in practical medicine due a lack of trials and testing, which prevent its implemen-
tation into modern medicine. When predicting microsatellite instability, downsampling
from 40 times images to 20 times images restricted the inclusion of high-resolution infor-
mation such as image texture and boundary information. Furthermore, with the model
training being limited to a small sample group of patients, there could be a lack of diversity
in patient information across a multitude of socio-economic and geographic backgrounds,
necessitating an expansion in the training data to improve the generalizability and accuracy
of the model [6]. Despite the advancements in MSI at the genomic level, the transcrip-
tomic levels remain understudied. Also, as deep learning models are a recent innovation
within the medical landscape, early adopters have criticised the algorithms for their poor
interpretability, with only a few models being trusted and verified by clinicians in clinical
practice [8]. Further testing from separate studies indicated that when the training data and
the test data were not from the same source, there was a discrepancy in the results, yielding
poorer results for the artificial intelligence models [11]. The advancement of precision
oncology has been blockaded by its costly and complex process, alongside the intricate
instrumentation and expertise that are required. Deep learning is limited by its controver-
sial performance and it is uncertain whether it is applicable to a large population. It also
cannot be generalised to any patient population and is not permitted to be used on biopsy
materiel [9]. Confidence heatmaps show that both positively and negatively labelled tiles
with varying confidence could be linked to the difficulties associated with the immunogenic
response of microsatellite instability, like the histomorphology of microsatellite instability.
This suggests that a more complex method of aggregation is required to classify molecular
characteristics, beyond what is currently available [10]. There is an increased necessity
that ANNs can achieve crosstalk amongst epigenetic, genetic, and environmental factors.
This would allow for the differentiation of CRCs based on their genetic and epigenetic
signatures, which would pave the way for the discovery of the most promising biomarkers,
allowing for an early CRC diagnosis based on the subtype. This would serve as a perquisite
for stratifying large cohorts of CRC samples into molecular-based divisions [14].

Some studies were not powered to detect differences in ADRs. Tandem colonoscopy
provides us with important information regarding CAD performance but has a limited
role in a general clinical setting. Also, given that endoscopists were not blinded during
the study, it could be assumed that the performance of the endoscopist was based on its
being observed, which would further affect the CAD’s recorded functionality. Moreover,
given that some studies used only expert colonoscopists as their baseline comparison to the
CAD, it is unclear how CAD-assisted colonoscopies will affect the endoscopy performance
depending on who is managing the instrument and AI. This presents an overly complex
situation where the user may hinder the true abilities of the neural networks rather than
the intrinsic power of the model [16]. Though optical studies remain a promising area
of research in CRC diagnosis, biopsy is still seen as the gold standard. The AI is also
limited by how much surface microstructures can reflect the histo-morphological features
of a lesion; if the program does not pick up a lesion, it completely rules out its diagnosis
unless there is human intervention, which would ultimately take more time and would
essentially remove the need for the tool in the first place. Adding onto the previous point,
AI has a certain visual field and will act within these parameters. This excludes any polyp
lying outside these parameters, as it will not be detected by the CAD system, creating a
range problem for a tool as its effectivity is classified relative to the area it covers. For an
automatic polyp detection system to be considered ‘real-world’, it must demonstrate rapid
analysis times with no delay to the endoscopist, something which is not within the scope of
current AI software. Another constraint is the absence of external legitimacy. The baseline
adenoma and polyp detection rates in this study were not as high as those reported in
Western countries. This could be due to a variety of variables, including genetic, nutritional,
lifestyle, and habitus differences between Chinese and Western populations, as well as
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disparities in the morbidity of colon polyps/adenomas. As a result, the study’s findings
may not be applicable to places in the world with a higher baseline ADR [17].

