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Abstract: Hand impairment is a frequently reported complaint in systemic sclerosis (SSc) patients and
a leading cause of disability and diminished quality of life. Managing hand pain can be particularly
challenging due to the coexistence of non-inflammatory arthralgias, inflammatory arthritis, acro-
osteolysis, tenosynovitis, joint contractures, tendon friction rubs, nerve entrapment, Raynaud’s
phenomenon (RP), digital ulcers (DU), sclerodactyly, calcinosis, and chronic pain. While physical
examination and radiographs are the first line methods for evaluating hand pain, they are limited
in scope and miss many underlying etiologies of hand impairment. We propose a joint ultrasound
(US) hand protocol to differentiate between various articular, periarticular, ischemic, skin, and nerve
pathologies and to assist in targeted treatment strategies.

Keywords: musculoskeletal ultrasound; systemic sclerosis; hand pain

1. Introduction

Systemic Sclerosis (SSc) is a rare multiorgan-system rheumatic condition characterized
by vasculopathy, fibrosis, and autoimmunity. Hand impairment is a frequently reported
complaint in systemic sclerosis (SSc) patients and a leading cause of disability and di-
minished quality of life. Managing hand pain can be particularly challenging due to
the coexistence of non-inflammatory arthralgias, inflammatory arthritis, acro-osteolysis,
tenosynovitis, joint contractures, tendon friction rubs, nerve entrapment, Raynaud’s phe-
nomenon (RP), digital ulcers (DU), sclerodactyly, calcinosis, and chronic pain. While
physical examination and radiographs are the first line methods for evaluating hand pain,
they are limited in scope and miss many underlying etiologies of hand impairment.

Musculoskeletal ultrasound (MSUS) is rapidly becoming a mainstay diagnostic tool
in the assessment of rheumatic diseases given its low cost, portability, and safety as a
non-ionizing imaging modality. The Outcome Measures in Rheumatology (OMERACT)
Ultrasound (US) working group has provided definitions for pathologic lesions seen in
various rheumatic disorders, specifically in inflammatory arthritis, offering a valuable
framework for the assessment of hand impairment in systemic sclerosis [1,2]. MSUS is
more sensitive than combined joint exams and hand radiographs and can be used to
provide a comprehensive assessment of the broad spectrum of hand impairment in SSc.
The feasibility and efficiency of performing a protocolized point-of-care MSUS exam can
ultimately assist in targeted treatment strategies.

However, implementation of MSUS as a part of standard care is challenging due to
the need for advanced training in US to recognize hand pathologies specific to SSc patients.
Additionally, time constraints for the rheumatologist may prevent point-of-care MSUS
during the clinic visit.
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To our knowledge, there is currently no standardized published MSUS protocol
for the evaluation of hand pain in SSc patients. In this technical report, we provide
a comprehensive review of the spectrum of hand pathology in SSc as seen on US and
recommend an efficient MSUS hand protocol that can be performed in less than 10 min for
the detection of various etiologies of hand pain. Implementation of this protocol at our
center has guided the personalized management of hand disability in SSc patients.

2. Spectrum of Hand Pathology in Systemic Sclerosis as Seen on Ultrasound

The spectrum of hand pathology in SSc encompasses specific joint, tendon, and nerve
pathologies, as well as ischemia, skin fibrosis, and calcium deposition.

2.1. Joint Pathology
2.1.1. Non-Inflammatory Arthralgias

Multiple studies have consistently demonstrated that SSc patients carry a higher bur-
den of osteophytosis compared to controls. The severity of osteophytes correlates with the
number of tender joints making them a substantial contributor to hand dysfunction [3,4].
Additionally, there may be an increased prevalence of erosive osteoarthritis in SSc pa-
tients [3]. On ultrasound, osteophytes are identified as step-up bony prominences at the
bony margin that are visible in two perpendicular planes [1,2,5] (Figure 1).
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erosive Rheumatoid arthritis has been reported in 1–5% of patients [7]. However, detect-
ing true inflammatory arthritis can be very difficult. The physical examination alone poses 
challenges due to digital ulcerations, traumatic pits, skin tightening, and contractures, 
limiting the clinicians’ ability to palpate underlying synovitis in the joints and tendons 
[3,8] (Figure 2). Prior studies report a higher prevalence of 25–58% of patients with US-
detected synovitis [3,4,9–11]. 

