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Abstract: Mitral regurgitation (MR), a primary cause of valvular disease in adults, affects millions
and is growing due to an ageing population. Cardiovascular magnetic resonance (CMR) has emerged
as an essential tool, offering insights into valvular and myocardial pathology when compared to the
primary imaging modality, echocardiography. This review highlights CMR’s superiority in high-
resolution volumetric assessment and tissue characterization, including also advanced techniques
like late gadolinium enhancement imaging, parametric mapping, feature tracking and 4D flow
analysis. These techniques provide a deeper understanding of MR’s pathophysiology and its effect on
cardiac chambers, enabling CMR to surpass echocardiography in predicting hard clinical outcomes
and left ventricular (LV) remodelling post mitral valve surgery. Despite its advantages, CMR’s
application faces limitations like cost, lack of standardization, and susceptibility to arrhythmia
artifacts. Nonetheless, as technological advancements continue and new evidence emerges, CMR’s
role in MR assessment is set to expand, offering a more nuanced and personalized approach to cardiac
care. This review emphasizes the need for further research and standardized protocols to maximize
CMR’s potential in MR management.

Keywords: cardiovascular magnetic resonance; mitral regurgitation; review; quantification; parametric
mapping; late gadolinium enhancement; feature tracking

1. Introduction

Mitral regurgitation (MR) emerges as the most common valvular heart disease world-
wide affecting 1–2% of the global population and more than two million patients in the
USA alone [1,2]. Its prevalence increases from less than 1% in individuals younger than 55
to almost 10% in people aged 75 and above [1]. MR can be either primary or secondary, and
its aetiology varies globally [2]. In developing countries, rheumatic heart disease accounts
for the vast majority of primary MR cases, while in developed countries primary MR most
often results from degeneration of the valve or the subvalvular apparatus [2,3]. Secondary
MR is predominantly caused by ischaemic heart disease or cardiomyopathy [2,3].

Cardiac imaging is essential for the identification and the grading of the severity
of MR. Even though echocardiography remains the first-line imaging modality for the
assessment of MR, cardiovascular magnetic resonance (CMR) is increasingly recognized as
an alternative diagnostic tool [4]. Real-world evidence has already made CMR the reference
standard for the precise quantification of atrial and ventricular volumes and function,
utilizing the widely available balanced Steady State Free Precession (SSFP) sequences
and the summation of the short-axis slices of cavities, without the use of any geometrical
assumptions [5,6]. CMR boasts several advantages, as it can provide unrestricted imaging
planes of the whole heart, without ionizing radiation or the need for iodinated contrast
agents. In that direction, both 2021 ESC/EACTS and 2020 ACC/AHA valvular heart
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disease guidelines recommend CMR as an alternative quantification tool, especially in
cases where MR severity assessment is inconclusive due to very eccentric jets, suboptimal
echocardiographic image quality, discrepancies among echocardiographic indices or a
mismatch between clinical symptoms and imaging findings [7,8]. Lastly, beyond mere
quantification, techniques like late gadolinium enhancement, parametric mapping, feature
tracking, and 4D flow analysis, delve deeper, revealing subtle changes in the myocardial
tissue invisible using other methods and providing a more comprehensive evaluation of
the aetiology and the consequences of mitral valve disease.

The aim of this review is to provide a practical guide on how to comprehensively
assess with CMR the mitral valve and the left ventricle in patients with mitral regurgitation.

