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Abstract: While the adoption of wireless capsule endoscopy (WCE) has been steadily increasing, its
primary application remains limited to observing the small intestine, with relatively less application
in the upper gastrointestinal tract. However, there is a growing anticipation that advancements in
capsule endoscopy technology will lead to a significant increase in its application in upper gastroin-
testinal examinations. This study addresses the underexplored domain of landmark identification
within the upper gastrointestinal tract using WCE, acknowledging the limited research and public
datasets available in this emerging field. To contribute to the future development of WCE for gas-
troscopy, a novel approach is proposed. Utilizing color transfer techniques, a simulated WCE dataset
tailored for the upper gastrointestinal tract is created. Using Euclidean distance measurements, the
similarity between this color-transferred dataset and authentic WCE images is verified. Pioneering
the exploration of anatomical landmark classification with WCE data, this study integrates simi-
larity evaluation with image preprocessing and deep learning techniques, specifically employing
the DenseNet169 model. As a result, utilizing the color-transferred dataset achieves an anatomical
landmark classification accuracy exceeding 90% in the upper gastrointestinal tract. Furthermore,
the application of sharpen and detail filters demonstrates an increase in classification accuracy from
91.32% to 94.06%.

Keywords: wireless capsule endoscopy; deep learning; landmark classification

1. Introduction

The global endoscopy market is experiencing steady increase, transcending geograph-
ical boundaries, as highlighted by its expansion beyond the confines of the United States
and China [1]. Conventional wired endoscopy, while a cornerstone in diagnostics, has
several limitations, such as the need for sedation, active involvement, and specialized tech-
niques [2]. In contrast, wireless capsule endoscopy (WCE) offers a more patient-friendly
alternative, with individuals simply ingesting a capsule with water. The transmitted cap-
sule images are subsequently reviewed by endoscopists, typically providing diagnostic
results within an average of 30–40 min [3]. The simplicity and convenience of wireless
capsule endoscopy have resulted in a recent surge in popularity, showing the potential to
outpace wired endoscopy [4]. However, the current focus of WCE is predominantly on the
small intestine [5]. This preference arises from the narrow luminal diameter of the small
intestine within the gastrointestinal tract, enabling WCE to effectively capture essential
imaging areas [5,6]. Nonetheless, technological advancements are propelling efforts to
expand WCE capabilities for observing the upper gastrointestinal tract [7–10]. Notably,
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magnetic-controlled capsule endoscopy (MCCE) has emerged as a promising alternative to
passive and uncontrollable WCE, demonstrating the capability to image landmark areas in
the upper gastrointestinal tract [11]. Figure 1 presents a comparative concept between the
existing WCE and the ongoing development of MCCE.
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Despite the increasing interest in upper gastrointestinal WCE, there is a limited body
of research dedicated to identifying anatomical landmarks through WCE imaging [12].
This limitation is attributed to the nascent nature of this research domain [13,14]. Xu et al.
proposed a multitask anatomy detection network for gastroscopy, successfully classifying
10 upper gastrointestinal anatomical structures with an average detection accuracy of
93.74% and classification accuracy of 98.77% [15]. Takiyama et al. conducted an automatic
anatomical classification study on 27,335 images categorized into esophagogastroduo-
denoscopy (EGD)-based larynx, esophagus, stomach, and duodenum using a GoogleNet-
based architecture [16]. They further extended their study to classify and evaluate upper,
middle, and lower stomachs using a validation set of 13,048 items, achieving a four-class
classification accuracy of 97% and a three-position study accuracy of 99%. As indicated
above, while studies exist on the identification of upper gastrointestinal landmarks through
wired conventional endoscopy, research on upper gastrointestinal landmarks with WCE
images has only recently emerged [17,18]. Further investigations are needed for landmark
identification in this specific context. The primary objective of this study was to propose
a method for providing uniform and high-accuracy imaging with capsule endoscopic
images, incorporating a prelandmark for the upper gastrointestinal tract. This approach
aims to facilitate the imaging identification of active capsules within the upper gastric tract,
anticipating their future commercial availability. Historically, capsule endoscopic images
required video processing due to their lower quality and darker nature than wireless endo-
scope images. In our effort to enhance WCE images for improved accuracy, akin to wired
endoscope images, we engaged in image preprocessing. Consequently, WCE images for
the upper gastrointestinal tract became essential for achieving this purpose. However, a
significant challenge in this field is the absence of a dedicated public dataset for the WCE
images of upper gastrointestinal landmarks, excluding the small and large intestines [19].
Existing public datasets primarily focus on classifying normal and abnormal diseases across
unspecified segments of the gastrointestinal tract [20]. While capsule endoscopy images



Diagnostics 2024, 14, 591 3 of 19

of the stomach are available, they often lack coverage of essential imaging areas based on
EGD, making it difficult to identify landmarks.