Although AI requires variables and data to make its decisions, specifics regarding
patient data are not available for the algorithm. For example, in the study looking at T
stage diagnosis, there were no patients who could not undergo surgery, and the study did
not include patients who had a stage that was too advanced to receive surgery. The absence
of such information in the algorithms’ learning process could evolve into inaccurate MRI
assessments for similar patients. Also, as the depth of invasion and the pathological stage
are different for different tumours at varying distances from the anus, this could impact the
image assessment of the AI [25].

4. Conclusions

Since its inception in colorectal cancer, artificial intelligence has emerged as a transfor-
mative force, introducing a great number of functionalities and enhancements within the
diagnostic approach to CRC. The expansive capabilities of AI, spanning from intricate ge-
nomic analysis to seamless collaboration with instruments like the endoscope, underscore
the practicality and affirmative outcomes observed in the initial testing.

While the current body of research predominantly involves a limited sample size, it
is imperative to underscore the necessity to diversify patient data. This diversification is
not merely a procedural requirement but a critical step toward refining cohort stratifica-
tion, which is essential for developing neural models that exhibit heightened sensitivity
and specificity.

Although it is currently in the early stages of implementation, the clinical application
of AI in CRC diagnosis appears to be on the horizon. The trajectory, however, demands
steadfast dedication to ongoing research aimed at refining neural architecture and broad-
ening the scope of applications. The anticipation is that these advanced neural solutions,
through consistent improvements and expanded utility, will play a direct and impactful
role in the early diagnosis of CRC.

The true promise of artificial intelligence, extending beyond the medical sector, lies
in its potential to significantly influence the future landscape of CRC morbidity and mor-
tality. As AI seamlessly integrates into various domains, including healthcare, it not only
promises enhanced diagnostic capabilities but also presents an opportunity to redefine
the quality of life. By synergizing human expertise with the computational prowess of
intelligent algorithms, we are poised not just to advance diagnostics but to make substantial
strides in improving patient outcomes, ultimately shaping a future where CRC is detected
earlier and treated more effectively, consequently reducing the overall burden of morbidity
and mortality.
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Dadan, J.; Ładny, J.R.; Zwierz, K. The diagnostics of colorectal cancer. Contemp. Oncol. 2014, 18, 1–6. [CrossRef]
4. Ramsey, S.D.; Howlader, N.; Etzioni, R.; Brown, M.L.; Warren, J.L.; Newcomb, P. Surveillance endoscopy does not improve

survival for patients with local and regional stage colorectal cancer. Cancer 2007, 109, 2222–2228. [CrossRef]

https://doi.org/10.3390/ijms18010197
https://doi.org/10.5114/wo.2013.39995
https://doi.org/10.1002/cncr.22673


Diagnostics 2024, 14, 528 15 of 16

5. Gabralla, L.A.; Hussien, A.M.; AlMohimeed, A.; Saleh, H.; Alsekait, D.M.; El-Sappagh, S.; Ali, A.A.; Refaat Hassan, M. Automated
Diagnosis for Colon Cancer Diseases Using Stacking Transformer Models and Explainable Artificial Intelligence. Diagnostics 2023,
13, 2939. [CrossRef] [PubMed]

6. Yamashita, R.; Long, J.; Longacre, T.; Peng, L.; Berry, G.; Martin, B.; Higgins, J.; Rubin, D.L.; Shen, J. Deep learning model for
the prediction of microsatellite instability in colorectal cancer: A diagnostic study. Lancet Oncol. 2021, 22, 132–141. [CrossRef]
[PubMed]

7. Kather, J.N.; Pearson, A.T.; Halama, N.; Jäger, D.; Krause, J.; Loosen, S.H.; Marx, A.; Boor, P.; Tacke, F.; Neumann, U.P.; et al. Deep
learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019, 25, 1054–1056.
[CrossRef] [PubMed]

8. Cao, R.; Yang, F.; Ma, S.C.; Liu, L.; Zhao, Y.; Li, Y.; Wu, D.H.; Wang, T.; Lu, W.J.; Cai, W.J.; et al. Development and interpretation of
a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer. Theranostics 2020, 10, 11080–11091.
[CrossRef]