2. How to Assess Mitral Regurgitation with CMR

A detailed CMR assessment of the mitral valve should begin with the basic protocol
recommended by the Society of Cardiovascular Magnetic Resonance (SCMR) [9] and also
include details about the morphological and functional characteristics of the mitral valve
leaflets, chordae tendineae, and annulus. A suggested CMR scanning protocol is shown in
Figure 1. While echocardiography, as a primary diagnostic tool, often provides detailed
insights into the regurgitation mechanism, CMR, despite its lower temporal resolution,
can still provide valuable information about the dynamic behaviour of each component
of the mitral valve apparatus [10]. This includes each scallop, which can be visualised
if additional contiguous modified three-chamber cines intersecting the commissural line
are planned, as visualised in Figure 2 [11]. This approach is often sufficient to localize
segmental pathologies such as billowing, prolapse, flail, thickening, or calcification [12,13].
CMR cines can also possibly detect mitral annulus disjunction, which is an abnormal atrial
displacement of the mitral valve leaflet hinge point, often associated with mitral valve
prolapse (MVP) [14–16]. CMR can accurately measure the extent of the detachment of the
mitral annulus from the ventricular myocardium [14,16,17].
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Figure 1. Proposed CMR protocol for the assessment of mitral valve regurgitation. CMR, cardiovas-
cular magnetic resonance; MR, mitral regurgitation; HLA, horizontal long axis; VLA, vertical long
axis; LVOT, left ventricular outflow tract; SA, short axis; GBCA, gadolinium based contrast agent;
LGE, late gadolinium enhancement; LV, left ventricle; LA, left atrium. 1. Not necessary if 4D flow
performed. 2. Can be obtained before or immediately after administration of GBCA.
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Figure 2. Panel (A). Short axis diagram of the mitral valve showing all scallops of mitral valve
leaflets (A1-P1, A2-P2, A3-P3) in a patient with Barlow’s disease. Panel (B). A stack of parallel cine
images obtained parallel to left ventricular outflow tract (perpendicular to the commissure) allows a
systematic assessment of all the mitral valve cusps. LAA, left atrial appendage; Ao, aortic valve.

MR jet characteristics, such as jet eccentricity, the number of jets and their duration
during systole should also be described. Cine acquisitions facilitate this, utilizing spin–
spin dephasing from flow turbulence, which creates hypointense areas in the blood pool,
thus aiding in qualitative MR assessment. However, there is an inherent limitation of
the SSFP images in visualising flow dynamics; they are highly susceptible to significant
variations of the specific signal loss area with minor alterations in sequence parameters [18].
This variability negatively affects the sensitivity of the technique which is why visual
assessment of the jet is generally not recommended for MR severity estimation and is
only used for crude information regarding its location and direction [18]. Alternatively,
Fast Spoiled Gradient echo sequences with longer repetition and echo times can be more
sensitive to depicting flow changes and MR regurgitant flow voids [6]. Lastly, incorporating
information about MR aetiology, and using Carpentier’s classification system in the CMR
report could be useful in guiding management and the type of intervention.

CMR not only provides qualitative insights into MR, but also offers multiple methods
for quantitative assessment, both direct and indirect (Table 1). The latter calculate the MR
regurgitant volume (RVol) using flow measurements in other parts of the heart. Among
these, the most common approach involves calculating the difference between planimetry-
derived left ventricular (LV) stroke volume (SV) and the forward systolic volume measured
using phase contrast (flow velocity encoded) mapping at the aortic root [19]. This method,
which is shown in Figure 3, makes use of the robust short-axis (SA) cine stack analysis
of the LV volumes and the highly reproducible phase contrast imaging at the level of the
sinotubular junction in end-diastole, which has shown its accuracy in estimating forward
and regurgitant blood flow through semiluminal (aortic and pulmonary) valves [9,20,21]. It
does not need to account for the mitral regurgitant jet morphology, but it is still limited by
the necessity for two separate acquisitions and the associated potential for error [22]. It can
also be adapted to account for additional volume from concurrent aortic regurgitation, or
in that same case, the phase contrast imaging plane could be set instead in the pulmonary
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artery, if no major intracardiac shunt exists [11]. The second “volumetric” method is
the calculation of the difference between the LV SV and RV SV, both calculated using
the slice summation technique using the same SA cine stack [19]. However, this is not
applicable in cases with multiple valve lesions (e.g., tricuspid regurgitation, which is
common especially in patients with secondary MR) or shunt flows and the inter- and
intra-observer reproducibility of this technique has been shown to be relatively poor as
RV contouring can be challenging and more prone to error in the SA stack images [19,22].
The third method that may be used involves quantifying the mitral inflow volume, and the
aortic forward volume employing either 2D phase contrast imaging or the more advanced
4D flow analysis [23]. Given the substantial mobility of the mitral valve plane, the use of 2D
phase contrast imaging can come with the cost of significant errors [22]. Many difficulties
could also arise in those MR cases with eccentric jets, as accurately positioning the imaging
plane perpendicular to the predominant flow direction, rather than the mitral valve plane
itself, is crucial to avoid inaccurate measurements [24,25]. These challenges seem to be
addressed using the promising 4D flow analysis, which is similar to classic phase contrast
imaging but with flow velocity encoding in all three spatial directions and, additionally, that
is relative to the dimension of time [26]. This technique could be advantageous as it could
make possible, through specific post-processing, the accurate retrospective calculation of
flow through any plane in the heart and major vessels with only single free-breathing,
respiratory-navigated acquisition [26]. Four-dimensional flow CMR is highly reproducible
and precise [27], as flows are quantified for the same averaged cardiac cycles, reducing
errors due to heart rate variability and spatial misalignment. Theoretically, it is also suitable
for the assessment of multiple valve lesions, and most shunt flows too.

