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Emergency and critical illnesses refer to severe diseases or conditions characterized by
rapid changes in health that may endanger life within a short period [1]. With the devel-
opment of information technology [2], the storage, sharing, and use of medical data have
become more convenient. Furthermore, with the rapid development of artificial intelligence
technology [3,4], we are at the forefront of a medical information revolution. The emergence
of AI has brought new possibilities for the treatment of critically ill patients [5,6]. Through
big data analysis and machine learning, we are able to predict the progression of diseases
more accurately and adjust treatment plans in a timely manner [7–9]. This trend towards
precision medicine has had a profound impact on medical practice [10]. In this context,
we have organized a Special Issue to discuss the application of AI in the management of
critical illnesses, aiming to achieve greater advancements in future healthcare.

In this Special Issue, researchers from various countries and regions have explored
the application of artificial intelligence in critical care, covering aspects such as diagnosis,
management, and prognosis. (Figure 1) Several previous studies have explored the realm
of diagnosis. Aygun et al. (Contribution 1) aimed to develop an interpretable predictive
model based on Explainable Artificial Intelligence (XAI) to forecast sepsis and identify
significant biomarkers. Within a cohort of 1572 patients, they utilized biomarkers including
age, respiratory rate, blood oxygen saturation, procalcitonin, and positive blood culture
to predict sepsis. The results of SHapley Additive exPlanations (SHAP) indicate that
factors such as advanced age, increased respiratory rate, and decreased procalcitonin
elevate the risk of sepsis. By enhancing transparency in the decision-making process,
XAI models enable clinicians to comprehend and trust the predictive capabilities of AI
systems [11]. During the diagnostic process, multiple methods are often available to assist
physicians in making a diagnosis. Tuncyurek (Contribution 2) conducted an evaluation
using artificial intelligence methods to determine the optimal selection of methods. Acute
appendicitis stands as one of the most common causes of abdominal pain in the emergency
department and is the leading surgical emergency among children under 15, posing a
significant risk upon rupture. The selection of radiological methods is paramount for
accurate diagnosis, thereby averting unnecessary surgeries. The aim of this study is to
evaluate the effectiveness of the American College of Radiology (ACR) Appropriateness
Criteria in diagnosing acute appendicitis using multivariable decision criteria. This study’s
uniqueness lies in its provision of an analytical ranking of results for this intricate decision
problem, showcasing the merits and demerits of each alternative in different scenarios, even
accounting for the ambiguity of emergency situations concerning the diagnosis of pediatric
appendicitis. We applaud the utilization of a novel model to test the ACR qualification
criteria, aiming to minimize confusion in the diagnostic process.
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Figure 1 provides a visual summary of the contents covered in the Special Issue.
Through these visual elements, readers can quickly grasp the various topics and any related
content featured in the Issue. XAI: Explainable Artificial Intelligence; TBI: Traumatic Brain
Injury; ICU: Intensive Care Unit; AKI: Acute Kidney Injury; COVID-19: Coronavirus
Disease 2019; VAP: Ventilator-Associated Pneumonia; NPA: Neonatal Pain Assessment;
OS-NPA: On-Site Neonatal Pain Assessment; ACR: The American College of Radiology.

The risk of acute kidney injury (AKI) has long presented a challenge for clinicians in
the intensive care unit (ICU) [12,13]. The combined effects of serum creatinine, blood urea
nitrogen (BUN), and clinically relevant serum electrolytes have yet to be comprehensively
studied. Through a screening of the MIMIC-IV Database, the association between serum
electrolyte levels and renal function was examined (Contribution 3), revealing that levels of
serum creatinine, chloride, and magnesium emerged as the three primary factors requiring
monitoring in this patient cohort. Thus, it is imperative to undertake larger-scale studies
based on this research to strengthen and refine the clinical guidelines pertaining to AKI.