Figure 1. Long axis views of osteophytes (indicated by arrows) at DIP (A) and MCP (C) joint in long
view. Confirmation of step-up bony deformities seen in short axis views at DIP (B) and MCP (D) joint.
DIP = distal interphalangeal, MCP = metacarpal phalangeal.

2.1.2. Inflammatory Arthritis

In the EULAR EUSTAR registry, 16% of SSc patients exhibit synovitis [6]. Overlap
erosive Rheumatoid arthritis has been reported in 1–5% of patients [7]. However, detecting
true inflammatory arthritis can be very difficult. The physical examination alone poses
challenges due to digital ulcerations, traumatic pits, skin tightening, and contractures,
limiting the clinicians’ ability to palpate underlying synovitis in the joints and tendons [3,8]
(Figure 2). Prior studies report a higher prevalence of 25–58% of patients with US-detected
synovitis [3,4,9–11].

Any displacement of the intra-articular triangle of fatty tissue or abnormal synovial
tissue may be due to an effusion, synovial hypertrophy, or synovitis. An effusion is defined
as compressible, displaceable hypoechoic or anechoic material that does not display a
Doppler signal (Figure 3). According to OMERACT definitions, synovitis is defined as
abnormal hypoechoic intraarticular synovial tissue that is non-displaceable and poorly
compressible with or without a Doppler signal (Figure 4). However, in cases where no
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Doppler signal is seen, the pathology is more accurately termed as synovial hypertrophy
(Figure 5) while the presence of a Doppler signal suggests hyperemia, more aptly termed
synovitis. Erosions are another elementary lesion that can be seen in the inflammatory
arthritis of SSc and are defined as an intra- and/or extra-articular discontinuity of the bone
surface visible in two perpendicular planes [1,2,5] (Figure 6).
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Figure 6. Erosion visualized as step-down deformity seen on radial view of metacarpal phalangeal
(MCP) joint in long view (A) and short view (B).

Although lacking systematic prevalence estimates, crystalline arthritis, including gout
and calcium pyrophosphate deposition (CPPD) disease, must be considered a comorbid
condition in SSc. Specific ultrasound findings that can support the presence of gout include
tophi, the double contour sign, and erosions. Tophi are a well-circumscribed, hyperechoic,
heterogenous material with an anechoic rim, that may or may not generate posterior
acoustic shadowing, depending on the degree of calcification [12] (Figure 7). A double
contour sign is the ultrasonographic appearance of monosodium urate crystals visualized
on the surface of hyaline cartilage [12]. This hyperechoic layer typically appears irregular,
bright as bone, and remains unchanged with variation in the angle of insonation (Figure 8).
The OMERACT definitions for CPPD disease include hyperechoic deposits that do not
create posterior shadowing within fibrocartilaginous structures (Figure 9), the hyaline
cartilage (Figure 10), tendons, or synovial fluid [13,14].
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2.1.3. Acro-Osteolysis

Acro-osteolysis, distal phalanx resorption, occurs in about 25% of SSc patients and
is thought to be related to repeated ischemic insult and retractile pressure from skin
thickening [7]. Notably, acro-osteolysis can occur without clear physical exam findings,
highlighting the value of ancillary studies for early detection (Figure 11). Severe cases
can lead to finger foreshortening, causing significant cosmetic distress for patients. On
ultrasound, acro-osteolysis is defined as the disappearance of the concave cortical outline
of the distal phalanx or the abrupt ending of the dorsal cortex [15] (Figure 12).
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2.2. Tendon Pathology
2.2.1. Tenosynovitis

