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Abstract: Predicting gait recovery after a spinal cord injury (SCI) during an acute rehabilitation
phase is important for planning rehabilitation strategies. However, few studies have been conducted
on this topic to date. In this study, we developed a deep learning-based prediction model for gait
recovery after SCI upon discharge from an acute rehabilitation facility. Data were collected from
405 patients with acute SCI admitted to the acute rehabilitation facility of Korea University Anam
Hospital between June 2008 and December 2022. The dependent variable was Functional Ambulation
Category at the time of discharge (FAC-DC). Seventy-one independent variables were selected from
the existing literature: basic information, International Standards for Neurological Classification
of SCI scores, neurogenic bladders, initial FAC, and somatosensory-evoked potentials of the lower
extremity. Recurrent neural network (RNN), linear regression (LR), Ridge, and Lasso methods were
compared for FAC-DC prediction in terms of the root-mean-squared error (RMSE). RNN variable
importance, which is the RMSE gap between a complete RNN model and an RNN model excluding a
certain variable, was used to evaluate the contribution of this variable. Based on the results of this
study, the performance of the RNN was far better than that of LR, Ridge, and Lasso. The respective
RMSEs were 0.3738, 2.2831, 1.3161, and 1.0246 for all the participants; 0.3727, 1.7176, 1.3914, and
1.3524 for those with trauma; and 0.3728, 1.7516, 1.1012, and 0.8889 for those without trauma. In
terms of RNN variable importance, lower-extremity motor strength (right and left ankle dorsiflexors,
right knee extensors, and left long toe extensors) and the neurological level of injury were ranked
among the top five across the boards. Therefore, initial FAC was the seventh, third, and ninth most
important predictor for all participants, those with trauma, and those without trauma, respectively. In
conclusion, this study developed a deep learning-based prediction model with excellent performance
for gait recovery after SCI at the time of discharge from an acute rehabilitation facility. This study
also demonstrated the strength of deep learning as an explainable artificial intelligence method for
identifying the most important predictors.

Keywords: spinal cord injury; deep learning; recurrent neural network; linear regression; Ridge;
Lasso; prediction; somatosensory evoked potential

1. Introduction

A spinal cord injury (SCI) can be defined as “damage to any part of the spinal cord or
nerves at the end of the spinal canal” [1]. This is a common factor in permanent alterations
in body functions below the damaged position. This results from damage to the spinal cord
or surrounding bones and tissues. The degree of disability is determined by the degree and
location of an injury. Damage to the upper spinal cord can lead to impairment of the limbs
and body. Damage to the lower spinal cord can result in leg and lower body impairment.
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Complete recovery is difficult once an injury has occurred [2]. Global incidence, prevalence,
and years of life lost due to disability from an SCI were 0.9 million cases, 20.6 million cases,
and 6.2 million years, respectively, in 2019 [3]. The mean age of patients with SCI increased
from 28.3 years in 1978 to 37.1 years in 2008 in the United States. The disease burden is
higher in the elderly because of health issues. As life expectancy increases, the risk factors
of falls, osteoporosis, and spinal stenosis increase [3], and medical costs are also high. The
medical cost for a quadriplegic patient aged 25 years is estimated to be USD 5.16 million
in the United States. Finally, the socioeconomic burden is significant for patients and
their families alike [4]. Gait dysfunction is a crucial sequela, and recovery of walking
ability is a high priority for patients with SCI in terms of both physical independence and
self-esteem [5].