Table 1. Standard and novel CMR methods for quantification of mitral valve regurgitation. AoPC,
aortic forward flow using phase contrast imaging; LV, left ventricle; LVSV, left ventricular stroke
volume; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end-systolic volume;
RV, right ventricle; RVSV, right ventricular stroke volume; VSD, ventricular septal defect.

Method Strengths Pitfalls

Standard method

Regurgitant volume = LVSV- AoPC
(mL/cardiac cycle)
Regurgitant fraction =
(Regurgitant fraction/LV stroke volume)
× 100%

• Simple
• Highly reproducible
• Robust for almost all

cardiac lesions (except
for VSD)

• Applicable for eccentric
or multiple jets

• Depends on accurate
flow data

• Uncontrolled arrythmia
may reduce accuracy

Alternative
method (Cine) Regurgitant volume = LVSV − RVSV

• Simple
• Can be used if flow

imaging is
unreliable/unavailable

• Cannot be applied in
presence of other lesions

• Less robust

4D flow direct
tracking of mitral
regurgitant jet

• Direct quantification
• High reproducibility

• Heterogenous
correlations to
conventional
quantification methods

• Absence of a
gold-standard

• Challenging in presence
of multiple jets
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Figure 3. Standard quantification method of mitral regurgitation. (A). Examples of contours on
diastolic frames of an SSFP short-axis cine stack. LV (red contours), RV (yellow contours). (B,C). Aor-
tic valve through-plane flow image and flow graph. Mitral regurgitant volume is calculated by
subtracting aortic forward flow from LVSV. LV, left ventricle; RV, right ventricle; LVSV, left ventricular
stroke volume; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end-systolic
volume; AoPC, aortic forward flow using phase contrast imaging.

Four-dimensional flow analysis can be employed to quantify MR RVol not only indi-
rectly but also directly. This specifically involves the retrospective direct measurement of
each dynamic regurgitant jet after pinpointing the mitral valve and adjusting a dynamic
reconstructed plane so that it remains perpendicular to the jet throughout the regurgita-
tion [28,29]. In the case of multiple jets a plane needs to be positioned appropriately for
each individual jet, which can be a time-consuming process. However, data acceleration
techniques such as radial under-sampling, generalized auto-calibrating partially parallel
acquisitions (GRAPPA) and echo-planar imaging (EPI) have been developed, enabling a
whole-heart 4D flow scan to be completed in approximately 10 min [30]. In that direction,
semi- or fully automatic techniques enabling either flow tracking or valve tracking have
been developed, which aid in this time-consuming process, with evidence pointing to the
former technique as the most robust when compared to the volumetric indirect method of
RVol quantification [31,32]. It is suitable for MR assessment also in concomitant valvular
pathologies or shunt flows, but has been shown to be less reproducible in primary MR,
mainly due to the complex and time-consuming plane reformatting process [27]. Based
on a recent systematic review, more than 80% of recent studies have shown that the 4D
flow analysis technique calculating mitral inflow and aortic forward flow for the MR RVol
calculation exhibited the best inter- and intra-observer reproducibility [33]. All standard
and novel methods for RVol quantification, summarized in the table below, can be used in
routine practice for cross-validating, aiming for a comprehensive and robust assessment of
the severity of MR.

