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Abstract: MR is a powerful diagnostic tool in the diagnosis and management of most hepatic and
pancreatic diseases. Thanks to its multiple sequences, the use of dedicated contrast media and special
techniques, it allows a multiparametric approach able to provide both morphological and functional
information for many pathological conditions. The knowledge of correct technique is fundamental in
order to obtain a correct diagnosis. In this paper, different MR sequences will be illustrated in the
evaluation of liver and pancreatic diseases, especially those sequences which provide information not
otherwise obtainable with other imaging techniques. Practical MR protocols with the most common
indications of MR in the study of the liver and pancreas are provided.
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1. Introduction

To assess the presence of metastases in the liver, imaging of the liver and pancreas
takes the lead in the management of most diseases affecting the abdomen and also in the
management of oncological patients.

Although US and CT are the most used imaging techniques worldwide, MRI is
assuming an increasingly important role due to specific imaging features that can offer
information not otherwise obtainable.

Although contrastographic imaging can be obtained with US (CEUS), CT (CECT) and
also with MRI, each method offers different sensitivities depending on the contrast agent
(CA) used, and it is precisely MRI, thanks to its high sensitivity to CAs, that offers the
greatest accuracy in identifying the enhancement of lesions, thanks also to the development
of CAs with increasingly high relaxivity that have entered the market in recent months
(e.g., Gadopiclenol, Bracco and Guerbet) [1].

However, the specificity of MRI goes beyond contrastographic imaging, which, although
of greater sensitivity and specificity, is essentially superimposed on that of the other methods.

On the other hand, other information can be obtained with MRI that cannot be obtained
with other methods, and that represents the uniqueness of the method, such as guaranteeing
an information capacity that is clearly superior to other methods, capable of offering
sensitivity and specificity values that are clearly superior to CT and US.

This article will address the specific imaging modalities of MRI distinct in the liver
and pancreas.

2. Liver

The liver is involved in various body functions and in supporting other organs. Due
to the rising prevalence of hepatic diseases, imaging studies are increasingly utilized for its
evaluation. US is a widely available technique usually used as a first approach, while CT is
mostly used as a second level technique in case of indeterminate focal lesions with US, and
as the first imaging tool in the case of staging and follow-up of oncological patients.

MRI, with its high contrast resolution, non-morphological sequences and the use
of liver-specific contrast agents, is a key tool for the comprehensive evaluation of liver
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diseases, especially in the detection of small lesions, characterization of atypical lesions,
quantification of iron and fat accumulation, as well as fibrosis; although, its use is case-
dependent due to higher costs and limited availability.

The most specific and useful MR sequences which can offer an added value to the
analysis of the liver are:

a. Gradient multi-echo sequences: The lack of a 180◦ refocusing pulse in this sequence
determines susceptibility and chemical shift artifacts that help to identify and quantify fat
and iron deposition within the liver parenchyma to better depict diffuse liver disease and
focal liver lesions.

- Fatty deposition: The GRE in-phase and out-of-phase MR sequence is a T1 sequence
with a dual echo acquisition in fixed temporal intervals (the second one double the first
one) which reveals chemical shift artifacts, a result of fat protons having a lower precession
frequency than water protons. In the in-phase state, signals constructively sum, displaying
combined water and fat signals. Conversely, the out-of-phase state exhibits signal oppo-
sition related to a 180◦ phase difference between water and fat protons, thus nullifying
water and fat signals. This sequence aids intracellular fat detection in hepatic lesions or
parenchyma. Notably, liver conditions like steatosis manifest significant fat content, visible
in out-of-phase images as hypointensity due to signal cancellation. Moreover, some hepatic
lesions such as adenoma or HCC may show intracellular fat deposition, again visible in out-
of-phase images as a drop of signal intensity due to the cancellation of signal related to the
opposition of water and fat in the same voxel (Figures 1 and 2). In-phase and out-of-phase
MR sequences should always be included for a complete assessment of the liver [2].
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Figure 2. (A–F): Hepatic adenoma. On T2w (A) and T1w in-phase (B), no significant lesions are 
appreciable. On the T1w out-of-phase (C) image, a hypointense lesion is appreciable due to intra-
cellular fat content. After injection of liver-specific MR contrast agent Multihance (Bracco, Milano), 
the lesion is hypervascular in the arterial phase (D),with washout in the venous phase (E) and no 
contrast uptake in the hepatobiliary phase (F). 