In this context, predicting gait recovery after an SCI during the acute rehabilitation
phase is of paramount importance in designing rehabilitation strategies. For individuals
who are expected to recover sufficiently with independent gait function, rehabilitation
approaches mainly focus on using restorative techniques, such as endurance training, bal-
ance training, and lower-extremity strengthening, to promote neuroplasticity and enhance
independent gait. In contrast, for individuals with limited potential for neurorecovery,
there is more emphasis on compensatory techniques, such as wheelchair mobility or bed
transfer [6]. Additionally, prediction of gait function is important when establishing a
discharge plan. Based on their functional independence, patients are transferred to a suba-
cute inpatient rehabilitation facility or discharged and allowed to return home. However,
previous studies on the prediction of walking ability after an SCI have some limitations.
First, most studies have focused on the effects of individual factors that influence walking
recovery. For example, a review article stated that the American Spinal Injury Associa-
tion Impairment Scale (AIS) score at admission, age, etiology, sex, evoked potentials, and
magnetic resonance imaging findings, such as the presence and size of hemorrhages, were
found to be important prognostic factors for walking ability [7]. However, few studies have
considered the interaction between each factor and optimized modeling by considering
the confounding factors between each variable. Second, previous prediction-modeling
studies focused on final gait function when neurological recovery reached a plateau. In a
representative study by Van Middendorp et al., a clinical prediction rule was developed
based on age and clinical neurological parameters, such as motor and sensory scores, to
predict the probability of walking independently after a one-year traumatic SCI [8]. Other
studies combining neurophysiological data have also attempted to predict gait function at
six months or one year after SCI prognosis and recovery among patients with ischemic and
traumatic SCIs [9,10].

Artificial intelligence (AI) has surpassed conventional statistical approaches in terms
of performance measures for predicting various disease conditions. However, limited AI
studies have been conducted on this topic. Only one recent review summarized the recent
applications of machine learning in the clinical diagnosis, prognostication, and manage-
ment of acute traumatic SCIs [11]. Thirteen original studies were selected according to the
following eligibility criteria: (1) having a dependent variable consisting of functional ability
after an acute SCI; (2) reporting interventions using a decision tree, tree ensemble (random
forest and boosting), support vector machine, artificial neural networks, and/or convolu-
tional neural networks; (3) reporting outcomes of accuracy and F1 score (harmonic mean
of sensitivity and specificity); (4) having a publication year of 2010 or later; and (5) being
published in the English language. Among the 13 AI articles, only 3 studies were conducted
to predict ambulatory function. One study compared the performances of unsupervised
machine learning and logistic regression in the prognosis of walking ability [12]. Another
study used a regression tree model to predict functional outcomes after traumatic SCI. [13].
Only one deep learning study has attempted to quantify radiographic characteristics by
using a convolutional neural network to stratify neurological prognosis [14].

Recurrent neural networks (RNNs) have been widely adopted in sequential data
research, including for prediction [15]. However, to the best of our knowledge, no studies
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are available on the application of an RNN in this direction. The primary purpose of this
study was to develop a deep learning-based prediction model for gait recovery after SCI at
discharge from an acute rehabilitation facility. Furthermore, we explored the important
variables that were highly correlated with gait prognosis using a deep learning approach.

2. Methods
2.1. Participants

Data were obtained from electronic medical records of 427 patients with acute SCI
who were admitted to the acute rehabilitation facility of Korea University Anam Hospital
between June 2008 and December 2022. Demographic data and study variables were retro-
spectively reviewed. From the data set, we extracted data of all adult patients (≥18 years)
with acute SCI, including cauda equina syndrome. Finally, patients with complete medical
information on the study variables were included. Children and adolescents with SCI and
those with missing data were excluded. Finally, data from 405 participants were analyzed.
This study was approved by the Institutional Review Board of Korea University Anam
Hospital (2022AN0473). Requirement for informed consent was waived by the institutional
review board.