3. Determination of the Severity of MR Using CMR Parameters

There is a shortage of data regarding specific thresholds for defining the severity of
MR due to the absence of large trials with validated cohorts (Table 2). This is reflected in
current international guidelines, which recommend identical cut-off limits for RVol and the
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regurgitant fraction (RF) in assessing MR both with echocardiography and CMR; although.
recent studies and meta-analyses suggest that there could be a significant discrepancy
between the two techniques particularly in patients with non-severe MR [7,8,34]. Heitner
et al. and Penicka et al. have reported moderate agreement with the kappa coefficient being
k = 0.47 and k = 0.48, respectively, whereas Jang et al. and Uretsky et al. have found this
metric to be as low as k = 0.10 and k = 0.14, respectively, indicating a poor concordance
between the two modalities [35–38]. In this direction, Gelfand et al. proposed that adopting
RF = 42% as a cutoff value for severe MR aligns well with the Doppler echocardiography
findings [39]. Interestingly, one study adopted a multiparametric approach using echocar-
diography as the reference and compared it to CMR RF [40]. The grading of MR severity
exhibited excellent concordance and the authors proposed a CMR RF cutoff value of 35%
to define significant MR [40].

Table 2. Thresholds used in bibliography to define severe mitral regurgitation. (i), indexed Regurgi-
tant Volume; LAVi, indexed left atrial volume; LVEDVi, indexed left ventricular end diastolic volume;
LVESVi, indexed left ventricular end-systolic volume.

Thresholds for Severe Mitral Regurgitation

Study Population Regurgitant
Volume

Regurgitant
Fraction LVEDVi LVESVi LAVi

Uretsky et al.,
2022 Ref. [41]

152 patients
with degenerative MR ≥60 mL ≥50% N/A N/A N/A

Uretsky et al.,
2021 Ref. [42]

158 patients with
primary MR and
Presence of a flail leaflet
or Coanda on echo

≥60 mL ≥50% N/A N/A N/A

Capron et al.,
2020 Ref. [43]

44 patients with
moderate to severe
chronic primary MR

≥60 mL N/A ≥92 mL/m2 N/A N/A

Cavalcante
et al., 2020
Ref. [44]

578 patients with ICM
and ischemic MR N/A ≥35%

(significant MR) N/A N/A N/A

Kitkungvan
et al., 2018
Ref. [45]

356 primary MR patients N/A ≥50% ≥95 mL/m2 N/A N/A

Penicka et al.,
2018 Ref. [36]

258 asymptomatic
patients with
moderate/severe
primary MR

≥60 mL N/A N/A N/A N/A

Polte et al., 2017
Ref. [46]

40 patients with
moderate/severe MR
on echo

>64 mL
>32 mL/m2 (i) >41% 120 mL/m2 N/A N/A

Aplin et al.,
2016 Ref. [47]

72 patients, primary MR
on echocardiography

>39 mL
>21 mL/m2 (i) >27% >108 mL/m2 >72 mL/m2 >83 mL/m2

Myerson et al.,
2016 Ref. [48]

109, asymptomatic
patients with
moderate/severe MR
on echo

>55 mL
>29 mL/m2 (i) >40% ≥95 mL/m2 >36 mL/m2 N/A

Uretsky et al.,
2015 Ref. [49]

103 patients with MR on
echocardiography ≥60 mL N/A N/A N/A N/A

In a group of patients that underwent mitral valve surgery, postoperative CMR and
echocardiography, CMR showed superiority, reporting a substantial correlation between
LV remodelling and MR severity (p < 0.0001) compared to echocardiography (p = 0.1)
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with the PISA method [50]. In a study conducted by Myerson et al., which followed
initially asymptomatic patients with moderate or severe MR for up to 8 years, MR RVol
and RF emerged as the most important MR metrics for determining the necessity of
surgery [48]. The established threshold values were 55 mL for MR RVol and 40% for RF,
with a progressively increasing risk associated with higher parameter values. The RF
threshold for diagnosing severe MR in this study agrees with the one proposed by Polte
et al. (RF > 41%) and is lower than the respective echocardiographic value for severity
(RF ≥ 50%) [46]. Similarly, in the large prospective study by Penicka et al. with a follow-
up of 258 asymptomatic patients with at least moderate MR over 5 years, RVol > 50 mL
was found to have the highest accuracy predicting the combination of mortality and the
indication for surgery, which is considerably lower than the 60 mL threshold proposed
by the guidelines [36]. Given that RVol is directly related to LV size in primary MR, two
patients with similar RVol values may exhibit varying degrees of MR, if their LV sizes differ.
Calculating the RF helps overcome this issue by correcting RVol for LV size.