To address this gap, a realistic WCE dataset was created to contribute to the advance-
ment of future upper gastrointestinal WCE. To validate the similarity of this dataset to
actual WCE images, a small intestine dataset that includes both wired endoscopy and WCE
endoscopy datasets was used, namely the Kvasir and Kvasir-capsule datasets, containing
landmark images of the normal small intestine [19,21]. Our hypothesis posited that apply-
ing the colors of the Kvasir-capsule to the Kvasir datasets using color transfer techniques
would result in similar accuracy after training with DenseNet169. Testing this hypothesis
affirmed that landmark images subjected to color transfer closely resemble actual WCE
images. Subsequently, thresholds and error ranges were established based on this com-
parison, which were then applied to the upper gastrointestinal landmark dataset to create
a comprehensive dataset [22,23]. The WCE image dataset for the upper gastrointestinal
tract, validated through this hypothesis, demonstrates performance similar to that obtained
using WCE images captured from the actual upper gastrointestinal tract. Moreover, this
dataset has the potential to enhance the accuracy of identifying landmarks when applied
to wired endoscopy images, following image preprocessing. Our intended preprocessing
includes utilizing a dataset with implemented color transfer and leveraging deep learning
techniques to improve the accuracy of classifying images depicting upper gastrointestinal
anatomical landmarks. After this process, we anticipate that even low-quality WCE images
will demonstrate uniform and high accuracy comparable to high-quality wired endoscopes.
Moreover, the dataset is expected to successfully be used to identify the landmarks required
for EGD-based imaging. This is anticipated to contribute to the development of WCE for
the upper gastrointestinal tract, slated for future commercialization.

This paper is organized as follows: Section 2 provides an overview of upper gas-
trointestinal tract landmark classification, introduces the dataset, and outlines experiments
for model selection and resolution comparison. It details the hypothesis formulation, the
method for selecting an image similarity proof method to create a dataset mimicking a
WCE image, the image similarity proof experiment using the Kvasir and Kvasir-capsule
datasets, the production of a WCE dataset for the upper gastrointestinal tract, and the
image similarity verification process, including the resulting threshold and error range
selection. In Section 3 (Results), we describe an experiment confirming landmark classifica-
tion accuracy using the DenseNet169 model with the WCE datasets from Section 2. The
section explains the results of enhanced classification accuracy achieved through image
preprocessing. Section 4 (Discussion) discusses the experimental results, considers limita-
tions, and proposes future research directions. Section 5 (Conclusions) provides a summary
of this research.

2. Materials and Methods
2.1. Related Research and Model Selection

The adoption of deep learning technology has significantly impacted the field of medi-
cal imaging, and this influence has been further amplified through the use of CNNs [24,25].
In particular, various deep learning models based on CNNs have been developed, present-
ing a novel approach to medical image analysis. Within this domain, research utilizing
CNNs has flourished, resulting in the creation of numerous deep learning models tailored
for CNNs [26–28]. Previously, there was heavy reliance on the performance of capsule
endoscopy equipment, but recent developments in deep learning technology have spurred
a range of CNN-based innovative research. As a related research case, we analyzed research
progress by year through the examination of anatomical landmark data captured via a
wireless capsule endoscope. Table 1 illustrates the research progress over the years based
on anatomical landmark data collected using wireless capsule endoscopes [14,29–37].
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Table 1. Studies on landmarks in wireless capsule endoscopy by year.

Autor Year Landmark
Regions CNN Applications Accuracy

Rahman et al. [29] 2016 Upper stomach - MACE 88–100%

Chen et al. [30] 2017

Esophagus,
stomach,

Small intestine,
colon

N-CNN, O-CNN, etc. WCE, HMM 78–97%

Jang et al. [31] 2020
Stomach, small

intestine,
Large intestine

Purposed CNN WCE, GTA 95%, 71%

Adewole et al. [14] 2021

Esophagus,
stomach,

Small intestine,
colon

VGG19, GoogleNet,
ResNet50, AlexNet

VCE,
Grad-CAM

85.40%
99.10%

Wang et al. [32] 2022 Small intestine

VGG16, VGG19,
DenseNet121,

DenseNet201, AGDN,
InceptionV3, etc.