2.2. Variables

The dependent variable was the Functional Ambulation Category at the time of dis-
charge (FAC-DC), a clinical indicator of six-level walking ability in terms of independence
from physical support (where “0” indicates “no independence” and “5” indicates “complete
independence”) [16]. Seventy-one independent variables were selected from the existing
literature [16–19] (Table 1): (1) basic information (8 predictors), i.e., age, elderly (≥65 years)
(yes vs. no), gender (female), period of acute care (days), period of rehabilitation (days), SCI
etiology (traumatic vs. non-traumatic), cardiovascular disease (yes vs. no), and diabetes
mellitus (yes vs. no); (2) all the neurological information entered on the International Stan-
dards for Neurological Classification of SCI Worksheet (60 predictors), that is, damaged
part (C, T, L, and cauda equina), the neurological level of injury (cervical, thoracic, lumbar,
or cauda equina), AIS (A, B, C, D, and E), injury completeness (yes vs. no), 4 motor scores
(left or right upper or lower extremity), 4 sensory scores (light touch or pin prick, left or
right), 10 lower-extremity strength values of each myotome, 18 light touch scores of each
dermatome, 18 pin prick scores of each dermatome, voluntary anal contraction (yes vs.
no), and deep anal pressure; and (3) three other predictors, including neurogenic bladder
(yes vs. no), initial FAC, and somatosensory evoked potential (SSEP) of lower extremity
(normal, prolonged/shallow, and not available). All independent variables were recorded
within the first three days after admission to the rehabilitation ward.

Table 1. Descriptive statistics and FAC-DC predictor correlation. Legend: The correlations of FAC_DC
with right ankle dorsiflexor, left ankle dorsiflexor, right knee extensor, left long toe extensor, and
initial FAC were 0.62, 0.63, 0.62, 0.62, and 0.74, respectively. Neurological levels of injury C5 and C4
had the greatest numbers of participants, i.e., 76 and 73.

Variable Min 25% 50% 75% Max SD Correlation

FAC_DC 0 1 2 4 5 1.7 1.00
Age 38 52 64 74 98 15.8 −0.03

Period—Acute Care 0 17 38 133 10,642 945.2 −0.09
Period—Rehab 0 20 27 33 349 34.0 −0.13

Motor-UER 0 17 24 25 25 6.5 0.30
Motor-UEL 0 17 23 25 25 6.7 0.32
Motor-LER 0 7 19 22 25 8.8 0.64
Motor-LEL 0 8 18 22 25 8.7 0.64

Sensory-LTR 2 32 44 55 56 12.0 0.38
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Table 1. Cont.

Variable Min 25% 50% 75% Max SD Correlation

Sensory-LTL 2 32 45 55 56 12.5 0.36
Sensory-PPR 0 33 45 56 56 13.1 0.40
Sensory-PPL 0 32 45 56 56 13.2 0.37

Hip flexor,_Rt. 0 2 3 4 5 1.7 0.65
Knee extensor,_Rt. 0 2 4 5 5 1.8 0.62

Ankle dorsiflexor,_Rt. 0 1 4 4 5 1.9 0.62
Long toe extensor,_Rt. 0 1 3 4 5 1.8 0.61

Ankle plantarflexor,_Rt. 0 2 4 5 5 1.8 0.61
Hip flexor,_Lt. 0 2 3 4 5 1.7 0.66

Knee extensor,_Lt. 0 2 4 5 5 1.8 0.63
Ankle dorsiflexor,_Lt. 0 1 4 4 5 1.9 0.63
Long toe extensor,_Lt. 0 1 4 4 5 1.8 0.62

Ankle plantarflexor,_Lt. 0 2 4 5 5 1.8 0.61
LT_L1_Rt 0 1 1 2 2 0.6 0.44
LT_L2_Rt 0 1 1 2 2 0.6 0.44
LT_L3_Rt 0 1 1 2 2 0.6 0.43
LT_L4_Rt 0 1 1 2 2 0.6 0.45
LT_L5_Rt 0 1 1 2 2 0.6 0.42
LT_S1_Rt 0 1 1 2 2 0.6 0.44
LT_S2_Rt 0 1 1 2 2 0.7 0.45
LT_S3_Rt 0 1 1 2 2 0.7 0.45

LT_S4-5_Rt 0 1 1 2 2 0.7 0.43
LT_L1_Lt 0 1 1 2 2 0.7 0.41
LT_L2_Lt 0 1 1 2 2 0.7 0.41
LT_L3_Lt 0 1 1 2 2 0.7 0.40
LT_L4_Lt 0 1 1 2 2 0.7 0.42
LT_L5_Lt 0 1 1 2 2 0.7 0.39
LT_S1_Lt 0 1 1 2 2 0.7 0.42
LT_S2_Lt 0 1 1 2 2 0.7 0.42
LT_S3_Lt 0 1 1 2 2 0.7 0.40