An additional advantage in the selection of asymptomatic patients requiring mitral
valve correction may be offered with the assessment of extracellular volume (ECV). A
recent prospective observational registry conducted by Kitkungvan et al. in patients with at
least moderate primary MR demonstrated that RF and elevated ECV were independently
associated with adverse events [51]. They identified a cutoff of 40% for RF and 30% for
ECV as indicative of the need for mitral surgery.

Based on its accuracy in assessing LV volume and MR severity, and predicting LV
reverse remodelling after correction, CMR should be employed not only to confirm the
severity and help guide surgical decision-making but also to quantitatively assess the
severity of MR in patients with equivocal findings on echocardiography. Importantly,
additional large trials with validation cohorts are necessary to establish the optimal CMR
cutoff values for MR severity.

4. Application of CMR in Primary and Secondary Mitral Regurgitation

With its multifaceted approach, CMR can offer significant value in the evaluation of
MR regardless of its aetiology.

On one hand, CMR’s utility begins with the detailed valve apparatus assessment
through high-resolution images that can depict the extent of rheumatic deformation or
leaflet prolapse and the specific segments involved [52]. Concurrently, the accurate volu-
metric analysis of the LV is particularly beneficial to MVP patients as echocardiographic
evaluation has been shown to potentially overestimate MR severity. Two reasons could con-
tribute towards this overestimation. Firstly, echocardiography captures the regurgitation
jet’s peak, when the coaptation defect of the leaflets is largest, which usually happens in
mid–late systole. Therefore, assessing MR severity using echo-derived quantitative indices,
like vena contracta or the flow convergence method, could be not only technically difficult
due to the mainly eccentric nature of the jet, but also misleading as it extrapolates a mea-
surement at the peak of the regurgitation to the whole duration of this phenomenon [53].
Instead, CMR is able to provide a more accurate calculation of the RVol using either the
indirect or direct methods mentioned above. Secondly, Simpson’s biplane method could
falsely underestimate LV end-systolic volume, neglecting the ventricular volume displaced
into the left atrium, but contained within the prolapsed leaflets [54]. This issue can be
addressed using CMR’s comprehensive 2D phase contrast or 4D flow analysis.

Another important contribution of CMR is its predictive value for MVP patients, as it
can significantly aid in better risk stratification, detecting high-risk features such as bileaflet
prolapse, extreme valve thickening, mitral annulus disjunction and systolic curling [55].
Interestingly, mitral annulus disjunction has been associated with sudden cardiac death
due to ventricular arrhythmias in patients both with [14,16,56] and without evident MVP
(Figure 4A) [15]. Transthoracic echocardiography has been found to have lower sensitivity
in the detection of mitral annulus disjunction compared to CMR [16,17]. Beyond assessing
morphology and function, CMR is unique in its ability to evaluate myocardial composition,
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particularly through its cornerstone technique, LGE imaging. It can detect fibrosis, often
located in basal lateral or inferolateral segments or in papillary muscles, revealing important
information that remains undetectable using other imaging modalities (Figure 4B) [12].
These areas of fibrosis constitute an integral part of LV remodelling and correlate well with
both ventricular arrhythmias and different MR severity grades, with a markedly increased
prevalence of LGE in moderate and severe MR patients [57]. There is also evidence to
suggest that they are significantly associated with clinical outcomes, such as arrhythmias
and sudden cardiac death, even after adjustment for the degree of MR severity and volume
overload [45]. Decisions regarding Cardiac Resynchronization Therapy (CRT) can also be
affected by fibrosis in these regions, as empirically CRT LV leads are usually placed in the
posterior wall. This issue becomes even more pressing given that 30% of patients do not
respond to CRT, especially those with ischaemic heart failure, thereby suggesting a central
role of the ischaemic scar in the pathophysiology of this phenomenon [58]. Anatomical
attributes, such as scar location and transmurality are important for the correct guidance of
the lead placement, as if this fails it could lead to a lower response rate and up to a six-fold
increase in mortality due to pump failure and malignant arrhythmias [59]. Additionally,
there has been evidence of a correlation between worse clinical outcomes and persistent
secondary MR after CRT, even after adjusting for LV reverse remodelling and especially
if initially MR was moderate to severe [60]. This reveals that the decrease in secondary
MR could play a distinct role in improving survival outcomes, beyond just reflecting
volume changes. Therefore, CMR could be used not only for pinpointing the scar-free area
that would have better chances for successful lead placement, but also for improving the
patient selection process for possible structural intervention with percutaneous correction
of persistent secondary MR.
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Figure 4. (A). Vertical long axis view demonstrating bilateral mitral valve prolapse with mitral
annulus disjunction (detachment of the roots of the annulus from ventricular myocardium). (B). Pre-
dominantly subendocardial late gadolinium enhancement in mid-inferior wall (solid white arrow).
Note also the LGE of the papillary muscle. Both MAD and presence of LGE are components of
arrhythmic mitral valve prolapse. AML, anterior mitral leaflet; PML, posterior mitral leaflet; MAD,
mitral annulus disjunction.