WCE, CNN feature
extraction module

94.83%
85.99%

Alam et al. [33] 2022 Small intestine Rat-CapsNet WCE, VAM 98.51%, 95.65%

Pascual et al. [34] 2022 Small intestine,
large intestine ResNet50 WCE, SSL 95.00%

92.77%

Athanasiou et al.
[35] 2023

Esophagus,
stomach,

Small intestine,
large intestine

Purposed 3 CNN WCE, CAD 95.56%

Laiz et al. [36] 2023 Small intestine,
large intestine ResNet50 WCE, CMT Time

Block

91.36%
94.58%
99.09%

Vaghela et al. [37] 2023 Small intestine DCAN-DenseNet WCE, SR 94.86%
93.78%

Research to date has used a variety of CNN models. However, several studies have
shown wide and inconsistent limits in accuracy [14,30–36]. The performance of these
models can vary depending on the characteristics of each dataset. In the pursuit of an
effective CNN model for our dataset, we applied deep learning to the original dataset using
commonly utilized models: ResNet, DenseNet, and Inception, as indicated in the latest
studies presented in Table 1. Among these models, the DenseNet model exhibited the high-
est average classification accuracy of 93.28%. Given the various versions of the DenseNet
model, including DenseNet121, DenseNet169, and DenseNet201, we systematically trained
and evaluated these models to identify the optimal performer. The deep learning accu-
racy results for each model on the original data were 92.26% for the DenseNet121 model,
93.28% for the DenseNet169 model, and 91.17% for the DenseNet201 model. Ultimately,
the DenseNet169 model was selected for our study due to its highest classification accuracy.
DenseNet is a model specialized for transfer learning and excels in classification problems
using small datasets, making it well suited for our research [38,39]. Table 2 presents the
deep learning results for each model on the original dataset. Notably, DenseNet169 has
exhibited superior performance in various contexts, as reported in other studies [40]. Addi-
tionally, Abbas et al. successfully employed DenseNet169 in their research on a five-stage
automatic detection and classification system for hypertensive retinopathy, demonstrating
its efficacy in classification tasks [41]. In a study by Farag et al., a novel architecture based
on DenseNet169 was created to classify the severity of diabetic retinopathy, achieving an
impressive 97% accuracy in severity ratings [42]. Based on this collective evidence, the
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DenseNet169 model was chosen for this study due to its anticipated high performance in
classification accuracy.

Table 2. Accuracy comparison of five models on the original dataset.

Model Accuracy

ResNet50 92.03%
ResNet50V2 90.58%
InceptionV3 89.83%
DenseNet121 92.26%
DenseNet169 93.28%
DenseNet201 91.17%

2.2. Original Dataset

In this study, a dataset comprising 2526 images capturing upper gastrointestinal
landmarks obtained from endoscopic procedures conducted at Yonsei Severance Hospital
was utilized. The dataset included images of five distinct landmarks: Angulus, Antrum,
Body A, Body B, as well as Cardia and Fundus. Table 3 provides the distribution of images
in the original dataset, and Figure 2 illustrates an exemplary image from the dataset,
showcasing instances of the five classes of upper gastrointestinal tract landmarks.

Table 3. Distribution of images in the original dataset.

Class Images

Angulus 493
Antrum 901
Body A 533
Body B 392

Cardia and Fundus 207
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2.3. Hypothesis Formulation

Figure 3 depicts the workflow of the flow study chart, detailing the progression.
Initially faced with challenges in obtaining wireless capsule endoscopy (WCE) images
targeting upper gastrointestinal landmarks, a hypothesis was developed to create an
alternative dataset. Our hypothesis posited that endoscopic images of similar quality to
WCE images would yield comparable outcomes when applied in practice. To validate this
hypothesis, the Kvasir-capsule dataset, which contains WCE images, and the Kvasir dataset,
which comprises wired endoscopy images, were used. Due to the limited availability of
WCE images, especially for the small intestine, comparative analysis of the two datasets
was deemed suitable. It was anticipated that applying color transfer to the Kvasir dataset to
mimic the WCE image colors of the actual small intestine would yield results similar to those
of the Kvasir-capsule dataset. To validate this expectation, a validation plan was applied
to postulate that if color-transfer-induced similarity was confirmed through these results,
analogous outcomes could be expected for upper gastrointestinal landmarks. Assessment
of this similarity involved quantifying image comparison using the Euclidean distance.
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2.4. Validation of Alternative WCE Datasets
2.4.1. Selection of the Image Similarity Measurement Method