LT_S4-5_Lt 0 1 1 2 2 0.7 0.38
PP_L1_Rt 0 1 1 2 2 0.7 0.43
PP_L2_Rt 0 1 1 2 2 0.7 0.45
PP_L3_Rt 0 1 1 2 2 0.7 0.46
PP_L4_Rt 0 1 1 2 2 0.7 0.46
PP_L5_Rt 0 1 1 2 2 0.7 0.45
PP_S1_Rt 0 1 1 2 2 0.7 0.47
PP_S2_Rt 0 1 1 2 2 0.7 0.47
PP_S3_Rt 0 1 1 2 2 0.7 0.46

PP_S4-5_Rt 0 1 1 2 2 0.7 0.44
PP_L1_Lt 0 1 1 2 2 0.7 0.42
PP_L2_Lt 0 1 1 2 2 0.7 0.42
PP_L3_Lt 0 1 1 2 2 0.7 0.45
PP_L4_Lt 0 1 1 2 2 0.7 0.45
PP_L5_Lt 0 1 1 2 2 0.7 0.43
PP_S1_Lt 0 1 1 2 2 0.7 0.45
PP_S2_Lt 0 1 1 2 2 0.7 0.45
PP_S3_Lt 0 1 1 2 2 0.7 0.44

PP_S4-5_Lt 0 1 1 2 2 0.7 0.42
Initial FAC 0 0 1 2 5 1.4 0.74

Note: LEL/LER—Lower Extremity, Left or Right; Lt—Left; LT—Light Touch; PP—Pin Prick; Rt—Right;
UEL/UER—Upper Extremity, Left or Right.

2.3. Analysis

The RNN (long short-term memory), linear regression (LR), Ridge, and Lasso were
compared for the prediction of FAC-DC. The RNN has one long short-term memory
layer with tangent hyperbolic as an activation function, sigmoid as a recurrent activation
function, a dropout of 0.0, a recurrent dropout of 0.0, and a time step of 1. Other hyper-
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parameters were Adam as an optimizer, an epoch number of 100, and a batch size of
30. Data from 405 participants were divided into training and validation sets in a 75:25
ratio (304 vs. 101 observations). A criterion used for validating the models trained was
the root-mean-squared error (RMSE), that is, the root for the average of the squares of
errors among 101 observations. RNN variable importance, which is the RMSE gap between
a complete RNN model and an RNN model excluding a certain variable, was used to
evaluate the contribution of variables. For example, we assume that the RNN variable
importance of the ankle dorsiflexor, Rt, is 0.0044. This indicates that the inclusion of the
variable ankle dorsiflexion, Rt, in the RNN reduces the RMSE of the model by 0.0044. A
random split and analysis were repeated ten times, and the average was used for external
validation. Different seed numbers were used for different runs; however, the default
parameters remained the same throughout the random splits and analyses. Regarding
statistical power, the RMSE over the standard deviation can be considered equivalent to
the inverse of the power in the case of the RNN for the prediction of a continuous variable.
Python 3.52 (Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands) was
used for analysis in August 2023.

3. Results
3.1. Descriptive Statistics

The medical records of 405 adult patients with acute SCI were reviewed retrospectively.
Descriptive statistics for continuous variables and their correlations with the FAC-DC are
presented in Table 1. The proportions of those with categorical characteristics were as
follows: elderly status (49%, 197), female sex (36%, 146), trauma (43%, 175), hypertension
(48%, 195), diabetes (27%, 109), voluntary anal contraction (78%, 315), deep anal pressure
(85%, 346), neurogenic bladder (57%, 229), and abnormal somatosensory evoked potential
of lower extremity (79%, 169 for prolonged or shallow and 153 for no response). Likewise,
39, 21, 68, 275, and 2 participants had AIS levels of A, B, C, D, and E, respectively. Neuro-
logical levels C5 and C4 corresponded to the greatest number of participants (76 and 73,
respectively). In the correlation analysis, initial FAC and lower-extremity motor strength
were highly correlated with FAC-DC; the correlations of FAC-DC with ankle dorsiflexor,
right knee extensor, left long toe extensor, and initial FAC were 0.62, 0.63, 0.62, 0.62, and
0.74, respectively. Therefore, age and the period of acute care before rehabilitation were
negatively correlated with FAC-DC, suggesting that older age and delayed rehabilitation
negatively impact prognosis.