With the additional use of feature tracking and parametric mapping, CMR could even
pinpoint early myocardial tissue alterations, fibrosis, and the expansion of the interstitial
space, surpassing the need of administering contrast [61]. T1 mapping has been shown
to correlate with the extent of extracellular space and fibrosis, utilizing specialized modi-
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fied Look-Locker pulse sequences over 9–17 heartbeats and generating the longitudinal
magnetization inversion recovery curves [62]. With this process, different indices are cal-
culated, which refer to the whole myocardial tissue, to each myocardial segment, and to
each pixel location (hence the term mapping). The native (without contrast) T1 values
increase, while interstitial fibrosis increases; post-contrast T1 values become shorter, and
their combination in a formula that also uses the patient’s hematocrit allows for calculation
of the ECV [63]. Various studies have suggested that both native T1 values and ECVs are
increased in MR patients and have demonstrated significant prognostic value [51,64–66]. In
addition to that, feature tracking involves retrospective processing of common SSFP images
which tracks myocardium in a way that is similar to speckle tracking in advanced echocar-
diography [67]. It also enables the quantification of both global and regional indices for
longitudinal, circumferential, and radial strain without the need for additional sequences
and scanning time that the older strain analysis CMR tagging technique needed [68,69].
Therefore, it could detect alterations in myocardial tissue and function in the earlier stages
of the disease process, before traditional metrics like ejection fraction start to decline. This
capability was evident in a recent study by Guglielmo et. al., where asymptomatic MVP
patients when compared with controls showed notably reduced global circumferential
strain and regional circumferential and radial strain in the basal and mid inferolateral
walls [70]. Native T1 values were also different in those regions, significantly higher in the
MVP population, showing the multitude of information that we could extract from CMR
even without gadolinium contrast [70]. Interestingly, these changes were not significantly
correlated with the MR RVol, suggesting that myocardial alterations in MVP are a hallmark
of a broader pathologic process where the stretching of the prolapsed leaflets is at least
as important as chronic volume overload [70]. As a result, CMR can aid from a different,
unique perspective towards a more thorough risk stratification for MVP patients.