Prior studies have reported a prevalence of US-detected tenosynovitis in 27–65% of SSc
patients [15,16]. OMERACT defines tenosynovitis as abnormal anechoic and/or hypoechoic
(relative to tendon fibers) tendon sheath widening which can be related to both the presence
of tenosynovial abnormal fluid or hypertrophy [1,2] (Figure 13). Ultrasound helps further
classify tenosynovitis into inflammatory or sclerosing patterns. Inflammatory tenosynovitis
is associated with a power Doppler signal (Figure 14), while sclerosing tenosynovitis is
characterized by hyperechoic tendon sheath thickening [10]. Notably, tenosynovitis is more
commonly seen in extensor tendons compared to flexor tendons, with the sclerosing pattern
being more prevalent than the inflammatory pattern [16].
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2.2.2. Contractures and Tendon Friction Rubs

Joint contractures, particularly fixed flexion contractures of the proximal interpha-
langeal (PIP) joint, are a leading cause of disability and social discomfort for patients,
affecting approximately 31% of patients [6]. Finger flexion contractures are postulated to
result from abnormalities in the flexor–tendon complex, including a thickening of the A1
pulley, along with peritendinous and soft tissue calcifications [17,18]. Ultrasound assess-
ments demonstrate that A1 pulley thickness positively correlates with disease duration
and negatively correlates with hand mobility [19] (Figure 15).
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joint. MCP = metacarpal phalangeal.

Tendon friction rubs, detected as coarse crepitus with joint movement, are thought
to be due to fibrin deposition on tendon sheaths and overlying fascia [20]. These rubs
are observed in about 11% of patients in the EUSTAR registry and are associated with
increased risks for digital ulcers, muscle weakness, pulmonary fibrosis, and renal involve-
ment [6,21]. Ultrasound findings associated with tendon friction rubs include a thickening
of the A1 pulley, and a thickening of the retinacula and extensor/flexor tendons, as well as
tenosynovitis [4,18].

2.3. Nerve Pathology
Carpal Tunnel Syndrome

The swelling of tendon sheaths and synovitis in the vicinity of the carpal tunnel inlet
can lead to the development of carpal tunnel syndrome. Few studies support an increased
risk for median nerve entrapment in SSc patients compared to healthy controls, though
the exact prevalence is unclear. In a systematic review investigating the prevalence of
peripheral neuropathy in SSc, a compression neuropathy was reported in 26% of studies
with median nerve entrapment being the most common form [22]. The median nerve
cross-sectional area can be measured for diagnosing impingement [23]. A median nerve
size of less than 8 mm2 yields a negative likelihood ratio for CTS of 0.13, while a CSA of
greater than or equal to 12 mm2 corresponds to a positive likelihood ratio of 19.9 [24]. An
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additional valuable measure involves evaluating the median nerve 12 cm proximal to the
carpal tunnel inlet [24]. A wrist-to-forearm ratio of 1.4 or more showed 100% sensitivity for
diagnosing CTS [25] (Figure 16).
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2.4. Vascular Pathology

Repeated vascular ischemia drives much of the hand pathology seen in SSc. Raynaud’s
phenomenon, characterized by the classic triphasic finger discoloration (white to blue to
red) affects up to 95% of SSc patients and is often their initial symptom [20]. Digital
ulcers occur secondary to repeated vascular insults and can be complicated by infection,
sometimes requiring subsequent amputation. In the ECLIPSE study, digital ulcers were
significantly associated with pain and disability [26].

Ulnar artery occlusion and finger pulp blood flow are two imaging biomarkers associ-
ated with new or recurrent digital ulcers [27–29]. Although OMERACT lacks consensus
definitions for these two sonographic findings, studies have detailed techniques to stan-
dardize these measurements. Ulnar artery blood flow occlusion is defined as the complete
cessation of blood flow by the power Doppler signal [8,28]. The loss of finger pulp blood
flow is defined as the absence of the power Doppler signal in the sub hypodermal finger
pulp in at least one of the two evaluated fingers per hand [8] (Figure 17).
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Figure 17. Absence of finger pulp flow in the distal phalanx in a systemic sclerosis patient.