3.2. Model Peformance

Based on these results, we presumed that the initial FAC and lower-extremity strength
significantly affected gait recovery at discharge. Therefore, four scenarios were considered
for a more detailed analysis: (1) initial FAC included and four motor scores (upper or lower
extremity, left or right) included; (2) initial FAC excluded and four motor scores included;
(3) initial FAC included and two motor scores (upper extremity, left or right) excluded; and
(4) initial FAC included and four motor scores excluded. Therefore, we tried to analyze the
impact of initial FAC by comparing scenarios (1) and (2) and of lower-extremity strength
by comparing scenarios (3) and (4).

The performance of the RNN exceeded that of LR, Ridge, and Lasso across all scenarios.
For example, the respective RMSEs averaged over ten runs in the first scenario (main
scenario) were 0.3738, 2.2831, 1.3161, and 1.0246 for all the participants; 0.3727, 1.7176,
1.3914, and 1.3524 for those with trauma; and 0.3728, 1.7516, 1.1012, and 0.8889 for those
without trauma (Table 2). The presence or absence of independent variables (initial FAC
and lower-extremity strength) did not have a significant effect on model performance.
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Table 2. Model Performance: Root-mean-squared error averaged over 10 Runs. Legend: The
performance of the recurrent neural network far exceeded that of LR, Ridge, and Lasso across the
board. For example, their respective root-mean-squared errors in the first scenario (main scenario)
were: 0.3738, 2.2831, 1.3161, and 1.0246 for all participants; 0.3727, 1.7176, 1.3914, and 1.3524 for those
with trauma; and 0.3728, 1.7516, 1.1012, and 0.8889 for those with non-traumatic SCI.

All Participants
(n = 405)

Participants with
Traumatic SCI

(n = 175)

Participants with
Non-Traumatic SCI

(n = 230)

FAC Included Motor Included
RNN 0.3738 0.3727 0.3728

Linear Regression 2.3831 1.7176 1.7516
Ridge 1.3161 1.3914 1.1012
Lasso 1.0246 1.3524 0.8889

FAC Excluded Motor Included
RNN 0.3727 0.3727 0.3732

Linear Regression 2.2952 2.1961 1.5994
Ridge 1.4387 1.6006 1.2638
Lasso 1.1107 1.6058 1.1576

FAC Included Motor Upperexcluded
RNN 0.3732 0.3727 0.3731

Linear Regression 1.9811 1.6266 1.9296
Ridge 1.2287 1.3526 1.1840
Lasso 1.0387 1.2526 0.9177

FAC Included Motor Excluded
RNN 0.3727 0.3727 0.3728

Linear Regression 1.2074 1.6294 1.8930
Ridge 1.1506 1.3383 1.1870
Lasso 1.0568 1.2258 0.9178

Note: Bold indicates Main Scenarios; FAC—Functional Ambulation Category; RNN—Recurrent Neural Network.

3.3. Vairable Importance

The top 20 significant predictors of the FAC-DC are presented in Table 3 and Figures 1–3.
In terms of RNN variable importance, ankle dorsiflexors, right knee extensors, left long toe
extensors, and neurological level of injury were ranked among the top five across the board
in all the patient groups. Initial FAC was the seventh, third, and ninth most important
predictor for all participants, those with trauma, and those without trauma, respectively.
Demographic features such as age, period of acute care before rehabilitation, and duration
of rehabilitation were also selected as important variables. Additionally, the results of
the electrophysiologic study (SSEP) also significantly impacted gait prognosis in both the
traumatic and non-traumatic SCI groups.