9. Wagner, S.J.; Reisenbüchler, D.; West, N.P.; Niehues, J.M.; Veldhuizen, G.P.; Quirke, P.; Grabsch, H.I.; Brandt, P.A.; Hutchins, G.G.;
Richman, S.D.; et al. Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
Cancer Cell 2023, 41, 1650–1661.e4. [CrossRef]

10. Bilal, M.; Raza, S.E.A.; Azam, A.; Graham, S.; Ilyas, M.; Cree, I.A.; Snead, D.; Minhas, F.; Rajpoot, N.M. Development and
validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in
colorectal cancer from routine histology images: A retrospective study. Lancet Digit. Health 2021, 3, e763–e772. [CrossRef]

11. Yu, G.; Sun, K.; Xu, C.; Shi, X.H.; Wu, C.; Xie, T.; Meng, R.Q.; Meng, X.H.; Wang, K.S.; Xiao, H.M.; et al. Accurate recognition of
colorectal cancer with semi-supervised deep learning on pathological images. Nat. Commun. 2021, 12, 6311. [CrossRef]

12. Afshar, S.; Afshar, S.; Warden, E.; Manochehri, H.; Saidijam, M. Application of Artificial Neural Network in miRNA Biomarker
Selection and Precise Diagnosis of Colorectal Cancer. Iran. Biomed. J. 2019, 23, 175–183. [CrossRef]

13. Zhang, X.; Yang, Y.; Wang, Y.; Fan, Q. Detection of the BRAF V600E Mutation in Colorectal Cancer by NIR Spectroscopy in
Conjunction with Counter Propagation Artificial Neural Network. Molecules 2019, 24, 2238. [CrossRef] [PubMed]

14. Coppedè, F.; Grossi, E.; Lopomo, A.; Spisni, R.; Buscema, M.; Migliore, L. Application of artificial neural networks to link genetic
and environmental factors to DNA methylation in colorectal cancer. Epigenomics 2015, 7, 175–186. [CrossRef] [PubMed]

15. Wallace, M.B.; Sharma, P.; Bhandari, P.; East, J.; Antonelli, G.; Lorenzetti, R.; Vieth, M.; Speranza, I.; Spadaccini, M.; Desai, M.; et al.
Impact of Artificial Intelligence on Miss Rate of Colorectal Neoplasia. Gastroenterology 2022, 163, 295–304.e5. [CrossRef] [PubMed]

16. Glissen Brown, J.R.; Mansour, N.M.; Wang, P.; Chuchuca, M.A.; Minchenberg, S.B.; Chandnani, M.; Liu, L.; Gross, S.A.; Sengupta,
N.; Berzin, T.M. Deep Learning Computer-Aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-Center
Randomized Tandem Colonoscopy Study (CADeT-CS Trial). Clin. Gastroenterol. Hepatol. 2022, 20, 1499–1507.e4. [CrossRef]
[PubMed]

17. Wang, P.; Berzin, T.M.; Glissen Brown, J.R.; Bharadwaj, S.; Becq, A.; Xiao, X.; Liu, P.; Li, L.; Song, Y.; Zhang, D.; et al. Real-time
automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled
study. Gut 2019, 68, 1813–1819. [CrossRef] [PubMed]

18. Song, E.M.; Park, B.; Ha, C.A.; Hwang, S.W.; Park, S.H.; Yang, D.H.; Ye, B.D.; Myung, S.J.; Yang, S.K.; Kim, N.; et al. Endoscopic
diagnosis and treatment planning for colorectal polyps using a deep-learning model. Sci. Rep. 2020, 10, 30. [CrossRef] [PubMed]

19. Yao, L.; Zhang, L.; Liu, J.; Zhou, W.; He, C.; Zhang, J.; Wu, L.; Wang, H.; Xu, Y.; Gong, D.; et al. Effect of an artificial intelligence-
based quality improvement system on the efficacy of a computer-aided detection system in colonoscopy: A four-group parallel
study. Endoscopy 2022, 54, 757–768. [CrossRef] [PubMed]