2.5. Skin Thickening

Puffy hands are thought to be a consequence of edema preceding fibrotic changes in
the skin, making them one of the first non-RP symptoms seen in SSc [20]. As the disease
progresses, sclerodactyly becomes a leading cause of hand disability, increasing the risk for
small joint contractures and digital ulcers. While the use of US to assess skin thickness is
not widely adopted into clinical practice, there are numerous studies suggesting a positive
correlation between US-measured skin thickness and histological skin thickness [30,31].

2.6. Calcium Deposition

Calcinosis cutis, the deposition of calcium in the skin and subcutaneous tissues, affects
about 22% of patients and is thought to result from underlying chronic ischemia [32,33].
These calcium deposits often occur at trauma-prone sites on the volar surface of finger-
tips [26,27]. The local inflammation caused by calcium deposits can lead to skin ulceration
and infection, ultimately compromising hand function and diminishing overall quality of
life [7,32,34].

US can detect calcinosis with high sensitivity (89%) compared to radiographs [15].
These calcium deposits are identified as hyperechoic lesions with or without shadowing
located in the skin, soft tissue, tendons, peritendinous or periarticular areas [8] (Figure 18).
Supporting the hypothesis that calcinosis is driven by ischemic insults, US-detected ulnar
artery occlusion is found to be associated with x-ray identified calcinosis [8].
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Figure 18. Hyperechoic well-circumscribed lesions (indicated by arrow) without shadowing located
in the skin and subcutaneous soft tissue in a systemic sclerosis patient.

3. Materials and Equipment

A focused US examination of the hand and wrist may be targeted at the most symp-
tomatic site but adopting a systematic approach is essential to comprehensively evaluate
the spectrum of pathology observed in SSc.

The patient should sit or lie comfortably with their hand, wrist, and forearm on a
supported surface between the sonographer and the ultrasound screen. A high-frequency
linear probe of at least 12 MHz should be used to evaluate the superficial structures of the
hand and wrist. Creating a 1–3 mm layer of gel between the skin and the transducer can
help the sonographer “float the probe” over each structure, avoiding compression that may
obscure pathology that may be present.

4. Detailed Procedure and Expected Results: MSK US Protocol for Hand Pain in
Systemic Sclerosis Patient
4.1. Evaluation of the Fingers
4.1.1. Dorsal Aspect

In a typical dorsal longitudinal view of the metacarpophalangeal (MCP) joints, there
is a naturally indented dip in the contour of the metacarpal head, a smooth bone contour,
anechoic hyaline cartilage at the metacarpal head, a homogeneous iso-echoic intra-articular
triangle of fatty tissue sitting within the joint, and a slender fibrillar extensor tendon run-
ning superficial to the joint capsule (Figure 19). This view is particularly helpful to evaluate
for osteophytes characteristic of non-inflammatory osteoarthritis or erosive osteoarthritis
accompanying reactive synovial hypertrophy. This view can also reveal erosions, synovitis,
and tenosynovitis in cases of inflammatory arthritis. Periarticular erosions, the double
contour sign, tophi, and calcification of capsular ligamentous structures can also be visual-
ized and suggest an underlying crystalline arthritis. On dorsal longitudinal views of the
distal interphalangeal (DIP) joint, deviations from the normally straight or slightly concave
contour of the cortex may suggest acro-osteolysis.
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Figure 19. Probe placement and ultrasound of dorsal longitudinal view of MCP joint. MCP = metacarpal
phalangeal.

4.1.2. Volar Aspect

Examination of the volar aspect of the MCP, PIP, and DIP joints is particularly helpful
for evaluating the larger flexor tendons. Careful examination for flexor tendon tenosynovi-
tis, the thickening of the finger pulley system, and calcifications within the tendon or in
peritendinous areas should be performed (Figure 20).
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Tendons may have a thickened hypoechoic appearance indicative of a fibrotic pattern
or the more classic inflammatory hypoechoic tendon sheath widening with the Doppler
signal. The pulley systems are usually difficult to visualize in a normal hand. However, in
patients with SSc, the pulley may exhibit diffuse hypoechoic thickening and the underlying
flexor tendon may show findings of tendinosis or tenosynovitis [35].