Table 3. Recurrent neural network variable importance. Legend: In terms of recurrent neural network
variable importance, right ankle dorsiflexor, left ankle dorsiflexor, right knee extensor, left long toe
extensor, and the neurological level of injury ranked among the top 5 across the board. Indeed, the
initial functional ambulation category was the 7th, 3rd, and 9th most important predictor for all
participants, those with trauma, and those without trauma, respectively.

Variable All Participants
(n = 405)

Participants with Traumatic
SCI (n = 175)

Participants with
Non-Traumatic SCI (n = 230)

VI Ranking VI Ranking VI Ranking

Age 0.0018 13 0.0046 18 0.0124 13
Period—Acute Care 0.0010 20 0.0039 20 0.0059 20

Period—Rehab 0.0029 6 0.0133 5 0.0161 11
AIS 0.0013 15 0.0045 19 0.0099 18
NLI 0.0032 5 0.0187 1 0.0239 7
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Table 3. Cont.

Variable All Participants
(n = 405)

Participants with Traumatic
SCI (n = 175)

Participants with
Non-Traumatic SCI (n = 230)

VI Ranking VI Ranking VI Ranking

Sensory-PPR 0.0011 18 0.0074 14 0.0103 17
Sensory-PPL 0.0021 12 0.0049 17 0.0174 10

Hip flexor, Rt. 0.0011 18 0.0102 12 0.0113 14
Knee extensor, Rt. 0.0034 4 0.0127 8 0.0253 3

Ankle dorsiflexor, Rt. 0.0044 1 0.0177 2 0.0329 1
Long toe extensor, Rt. 0.0023 8 0.0112 10 0.0250 4

Ankle plantarflexor, Rt. 0.0018 13 0.0101 13 0.0087 19
Hip flexor, Lt. 0.0023 8 0.0124 9 0.0228 8

Knee extensor, Lt. 0.0022 10 0.0105 11 0.0152 12
Ankle dorsiflexor, Lt. 0.0042 3 0.0145 4 0.0262 2
Long toe extensor, Lt. 0.0043 2 0.0133 5 0.0246 5

Ankle plantarflexor, Lt. 0.0013 15 0.0061 16 0.0108 16
Neurogenic Bladder 0.0022 10 0.0130 7 0.0244 6

Initial FAC 0.0023 7 0.0165 3 0.0177 9
SSEP-Lower 0.0012 17 0.0062 15 0.0111 15

Note: AIS—American Spinal Injury Association Impairment Scale; NLI—Neurological Level of Injury;
PPR/PPL—Pin Prick, Left/Right; FAC—Functional Ambulation Category; SSEP—Lower Somatosensory Evoked
Potential of Lower Extremity; VI—Variable Importance.
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4. Discussion

Predicting gait recovery after an SCI during the acute rehabilitation phase is of
paramount importance in designing rehabilitation strategies. However, to date, few studies
have been conducted on this topic. In this study, we developed a deep learning-based
prediction model with excellent performance for gait recovery after an SCI at the time of
discharge from an acute rehabilitation facility. This study also demonstrated the strength
of deep learning as an explainable artificial intelligence method for identifying the most
important predictors. The performance of the RNN was far better than that of LR, Ridge,
and Lasso, and the respective RMSEs were 0.3738, 2.2831, 1.3161, and 1.0246 for all the
participants; 0.3727, 1.7176, 1.3914, and 1.3524 for those with trauma; and 0.3728, 1.7516,
1.1012, and 0.8889 for those without trauma. In terms of RNN variable importance, lower-
extremity motor strength (both ankle dorsiflexors, right knee extensor, and left long toe
extensor) and neurological level of injury were among the top five predictors for all the
groups. The initial FAC ranked seventh, third, and ninth for all the participants, those with
trauma, and those without trauma, respectively.