To illustrate the similarity between color-transferred wired endoscope images and
actual WCE images, this study’s approach involved assessing image similarity. Several
methods exist for evaluating similarity between images, with the Euclidean distance (a
distance-based measurement) and cosine similarity (an angle-based measurement) being
among the most commonly employed [43–45]. The Euclidean distance quantifies the dis-
tance between vectors and gauges their similarity, with a closer proximity to 0 indicating
greater similarity [46]. Heidari et al. utilized color-based descriptors as image features and
applied Euclidean distance for image comparisons [47]. Furthermore, Wang et al. intro-
duced an intuitive Euclidean distance measure for images, referred to as image Euclidean
distance [48]. The formula for Euclidean distance is expressed as follows:

||p − q|| =
√
(p − q)·(p − q) =

√
||p||2 + ||q||2 − 2p·q. (1)

here, p and q are vectors in multidimensional space.
Conversely, cosine similarity calculates image similarity by considering the cosine

angle between vectors, yielding values between −1 and 1 [49]. The formula for cosine
similarity is given by

similarity = cos(θ) =
A·B

||A||+||B|| =
∑n

i=1 Ai × Bi√
∑n

i=1(Ai)
2 ×

√
∑n

i=1(Bi)
2

(2)

Here, ||A|| and ||B|| represent the Euclidean norms of vectors A and B, respectively.
Given the focus on determining color similarity rather than shape, the Euclidean

distance suitable for this study’s objectives was discovered, especially when shape value
deviations were minimal. In cases where the deviation of each shape value was substantial,
cosine similarity proved effective [50]. Considering the difficulty in extracting features from
the upper gastrointestinal landmarks compared with from other datasets, this study placed
less emphasis on shape values. Consequently, the Euclidean distance was determined
to be more aligned with this study’s objectives. However, during the measurements of
Euclidean distance, subtle differences in shape across each class were maintained [51]. The
VGG16 model, pre-trained on the ImageNet dataset, was employed for Euclidean distance
measurements [52].

2.4.2. Comparative Analysis of the Kvasir and Kvasir-Capsule Datasets

To validate our hypothesis, two distinct proof procedures were implemented. First, a
color transfer from the Kvasir-capsule image to the Kvasir image was executed. Utilizing
the well-known color transfer algorithm, as reported by Reinhard et al., this algorithm
transmits only red, green, and blue (RGB) colors by calculating the mean and standard
deviation (SD) of the RGB channel of the target image in the original image [53]. Notably,
the original image’s features remain untouched, and only the color is transferred to the
resulting image. In a similar context, Yin et al. conducted a study leveraging color transfer
to identify faces by race through the transfer of skin color [54]. The formula for color
transfer is expressed as follows:

Ik =
σk

t

σk
A

(
Sk − mean

(
Sk
))

+ mean
(

Tk
)

, k = (l, α, β) (3)

here, Ik represents the color-transferred image for a specific channel k. σk
t , σk

A, Sk, and Tk

denotes SD of the target image channel k, SD of the source image channel k, the source
image channel k, and the target image channel k, respectively. k = (l, α, β) denotes the
specific color channel, where l represents an achromatic channel; and α and β represent
chromatic yellow-blue and red-green opponent channels, respectively.
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Subsequently, the color-transferred Kvasir and Kvasir-capsule datasets were trained to
classify classes using DenseNet169 with a 320 × 320 input size. The classification accuracy
for the color-transferred Kvasir dataset reached 98.95%, whereas the Kvasir-capsule dataset
achieved an accuracy of 95.92%. Although the Kvasir dataset with color transfer exhibited
a slightly higher error of approximately 3%, both datasets demonstrated an accuracy
exceeding 95%, indicating similar performance. Further analysis using Euclidean distance
to measure image similarity yielded values ranging from approximately 0.8 to 1.2. Table 4
provides a breakdown of Euclidean distance values for three classes, each consisting of
500 images from the Kvasir dataset with color transfer based on the Kvasir-capsule dataset.
These two validation approaches collectively confirmed that the color-transferred WCE
image exhibited deep learning accuracy akin to that of the actual WCE image. Figure 4
shows the illustration of color transfer and Kvasir-capsule images.