20. Gong, D.; Wu, L.; Zhang, J.; Mu, G.; Shen, L.; Liu, J.; Wang, Z.; Zhou, W.; An, P.; Huang, X.; et al. Detection of colorectal adenomas
with a real-time computer-aided system (ENDOANGEL): A randomised controlled study. Lancet Gastroenterol. Hepatol. 2020, 5,
352–361, Erratum in Lancet Gastroenterol. Hepatol. 2020, 5, e3. [CrossRef] [PubMed]

21. Thomas, J.; Ravichandran, R.; Nag, A.; Gupta, L.; Singh, M.; Panjiyar, B.K. Advancing Colorectal Cancer Screening: A Comprehen-
sive Systematic Review of Artificial Intelligence (AI)-Assisted versus Routine Colonoscopy. Cureus 2023, 15, e45278. [CrossRef]
[PubMed]

22. Ahmad, O.F.; Soares, A.S.; Mazomenos, E.; Brandao, P.; Vega, R.; Seward, E.; Stoyanov, D.; Chand, M.; Lovat, L.B. Artificial
intelligence and computer-aided diagnosis in colonoscopy: Current evidence and future directions. Lancet Gastroenterol. Hepatol.
2019, 4, 71–80. [CrossRef]

23. Hamabe, A.; Ishii, M.; Kamoda, R.; Sasuga, S.; Okuya, K.; Okita, K.; Akizuki, E.; Sato, Y.; Miura, R.; Onodera, K.; et al. Artificial
intelligence-based technology for semi-automated segmentation of rectal cancer using high-resolution MRI. PLoS ONE 2022, 17,
e0269931. [CrossRef]

24. Fang, Y.; Kang, T.; Yang, Y.; Zi, Y.; Lu, X. Dark-Lumen Magnetic Resonance Image Based on Artificial Intelligence Algorithm in
Differential Diagnosis of Colon Cancer. Comput. Intell. Neurosci. 2022, 2022, 4217573. [CrossRef]

25. Wu, Q.Y.; Liu, S.L.; Sun, P.; Li, Y.; Liu, G.W.; Liu, S.S.; Hu, J.L.; Niu, T.Y.; Lu, Y. Establishment and clinical application value of
an automatic diagnosis platform for rectal cancer T-staging based on a deep neural network. Chin. Med. J. 2021, 134, 821–828.
[CrossRef]

https://doi.org/10.3390/diagnostics13182939
https://www.ncbi.nlm.nih.gov/pubmed/37761306
https://doi.org/10.1016/S1470-2045(20)30535-0
https://www.ncbi.nlm.nih.gov/pubmed/33387492
https://doi.org/10.1038/s41591-019-0462-y
https://www.ncbi.nlm.nih.gov/pubmed/31160815
https://doi.org/10.7150/thno.49864
https://doi.org/10.1016/j.ccell.2023.08.002
https://doi.org/10.1016/S2589-7500(21)00180-1
https://doi.org/10.1038/s41467-021-26643-8
https://doi.org/10.29252/ibj.23.3.175
https://doi.org/10.3390/molecules24122238
https://www.ncbi.nlm.nih.gov/pubmed/31208050
https://doi.org/10.2217/epi.14.77
https://www.ncbi.nlm.nih.gov/pubmed/25942531
https://doi.org/10.1053/j.gastro.2022.03.007
https://www.ncbi.nlm.nih.gov/pubmed/35304117
https://doi.org/10.1016/j.cgh.2021.09.009
https://www.ncbi.nlm.nih.gov/pubmed/34530161
https://doi.org/10.1136/gutjnl-2018-317500
https://www.ncbi.nlm.nih.gov/pubmed/30814121
https://doi.org/10.1038/s41598-019-56697-0
https://www.ncbi.nlm.nih.gov/pubmed/31913337
https://doi.org/10.1055/a-1706-6174
https://www.ncbi.nlm.nih.gov/pubmed/34823258
https://doi.org/10.1016/S2468-1253(19)30413-3
https://www.ncbi.nlm.nih.gov/pubmed/31981518
https://doi.org/10.7759/cureus.45278
https://www.ncbi.nlm.nih.gov/pubmed/37846251
https://doi.org/10.1016/S2468-1253(18)30282-6
https://doi.org/10.1371/journal.pone.0269931
https://doi.org/10.1155/2022/4217573
https://doi.org/10.1097/CM9.0000000000001401