The accurate prediction of prognosis for a certain disease or trauma has been one
of the main goals of rehabilitation medicine. For this reason, many studies have been
conducted to evaluate prognostic factors of various functional outcomes such as AIS,
Barthel Index, Spinal Cord Independence Measure, and respiratory dysfunction [20–22].
However, there has been a lack of research on developing prediction models that integrate
such predictors. Only one study developed a user-friendly clinical prediction rule that can
predict the long-term probability of walking independently on the basis of age and clinical
parameters such as motor and sensory scores [8]. One of the main reasons for this dearth
is that the traditional statistical methods have some limitations with respect to dealing
with larger numbers of predictors that are rather complex and have nonlinear relationships
within datasets. To overcome such disadvantages, AI has also been recently applied in the
predictive modeling of various outcomes (e.g., quality of life, duration of opioid prescription
and duration of intensive care unit stay or mortality) after SCI [23–25]. According to a recent
review published in 2022, only three published articles report the use of a machine learning
approach or image-based deep learning analysis for gait prediction [11]. More recently,
another study was published that established machine learning models for predicting
spinal cord independence measures using features present at the time of rehabilitation
admission. The cited study was a retrospective study with clinical data on 210 patients
with SCI. They used RMSE and mean absolute error to assess model performance and
concluded that the random forest model was superior in the training group, while a stacked
generalization model better predicted spinal cord independence measure in the testing
group [26]. However, to the best of our knowledge, no study has been conducted using
RNN to predict functional status at discharge from an acute rehabilitation hospital for
patients with SCI.

This study has several clinical implications. First, this study focused on deep learning
as a strong foundation for a decision support system for gait recovery after SCI. Based
on the results of a recent review [11], different machine learning methods are appropriate
for different tasks in the clinical diagnosis, prognostication, and management of acute
traumatic SCI, namely, the ensemble tree in the case of numeric data (accuracy 81.1%),
and the convolutional neural network in the case of image data. However, to the best
of our knowledge, no studies have been conducted on the application of an RNN in
this direction. As described above, the performance of the RNN surpassed that of LR,
Ridge, and Lasso by a large margin across the board. To the best of our knowledge,
this study is the first to be conducted in this manner, and further studies are required
on this topic. Second, this study validated the existing literature on the important roles
of lower-extremity motor scores, neurological level of injury, and initial FAC as major
predictors of gait recovery after SCI [27–33]. As explained above, the variable importance
values of lower-extremity motor strength and neurological level of injury were among
the top five for all groups. Additionally, the ranking of the initial FAC was seventh,
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third, and ninth for all the participants and those with and without trauma, respectively.
Third, the rehabilitation period was found to have a strong association with gait recovery,
emphasizing the importance of rehabilitation. Fourth, the effects of light touch and pin-
prick sensory scores on gait recovery were not significant at discharge in this study, even
though these effects were significant one year after an SCI in a previous study [8]. One
possible explanation for this discrepancy is that this study focused on gait recovery at
discharge, whereas the previous study focused on gait recovery during the chronic phase.
Further examination of this topic is needed for the effective management of gait recovery
after SCI.

Despite its clinical implications, this study has some limitations. First, it did not
consider multimodal deep learning. Combining deep learning models for image, text,
and numeric data is expected to significantly improve model performance. Secondly,
the scope of this study did not include explainable reinforcement learning [34]. This
cutting-edge approach has been popular in finance because of its realistic assumptions
and excellent performance [35]. Its popularity has spread to areas such as diagnostic
automation and treatment recommendations in healthcare [36]. However, little analysis has
been conducted on explainable reinforcement learning, warranting further investigation.
Finally, the proposed model was not externally validated. We concluded that the sample
size was not large enough to construct a validation set. Instead, we used internal validation
with data splitting. Further study with external validation set is needed to advance this
prediction model.

5. Conclusions

Despite these limitations, this study developed a deep learning-based prediction model
with excellent performance for gait recovery after an SCI at the time of discharge from
an acute rehabilitation facility. Additionally, this study demonstrates the strength of deep
learning as an explainable artificial intelligence method for identifying the most important
predictors. By precisely predicting gait function, this study will aid in personalizing
rehabilitative care for patients with acute SCI.
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