Table 4. Euclidean distance measurements for color-transferred Kvasir dataset and Kvasir-
capsule dataset.

Color Transfer Kvasir Class Kvasir-Capsule Image (1) Kvasir-Capsule Image (2)

Normal cecum 0.90–1.18 0.89–1.19

Normal pylorus 0.78–1.21 0.82–1.24

Normal z line 0.77–1.24 0.81–1.21
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Figure 4. Illustration of Color Transfer and Kvasir-capsule Images: (a) Example image of Kvasir-
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calculating Euclidean distance. (c) Demonstration of the color transfer from the Kvasir-capsule image
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2.4.3. WCE Dataset Construction Using Color Transfer

Building on the comparison of the results between the color-transferred Kvasir and
Kvasir-capsule datasets, a WCE dataset for the upper gastrointestinal tract was created by
applying color transfer from capsule endoscopy to images obtained through traditional
wired endoscopy. To address the initial imbalance in the number of images across classes,
data augmentation techniques were employed, including top-down inversion, left-right
inversion, and a 20-degree tilt, as detailed in Table 3. This augmentation process resulted in
6400 photos, with 1280 photos in each class [55].

Using datasets from Liao et al. [56], Rahman et al. [57], and the Gastrointestinal
Bleeding WCE dataset [58], these three datasets were selected as target images. The
color information extracted from these target datasets was subsequently applied to the
original images obtained through wired endoscopy at Severance Hospital. Consequently,
a new dataset of WCE images for the upper gastrointestinal tract was obtained. Figure 5
illustrates example images demonstrating color transfer, and Figure 6 displays the resulting
color-transferred images based on the three target datasets. The resulting image datasets
were designated and produced through the application of color transfer as the L, R, and
G datasets, respectively. The L dataset was derived from Liao et al. [56], the R dataset
from Rahman et al. [57], and the G dataset by focusing on normal images within the
Gastrointestinal Bleeding WCE dataset [58]. These specific datasets served as references for
our study.
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Figure 5. Example images demonstrating color transfer. This process illustrates the application of
color transfer to the original images based on the target images. The original images were sourced
from wired endoscopy, and the target images represent examples from one of the three target datasets,
namely, the Gastrointestinal Bleeding WCE dataset.

2.4.4. Validation of Image Similarity: Measurement of Euclidean Distance

Image similarity was assessed by comparing three reference images with actual upper
gastrointestinal tract WCE images using the three resultant datasets. The Euclidean distance
was calculated for each of the five classes within the three datasets. Among the distance
values derived from 1280 images for each class, the analysis focused on identifying the
closest and farthest values from the target image. The results of the Euclidean distance
measurements for the target image and the three datasets are presented in Table 5, with
1280 images used for each class. The left side of the table denotes the closest distance, and
the right side represents the farthest distance.
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target images.

Table 5. Euclidean distance measurement results for the target image and three color-transferred
datasets, indicating the measured values for each class across 1280 images.

Dataset Angulus Antrum Body A Body B Cardia and
Fundus

L dataset 0.92–1.20 0.90–1.17 0.93–1.20 0.93–1.20 0.93–1.20

R dataset 0.93–1.21 0.90–1.20 0.87–1.19 0.90–1.18 0.93–1.20

G dataset 0.78–1.16 0.76–1.10 0.76–1.13 0.84–1.15 0.82–1.19

2.4.5. Establishing Threshold and Final Acceptable Ranges

The average similarity values obtained using the Euclidean distance measure ranged
between 0.8 and 1.2. To define the threshold, the method outlined by Tian et al. was
adopted [23]. As Tian et al. lacked the necessary error data for measuring outliers, a
simulation was conducted, and a threshold was established. Consequently, the distance
value threshold was set at an average value of 1.0, with an error range of within +0.2. The
value of −0.2 was excluded, as a proximity to 0 in Euclidean distance indicates higher
similarity. Therefore, the final acceptable range was set within Euclidean distances of
up to 1.2.
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2.5. Experimental Methods

An experiment was designed to classify upper gastrointestinal landmarks using deep
learning based on three datasets. The training, validation, and test datasets comprised 3840,
1280, and 1280 pieces of data, respectively, with a distribution ratio of 6:2:2. The chosen
model for the experiment was DenseNet169, which was implemented using TensorFlow,
with a batch size of 16, and stochastic gradient descent as the optimizer. Two experiments
were conducted within this experimental framework:

• Accuracy comparison across three datasets based on five image sizes;
• Accuracy evaluation for datasets with five image sizes and different image preprocess-

ing techniques (sharpen and detail filters).