Calcinosis deposits can be found in any soft tissue areas, but are commonly seen on
the volar aspects of the fingertips.

4.1.3. Radial and Ulnar Aspects

The lateral aspects of each joint are helpful areas to look for erosions at sites of joint
capsule insertion, particularly the ulnar view of the fifth MCP joint and the radial view
of the second MCP joint (Figure 21). It is important to remember that erosions must be
confirmed in orthogonal views.
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4.2. Evaluation of the Wrist
4.2.1. Dorsal Aspect

Longitudinal and transverse views of the wrist are helpful to evaluate for extensor
tendon tenosynovitis and the thickening of the retinaculum (Figure 22). Effusion, synovial
hypertrophy, or synovitis can be visualized in the radiocarpal or intercarpal joint. The bony
contour of the carpal bones should be examined for erosions or osteophytes as well.
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Figure 22. Dorsal views of wrist in long axis (A) and short axis (B). Star indicates fourth compartment
extensor tendons.

4.2.2. Volar Aspect

Wrist joint effusion, synovial hypertrophy, or synovitis can also be visualized on the
volar aspect along with flexor tendon tenosynovitis. However, the volar wrist view is
helpful to image the carpal tunnel and measure the cross-sectional area of the median
nerve at the level of the pisiform and scaphoid in transverse view. In this view, the median
nerve has a hyperechoic epineurium with a hypoechoic honeycomb appearance (Figure 23).
Because the median nerve is less anisotropic, the nerve can be distinguished from the
tendons when they are made maximally dark. The ulnar artery can be visualized with the
Doppler mode in Guyon’s canal to evaluate for ulnar artery occlusion.
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Figure 23. (A) Carpal tunnel visualized in transverse view with bony landmarks of pisiform, scaphoid.
Star indicates median nerve. Flexor tendons are not visualized due to anisotropy. Arrow indicates
ulnar artery. (B) Median volar view of wrist. Star indicates median nerve.

4.2.3. Ulnar Aspect

The extensor carpi ulnaris (ECU) is best visualized on the ulnar aspect of the wrist and
can be best seen when the wrist is slightly radially deviated (Figure 24). Deep to the ECU
tendon is the triangular fibrocartilage which should be examined for calcifications that may
suggest underlying crystalline arthropathy. Examination of the distal ulna for erosions is
crucial, particularly in cases concerning overlap rheumatoid arthritis.

Diagnostics 2024, 14, x FOR PEER REVIEW 19 of 28 
 

 

 
Figure 23. (A) Carpal tunnel visualized in transverse view with bony landmarks of pisiform, scaph-
oid. Star indicates median nerve. Flexor tendons are not visualized due to anisotropy. Arrow indi-
cates ulnar artery. (B) Median volar view of wrist. Star indicates median nerve. 

4.2.3. Ulnar Aspect 
The extensor carpi ulnaris (ECU) is best visualized on the ulnar aspect of the wrist 

and can be best seen when the wrist is slightly radially deviated (Figure 24). Deep to the 
ECU tendon is the triangular fibrocartilage which should be examined for calcifications 
that may suggest underlying crystalline arthropathy. Examination of the distal ulna for 
erosions is crucial, particularly in cases concerning overlap rheumatoid arthritis. 

 
Figure 24. Extensor carpi ulnaris tendon (star) visualized in long axis and short axis.  

  

Figure 24. Extensor carpi ulnaris tendon (star) visualized in long axis and short axis.



Diagnostics 2024, 14, 669 18 of 25

4.2.4. Radial Aspect

Thickening of the first compartment tendons of the wrist, extensor pollicus brevis and
abductor pollicus longus along with their tendon sheath and the surrounding retinaculum
should be evaluated for DeQuervain’s tenosynovitis (Figure 25).

Diagnostics 2024, 14, x FOR PEER REVIEW 20 of 28 
 

 

4.2.4. Radial Aspect 
Thickening of the first compartment tendons of the wrist, extensor pollicus brevis 

and abductor pollicus longus along with their tendon sheath and the surrounding retinac-
ulum should be evaluated for DeQuervain’s tenosynovitis (Figure 25). 