Diagnostics 2024, 14, 528 16 of 16

26. Collins, T.; Maktabi, M.; Barberio, M.; Bencteux, V.; Jansen-Winkeln, B.; Chalopin, C.; Marescaux, J.; Hostettler, A.; Diana, M.;
Gockel, I. Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging.
Diagnostics 2021, 11, 1810. [CrossRef]

27. Muniz, F.B.; Baffa, M.F.O.; Garcia, S.B.; Bachmann, L.; Felipe, J.C. Histopathological diagnosis of colon cancer using micro-FTIR
hyperspectral imaging and deep learning. Comput. Methods Programs Biomed. 2023, 231, 107388. [CrossRef] [PubMed]

28. Jansen-Winkeln, B.; Barberio, M.; Chalopin, C.; Schierle, K.; Diana, M.; Köhler, H.; Gockel, I.; Maktabi, M. Feedforward Artificial
Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy.
Cancers 2021, 13, 967. [CrossRef] [PubMed]

29. Dulf, E.H.; Bledea, M.; Mocan, T.; Mocan, L. Automatic Detection of Colorectal Polyps Using Transfer Learning. Sensors 2021, 21,
5704. [CrossRef] [PubMed]

30. Choi, K.; Choi, S.J.; Kim, E.S. Computer-Aided Diagonosis for Colorectal Cancer using Deep Learning with Visual Explanations.
In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
Montreal, QC, Canada, 20–24 July 2020; Volume 2020, pp. 1156–1159.

31. Nguyen, H.T.; Khoa Huynh, L.A.; Nguyen, T.V.; Tran, D.H.; Thu Tran, T.T.; Khang Le, N.D.; Le, N.A.; Pham, T.V.; Le, M.T.; Quynh
Pham, T.M.; et al. Multimodal analysis of ctDNA methylation and fragmentomic profiles enhances detection of nonmetastatic
colorectal cancer. Future Oncol. 2022, 18, 3895–3912. [CrossRef] [PubMed]

32. Fekri-Ershad, S.; Alsaffar, M.F. Developing a Tuned Three-Layer Perceptron Fed with Trained Deep Convolutional Neural
Networks for Cervical Cancer Diagnosis. Diagnostics 2023, 13, 686. [CrossRef]

33. Fekri-Ershad, S.; Ramakrishnan, S. Cervical cancer diagnosis based on modified uniform local ternary patterns and feed forward
multilayer network optimized by genetic algorithm. Comput. Biol. Med. 2022, 144, 105392. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/diagnostics11101810
https://doi.org/10.1016/j.cmpb.2023.107388
https://www.ncbi.nlm.nih.gov/pubmed/36773592
https://doi.org/10.3390/cancers13050967
https://www.ncbi.nlm.nih.gov/pubmed/33669082
https://doi.org/10.3390/s21175704
https://www.ncbi.nlm.nih.gov/pubmed/34502594
https://doi.org/10.2217/fon-2022-1041
https://www.ncbi.nlm.nih.gov/pubmed/36524960
https://doi.org/10.3390/diagnostics13040686
https://doi.org/10.1016/j.compbiomed.2022.105392

	Introduction 
	Method 
	Discussion 
	Molecular Biomarkers 
	Instrumental Integration of Artificial Intelligence 
	Neural Enhancement of MRIs 
	Hyperspectral Imaging 
	Deep Neural Network Architecture 
	The Lack of Clinical Practicality in AI 

	Conclusions 
	References