The first experiment involved the classification of upper gastrointestinal landmarks
using DenseNet169 with various image sizes. Although the prevalent size for commercial
WCE is 320 × 320 [59], in previous research, Iqbal et al. and Handa et al. used a size of
128 × 128 in capsule endoscopy [60,61], which was undertaken to enhance accuracy and
speed. The analysis covered input images of sizes 128 × 128, 256 × 256, 384 × 384, and
512 × 512. The goal was to align the results with those of previous studies and consider
the image quality of current commercialized WCE images [62,63]. The second experiment
aimed to evaluate the accuracy of the datasets with five image sizes by incorporating
distinct image preprocessing techniques such as the sharpen and detail filters. These
experiments collectively explored the impact of various image sizes and preprocessing
techniques on the classification of upper gastrointestinal landmarks using deep learning
with DenseNet169.

3. Results
3.1. Accuracy Comparison Experiment of L, R, and G Datasets
3.1.1. Accuracy Comparison among Three Datasets

This study compared the landmark classification accuracy of three datasets based
on DenseNet169. In the experiment, on the L dataset, an average classification accuracy
of 92.62% was achieved; on the R dataset, the average accuracy was 92.41%; and on the
G dataset, the average accuracy was 92.38%. Notably, the highest classification accuracy
was achieved on average for the L dataset. For all three datasets, an average classification
accuracy of 92% was maintained.

3.1.2. Classification Accuracy for Different Input Image Sizes

Among the five image sizes, the highest landmark classification accuracy was achieved
for 128 × 128 and 256 × 256. Upon analysis, two assumptions were made. First, DenseNet
uses a dense block composed of several convolutional layers, and the dense connection
between these layers facilitates information reuse. The experiment suggested that smaller
images resulted in more accurate landmark classifications than larger images, contributing
to increased accuracy. Second, the relatively small size of the dataset (around 6400 images)
allowed for effective transfer learning with small data, implying that larger input images
may result in lower accuracy. Table 6 confirms that based on these factors, the accuracy
experiences a slight decrease as the image size increases.

Table 6. Comparison of results across five input sizes for L, R, and G datasets.

Dataset 128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

L dataset 93.20% 92.89% 92.26% 92.57% 92.18%

R dataset 92.65% 91.40% 92.34% 92.73% 91.87%

G dataset 93.20% 92.73% 92.18% 91.71% 91.32%
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3.1.3. Classification Accuracy among Different Classes

In the experiment, the highest accuracy was achieved for the Cardia and Fundus
classes among the five classes, whereas the lowest accuracy was achieved for the Body A
class. Upon analyzing the dataset images, the distinct narrow features of the esophagus
were prominent, especially around the Cardia portion in the Cardia and Fundus class. The
Fundus class was characterized by several parallel upper wrinkles. These unique feature
points differed from those in other classes, suggesting successful learning in extracting these
distinctive features through deep learning. Consequently, probability of misclassification
for images in the Cardia and Fundus class was lower. Conversely, the lowest accuracy was
achieved for Body A. Despite representing the same body part as the Body B class, Body
A was captured in the greater curvature area, whereas Body B was photographed in the
lesser curvature area, resulting in different shooting positions. However, the differences in
wrinkle shapes between the two classes were not significant, and numerous images featured
smooth stomach walls, posing challenges in extracting distinctive feature points for both
classes. Consequently, a high probability of misclassification arose due to the difficulty in
distinguishing between the two classes during deep learning. Figure 7 illustrates examples
of correctly and incorrectly classified images for Body A and Body B. As shown in the
examples, distinguishing features between Body A and Body B is challenging through
human visual perception.
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3.2. Classification Accuracy through Image Preprocessing Using Sharpen and Detail Filters