Rambaud et al. developed a clinical prediction algorithm using prospective clinical
data from 827 pediatric patients stored in a Canadian tertiary pediatric hospital database
(Contribution 4). This algorithm aims to enable the early detection of ventilator-associated
pneumonia (VAP). Notably, this study demonstrates the most accurate sensitivity achieved
by a Clinical Decision Support System (CDSS) to date in identifying VAP. We anticipate
the implementation of the results of this algorithm by Jerome Rambaud in the Pediatric
Intensive Care Unit (PICU), and we look forward to seeing its outstanding performance in
multicenter trials.
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Furthermore, artificial intelligence has numerous applications in prognosis. In the
fields of traumatic brain injury (TBI) and burn injuries, artificial intelligence (AI) tech-
nologies have significantly advanced the predictive accuracy of patient outcomes beyond
traditional models. Tu et al. and Yeh et al. conducted retrospective studies in their re-
spective areas, gathering extensive patient data to employ machine learning models in the
prediction of mortality and adverse outcomes. The researchers focused on 2260 TBI patients
in the ICU, using four machine learning models and 42 features. Their study outperformed
traditional tools like APACHE II and SOFA scores in predicting mortality risk (Contribution
5). Similarly, Yeh et al. analyzed data from 348 burn patients, demonstrating AI’s ability
to predict prolonged hospital stays, grafting needs, and other adverse outcomes more
accurately than the commonly used Baux score (Contribution 6). Both studies highlight
the role of modern AI in enhancing the stratification and assessment of patients, marking
significant progress towards intelligent healthcare in their respective domains. In another
study (Contribution 7) utilizing the MIMIC-IV Database, multiple machine learning models
were employed to predict patient mortality, with the findings indicating that the XGBoost
machine learning method outperformed traditional models through comparative analysis.

Furthermore, artificial intelligence plays a significant role in disease management [14].
Amidst the outbreak of the COVID-19 pandemic, the escalating number of critically ill
patients in global intensive care units (ICUs) has placed a strain on ICU resources. The
early prediction of ICU demand is crucial for effective resource management and allocation.
Islam et al. conducted a retrospective cohort study focusing on data collected from the
Pulmonology Department of a state hospital in Moscow (Contribution 8). Various feature
selection techniques were investigated, and a stacked machine learning model was pro-
posed. This model was compared with eight different classification algorithms to assess the
risk of ICU admission for both COVID-19 and non-COVID patients, as well as for COVID
patients separately.

Artificial intelligence also plays an important role in image recognition and assessment
in the medical fields. The assessment of neonatal pain (NPA) has not received sufficient
attention in clinical practice, leading to widespread instances of undertreatment of pain
severity. In clinical NPA, facial expressions are considered the most explicit indicators,
upon which various pain assessment scales are designed. Zhu et al. aimed to develop an
automated NPA system that meets actual clinical needs (Contributions 9 and 10). To achieve
this, a video database capturing the facial expressions of neonates during blood collection
procedures in the neonatal ward was established, and an AI-NPA method was developed
based on real-world data. The clinical utility of the automated NPA system was validated
by recruiting 232 pediatric patients from a tertiary children’s hospital in China. According
to the OS-NPA results of 232 neonates, the accuracy of the automated NPA system was
88.79%. Although video-based NPA (VB-NPA) protocols facilitate remote or post hoc pain
diagnosis by experts, serving as an equivalent alternative to the on-site NPA (OS-NPA)
gold standard, VB-NPA may suffer from partial inaccuracies due to information loss in
neonatal pain videos captured in real NICU settings. Nonetheless, it remains comparable to
OS-NPA. Video-based assessment for neonatal pain evaluation in clinical settings is feasible
and allows for the real-time, remote assessment of neonatal pain severity. We anticipate
further applications of this technology in neonates with larger-scale data and potential
migration to adult pain assessment.

Collectively, these studies illuminate the transformative impact of AI and ML in
medical diagnostics and prognostics, heralding a new era of precision medicine that
promises enhanced patient outcomes and optimized healthcare delivery [15]. Addition-
ally, in the application of artificial intelligence, there are characteristics of overfitting and
poor generalization; some models produce very precise predictions, but this precision
may not necessarily translate into clinical benefits [16]. To address these issues of general-
ization, further validation is needed through randomized controlled trials (RCTs) across
multiple centers.
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