On the other hand, CMR can be of value in the assessment of secondary mitral regur-
gitation as well. It can aid in the diagnostic work-up of various dilated cardiomyopathies,
and it can also detect the extent of fibrosis and provide valuable information regarding
revascularization and a concurrent mitral valve surgery in patients who are surgical candi-
dates [71,72]. With its high spatial resolution and endocardial delineation, it can reliably
assess LV remodelling and accurately quantify alterations in annular geometry, including
septal–lateral and inter-commissural diameters, even when compared to the excellent
resolution of transoesophageal echocardiography [73]. Such detailed assessments can
guide surgical or percutaneous reparative approaches and monitor their outcome and long-
term LV remodelling without the need for more invasive modalities and their associated
risks [52]. This utility of CMR was highlighted in Hamilton-Craig et al.’s study, showcasing
excellent reproducibility in patients predominantly with secondary MR that were treated
invasively with percutaneous edge to edge repair [74]. In such scenarios, echocardiography
may struggle with the multiple regurgitation jets and clip artifacts, presenting challenges in
the accurate and consistent monitoring of MR, but CMR could be a promising alternative
for a comprehensive follow-up. Beyond anatomical evaluation, which can illustrate LV
dilatation and the resulting papillary muscle displacement and leaflet tethering, tissue
characterization is also crucial. LGE imaging, specifically, can depict fibrosis within the
papillary muscles or the LV myocardium offering insights into myocardial wall viability
that are vital for decision making, as shown by Cavalcante et al. who suggested that the
combination of RF > 35% and the extent of fibrosis in more than 30% of LV was detrimental
for all-cause mortality or heart transplantation despite surgical intervention [44]. The
extent of fibrosis has also been found to give valuable predictive information about the
progression of ischaemic MR [72]. Additionally, previous studies have shown that papillary
muscle LGE has a significant prognostic value in secondary MR patients. Firstly, in a study
by Ivanov et al., although fibrosis in either papillary muscle was not correlated with adverse
outcomes, the presence of scar in both papillary muscles was significantly associated with a
higher risk of mortality and worsening heart failure [75]. Second, Flynn et al. showed that
in patients undergoing coronary artery bypass graft surgery and concurrently mitral valve
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annuloplasty, the presence of extensive scarring in the posterior papillary muscle detected
using a preoperative CMR was significantly associated with increased MR recurrence [50].
This suggests that screening for fibrosis in secondary MR patients could inform the choice
between annuloplasty and valve replacement and potentially deem those patients ineligible
for mitral annuloplasty, thus enhancing treatment outcomes. Last but not least, in a recent
study shorter native T1 values in the pre-operative CMR in patients with functional MR
were found to be of significant prognostic value for LV reverse remodelling six months
post-surgery potentially indicating that higher T1 values could point towards a more
fixed defect [76]. As a result, the authors suggested that monitoring native T1 values in
asymptomatic patients with severe MR may aid in personalizing the timing of intervention.

5. Limitations of CMR in the Assessment of Patients with MR

While CMR offers a detailed and comprehensive approach to assessing MR patients, it
is important to highlight its limitations.

Image quality heavily relies on patient’s heart rhythm. Arrhythmias, especially atrial
fibrillation or frequent ectopic beats can potentially degrade image quality because CMR
relies on ECG gating to synchronise data acquisition across multiple successive heart
beats [77]. This averaging of images combined with the modality’s limitations in temporal
resolution could make capturing the fast movements of mitral valve leaflets or associated
fast-moving structures with variable positioning over the cardiac cycle (e.g., vegetations)
challenging [78]. Furthermore, the limited spatial resolution of CMR, with most MR
assessment protocols suggesting 5–6 mm slice thickness, hinders the detailed visualization
of the direction of the mitral valve tip which usually has 1–5 mm thickness, thus making
the differentiation between segment prolapse and flail less accurate [11,79,80]. Another
factor that could potentially compromise CMR’s ability for precise MR assessment is
the operator-dependent variability in cavity contouring. More specifically, even though
CMR has been the reference standard for volume calculation, decisions regarding the
inclusion or exclusion of papillary muscles and trabeculae could still significantly alter the
measured volumes, consequently affecting RVol, RF, and, ultimately, the final assessment
of MR severity [81,82]. Volume variability could also be affected by inconsistencies in
including the basal slice in the slice summation technique, a problem exaggerated by
the well-recognized through-plane motion of the mitral annulus [83]. Two-dimensional
phase contrast imaging can also struggle with the continuously changing direction of the
dynamic MR jets especially in MVP patients, making the case for the gradual necessity of
4D flow, which is unfortunately still not widely available [18]. Additionally, CMR itself is
not universally available in contrast to echocardiography, requiring costly equipment and
specialized expertise. The lack of standardized protocols among vendors especially in more
advanced techniques such as parametric mapping, feature tracking, and 4D flow analysis,
creates challenges in ensuring the reliability and robustness of the method across different
institutions [63]. These factors together with the fact that there is still no gold-standard in
the assessment of MR, highlight the need for a careful consideration of CMR’s position in
the management pathway of MR patients.

6. Conclusions

CMR stands as a useful tool in the comprehensive evaluation of MR, as it offers detailed
insights into both valvular and myocardial pathology. Although it provides unparalleled
high-resolution volumetric assessment and tissue characterization imaging, its widespread
application is limited by factors like cost, lack of standardization, and susceptibility to
arrhythmia-related artifacts. As technology advances and new sequences or techniques like
4D flow become more clinically applicable, we expect to see a growing body of evidence
correlating CMR indices with hard clinical outcomes in MR patients. This evolution will
further cement CMR’s role in facilitating personalized and informed decision-making
in cardiology.
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