In diverse scenarios, image preprocessing enhances outcomes. For Experiment 1,
the goal was to boost accuracy by applying three image filters—sharpen, detail, and
sharpen and detail—across three datasets. The sharpen filter, modeled after the approach
of Nascimento et al. [64], demonstrated superior performance improvement compared
with the original image. Additionally, findings in studies by Hentschel et al. [65] suggested
that the detail filter, which increases sharpness, enhances image quality. To enhance the
accuracy of the classification of upper gastrointestinal landmarks, sharpen and detail filters
were applied. Both filters were imported and implemented using Python’s scikit-image
package [66], resulting in the creation of nine new datasets. The anticipation was that
the sharpen filter would excel in highlighting feature points and the detail filter would
improve accuracy by expressing points in detail. The combination of both filters in the
sharpen and detail filter was hypothesized to yield the highest accuracy. Training was
conducted with these nine datasets using five different image sizes, following the same
learning environment as in Experiment 1. The results are presented in Table 7, and the
reliability of these results was enhanced through the inclusion of precision, recall, and the
F1 measure as evaluation indicators.

Table 7. Comparative results of 9 datasets with applied sharpen and detail filters for 5 input sizes.
(Acc: accuracy, Pre: precision, Rec: recall, F1: F1 measure).

Dataset
128 × 128 256 × 256 320 × 320 384 × 384 512 × 512

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

L Sharpen 93.04 93.38 92.56 92.96 92.57 93.00 92.42 92.70 92.73 93.29 92.42 92.70 93.04 93.60 92.65 93.12 92.81 93.15 92.50 92.82
L Detail 92.18 92.66 91.79 92.22 93.12 93.43 92.73 93.07 92.73 93.37 92.42 92.89 92.50 93.04 92.26 92.64 92.65 93.50 92.18 92.83

L Sharpen &
Detail 93.20 93.47 92.96 93.21 93.34 93.64 93.20 93.69 93.35 93.92 93.04 93.47 93.28 93.75 92.50 93.12 92.96 93.73 92.26 92.98

R Sharpen 93.28 93.63 93.04 93.33 92.57 92.99 92.34 92.66 93.12 93.70 92.96 93.32 92.57 93.13 92.18 92.65 92.50 93.16 91.56 92.35
R Detail 92.65 92.99 92.26 92.62 91.32 91.67 91.17 91.41 92.34 93.20 92.10 92.64 92.73 93.29 92.42 92.85 91.40 93.29 92.42 92.85

R Sharpen &
Detail 93.65 93.86 93.28 93.56 93.04 93.30 92.57 92.93 93.20 93.69 92.81 93.24 93.20 93.69 92.89 93.28 94.06 94.55 93.67 94.10

G Sharpen 92.96 93.26 93.23 93.24 92.65 93.28 92.26 92.76 92.34 92.68 92.10 92.38 92.26 93.22 92.50 92.85 93.20 93.40 92.89 93.14
G Detail 92.73 93.08 92.50 92.78 92.26 92.65 91.64 92.14 92.50 92.84 92.18 92.50 92.89 93.42 92.10 92.75 91.40 92.84 92.18 92.50

G Sharpen &
Detail 93.43 93.66 93.43 93.54 92.89 93.24 92.73 92.98 93.04 93.31 92.73 93.01 93.04 93.45 92.57 93.00 93.46 93.68 92.65 93.16

In this experiment, an evaluation index utilizing a confusion matrix is presented.
Evaluation indicators include precision, recall, and F1 measures, along with accuracy. The
formula for each indicator is as follows:

Accuracy =
TP + TM

TP + FP + FN + TN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 measure = 2 × Precision × Recall
Precision + Recall

(7)
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3.2.1. Accuracy Comparison between the Datasets

In this comprehensive analysis, the classification accuracy of DenseNet169-based
datasets across various factors was assessed. The results indicated that datasets with
sharpen and detail filters exhibited the highest classification accuracy. Applying the sharpen
filter led to a slight increase in accuracy, whereas the detail filter, when applied alone,
showed no significant improvement. However, simultaneous application of both filters
resulted in an overall accuracy increase compared with that achieved on the baseline
dataset. These outcomes highlight the enhanced accuracy achievable with datasets that
feature the sharpen and detail filters.