 
Figure 25. Tenosynovitis of first compartment tendons of wrist suggestive of DeQuervain’s teno-
synovitis in long axis (A) and short axis (B). 

5. Experimental Design: Personalized Management of Hand Pain 
We present preliminary data exploring the patient and provider perception of the 

influence of this MSUS scanning protocol on SSc disease understanding and treatment 
strategies at our center. 

Methods: Eighteen randomly selected SSc patients with nonspecific hand pain were 
referred for musculoskeletal US exam. The study was conducted according to the guide-
lines of the Declaration of Helsinki and approved by the Institutional Review Board (or 
Ethics Committee) of Vanderbilt University Medical Center (protocol code #230657, Ap-
proved 05/18/2023). Informed consent was obtained from all subjects involved in the 

Figure 25. Tenosynovitis of first compartment tendons of wrist suggestive of DeQuervain’s tenosyn-
ovitis in long axis (A) and short axis (B).

5. Experimental Design: Personalized Management of Hand Pain

We present preliminary data exploring the patient and provider perception of the
influence of this MSUS scanning protocol on SSc disease understanding and treatment
strategies at our center.

Methods: Eighteen randomly selected SSc patients with nonspecific hand pain were
referred for musculoskeletal US exam. The study was conducted according to the guidelines
of the Declaration of Helsinki and approved by the Institutional Review Board (or Ethics
Committee) of Vanderbilt University Medical Center (protocol code #230657, Approved
05/18/2023). Informed consent was obtained from all subjects involved in the study. A pre-
and post- US survey of both the patient (Figure 26a,b) and referring provider (Figure 27a,b)
assessed diagnostic understanding and treatment changes.
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Figure 27. (a). Pre-visit surveys for providers. (b). Post-visit surveys for providers.

Results: The patients pre- and post-survey results are shown in Figure 28. In total,
14 of the 18 patients completed the survey. The providers’ pre- and post-survey results
regarding their immunosuppression management plan are shown in Figure 29 and their
confidence in their plan is shown in Figure 30.
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Figure 28. Sankey Plot showing changes between patients’ pre-visit and post-visit survey responses to
the question “How poorly or well do you understand the cause of your joint pain?”. Color spectrum
from bright green to dark red indicates degree of change in patient understanding. Bright green
indicates significant improvement in understanding, bright red indicates significant worsening in
understanding.
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Figure 29. Sankey Plot showing changes between rheumatologists’ pre-visit and post-visit survey
responses to the question “What is your current immunosuppression treatment plan?”. Color
spectrum from bright green to dark red indicates degree of change in patient understanding. Bright
green indicates significant improvement in understanding, bright red indicates significant worsening
in understanding.

After reviewing ultrasound findings, the referring providers’ confidence in treatment
decision improved in all cases. All providers documented that the ultrasound “very much
helped” form a treatment decision. The treatment plan was modified after US in 5 of
18 patients. US improved patients’ understanding of the cause of their joint pain in 5 of
14 patients. In total, 8 of the 14 patients rated that they understood the cause of their joint
pain “very well” after their ultrasound exam. An amount of 13 of the 14 patients felt that
their problem had been “somewhat more thoroughly” or “much more thoroughly” exam-
ined and felt that the information learned from their ultrasound made them “somewhat
more” or “much more likely” to stick with the treatment plan formed with their rheumatol-
ogist. The data presented in this study are available on request from the corresponding
author. The data are not publicly available due to privacy.
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6. Conclusions

Relying on the physical exam and hand radiographs alone is inadequate for differ-
entiating various etiologies of hand pain in SSc. We highlight a hand US protocol used
at our center that has been shown to enhance provider confidence in treatment decisions
and improve patient understanding of disease, potentially leading to improved treatment
adherence. Standardized US assessment in SSc may provide a more comprehensive evalua-
tion of hand pain and differentiate between various articular, periarticular, ischemic, skin,
and nerve pathologies.
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