3.2.2. Classification Accuracy across Different Input Image Sizes

Among the five image sizes tested, 128 × 128 and 320 × 320 demonstrated the high-
est average accuracy. Notably, the 512 × 512 size of the R sharpen and detail dataset
exhibited the highest accuracy improvement—approximately 2.74%, rising from 91.32%
in the original R dataset to 94.06%. The second-highest improvement was observed in
the 512 × 512 size of the G sharpen and detail dataset, which increased by 1.59% from
91.87% to 93.46% of the original R dataset. While DenseNet169’s average accuracy was
primarily notable in the 128 × 128 video size section, applying the sharpen and detail filter
resulted in improved classification accuracy even for larger image sizes, contrary to prior
experimental results.

3.2.3. Classification Accuracy among Different Classes

Among the five classes, the highest accuracy was achieved for the Cardia and Fundus
class, whereas the lowest accuracy was achieved for the Body A class, consistent with the
findings in Section 3.1. However, it was observed that the probability of misclassification for
each class decreased with the application of image filters. Figure 8 presents the confusion
matrices of the three datasets with the sharpen and detail filter applied. The left matrix
corresponds to a size of 320 × 320, and the right matrix corresponds to a size of 512 × 512.
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4. Discussion

In this experiment, the absence of commercially available upper gastrointestinal
landmark datasets was addressed by generating and validating wireless capsule endoscopy
(WCE) data based on a developed hypothesis. Initially, the image similarity in the small
intestine dataset with real WCE images through color transfer was established, extending
the same technique to the upper gastrointestinal tract dataset. While the ideal enhancement
would involve using actual upper gastrointestinal landmark WCE images, the absence of a
commercially available active capsule endoscope capable of imaging upper gastrointestinal
landmarks led us to conduct experiments with datasets resembling the real environment.
Obtaining real data for upper gastrointestinal landmarks in the future would significantly
enhance the reliability of validating image similarity with our hypothesized dataset. The
class-based classification accuracy results for the five landmarks were crucial. Across
several experiments, high accuracy was achieved for the Cardia and Fundus classes, with
the second-highest accuracy exhibited for the Angulus class. These classes, distinguished
by the shape of the stomach folds and the stomach wall contributed to their high accuracy.
In contrast, Body A and Body B exhibited the lowest average classification probability
among the five classes, indicating unclear differences between images belonging to these
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two classes. It is hoped that collecting more data and refining the model structure will
lead to improved accuracy, which will require further research for a clearer classification of
these two classes in the future. And, the DenseNet169 model exhibited notable efficacy in
leveraging learned features and facilitating gradient propagation, particularly in the context
of increasingly high-resolution medical imaging data. However, its deep architecture
and dense connectivity contribute to substantial memory usage, requiring considerable
computational resources and time for training. To address these challenges and ensure
responsiveness while conserving resources, especially at elevated resolutions, there is
a pressing need for refinements and adjustments in the model design. This study also
explored the impact of image size on classification accuracy, revealing a decrease in accuracy
as image size increased. To enhance overall classification accuracy, sharpen and detail
filters were employed among other image filters in the second experiment, resulting in
improved accuracy for all image sizes. This finding holds promise for stimulating medical
imaging studies involving classification.

5. Conclusions

This study established a hypothesis to simulate wireless capsule endoscopy (WCE)
images for upper gastrointestinal landmarks by creating 6400 images augmented from
2546 datasets and validated the hypothesis through dataset collection. The Euclidean
distance was subsequently applied to assess image similarity. The DenseNet169 model
confirmed the highly similar accuracy of the three datasets to the WCE images. Furthermore,
training DenseNet169 with a preprocessed dataset incorporating image filters demonstrated
improved accuracy compared with the previous experiment.

In the evolving market for endoscopy equipment, our research focused on identifying
landmarks captured using future active capsule endoscopes and enhancing the accuracy
of the classification of capsule endoscope images through image preprocessing, utilizing
color transfer techniques similar to those employed for wired endoscope images. While
current wired endoscopes offer high image quality and clear vision, capsule endoscope
imaging still requires further enhancements in image quality. Our research findings indicate
that, through image preprocessing, deep learning models trained on capsule endoscope
images can achieve accuracy comparable to those trained using wired endoscope images,
facilitated by sharpening and detail filtering. The medical significance lies in the fact
that image preprocessing allows capsule endoscopy images to be used produce results
similar to those of wired endoscopy even under conditions with lower image quality. It
is anticipated that these advancements will enable more precise diagnostic assistance in
gastroscopy through images captured with future capsule endoscopy equipment for the
upper gastrointestinal tract.
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