Figure 1. (A–F): HCC with fatty changes. On T2w (A), a lesion at segment VI can be appreciated.
For out- (B) and in-phase (C) T1w, the lesion shows fatty content, visible with a loss of signal in
out-of-phase. The lesion is hypervascular in the arterial phase (D) with washout in the venous phase
(E). At the hepatobiliary phase after liver-specific MR contrast agent (Multihance, Bracco), the lesion
is hypointense (F).

- Iron quantification: Iron overload is a systemic disorder with high iron serum levels
and increased iron storage in the form of ferritin and hemosiderin. The liver is the first organ
that shows iron overload because one of its functions is to store iron within hepatocytes and
Kupffer cells. Calculating the amount of iron deposition can lead to a better management
of patients that suffer from this disease as an untreated high iron overload may lead to a
cirrhosis with a risk to develop an HCC 20-fold higher than in the general population [3].
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Figure 2. (A–F): Hepatic adenoma. On T2w (A) and T1w in-phase (B), no significant lesions
are appreciable. On the T1w out-of-phase (C) image, a hypointense lesion is appreciable due to
intracellular fat content. After injection of liver-specific MR contrast agent Multihance (Bracco,
Milano), the lesion is hypervascular in the arterial phase (D),with washout in the venous phase
(E) and no contrast uptake in the hepatobiliary phase (F).

Tissue accumulation of iron creates local magnetic field inhomogeneity which causes
the transverse magnetization (T2) to decay much faster than would be predicted, with an
effective T2 value denoted as T2*. To quantify the amount of iron deposition, the most
common technique is to acquire a breath-hold gradient-echo sequence with progressively
increasing echo times (ETs), specific for each strength of magnetic field (1.5T, 3T). The
extracted signal intensity curve is fitted, resulting in an estimate of liver T2* which is
proportional to the amount of iron deposition (Figure 3).
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Figure 3. (A,B) Fat/Iron quantification. (A) Top: spectral separation of iron and fat. Bottom: signal
decay in the different TEs. (B) Top: fat fraction (14.8%). Bottom: R2water (36.9 SEC -1), expression of
iron deposit.

b. GRE T1-weighted 3D sequence: This sequence is utilized in the dynamic imaging
after the injection of a gadolinium-based contrast agent; high-contrast levels after the bolus
and thin slices make it possible to reconstruct the vessels with MIP or VR techniques.
Although this information is similar to what is obtained with a contrast-enhanced CT, it is
possible to obtain multiple arterial acquisitions (generally 2–3), with a multiphasic contrast-
enhanced MRI sequence that allows for the acquisition of multiple arterial subphases
within a single breath-hold. This sequence facilitates the timing of the arterial phase and
adds dynamic characteristics of focal lesion vascularization [4]. (Figure 4).
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Figure 4. (A–F): HCC with multi-arterial phase. On T2w (A), a slight hyperintense lesion is ap-
preciated at the VI segment, which appears hypointense on T1w (B). The lesion is hypervascular
(C) and better appreciated in the second arterial acquisition (D) with washout at the venous phase
(E). At the hepatobiliary phase after liver-specific MR contrast agent (Multihance, Bracco), the lesion
is hypointense (F).

c. Biliary imaging: The visualization of biliary ducts with MRI is easily obtained
with a heavily T2-weighted sequence, 2D or 3D, using the water in the fluid as an intrinsic
contrast agent [5]. In 3D, acquisition images are then reformatted in different planes using
maximum intensity projection (MIP).

The long T2 relaxation time of the water causes the surrounding tissues to be markedly
hypointense during the acquisition of the images. With this technique, many biliary
pathologies can be explored, such as congenital biliary anomalies, biliary lithiasis, jaundice,
sclerosing cholangitis, central cholangiocarcinoma, etc., with a delineation of biliary ducts
far superior than that of CT (Figure 5).
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Figure 5. (A,B) PSC, comparison of CT and MRCP. With CT (A), only some slight ectasia of peripheral
biliary ducts can be appreciated. With MRCP (B), the multiple stenosis of biliary ducts are clearly visible.

Moreover, by using liver-specific MR contrast agents during the biliary phase, with a
high-resolution 3D T1 sequence and MIP reformation, it is possible to obtain a functional
visualization of the choledochus and biliary ducts up to the second order. With this
technique, it is possible to assess the functionality of biliary anastomosis, the passage of the
bile in the duodenum, which can be impaired in the case of sphincter of Oddi dysfunction
(SOD) or to confirm a bile leak, either after trauma or surgery [6–8] (Figure 6).
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Figure 6. (A,B) Bile leak after surgical resection. At T2-MRCP (A), a fluid collection is visible in
the dome of the liver. After injection of liver-specific MR contrast agent (Primovist, Bayer, Berlin,
Germany) during the hepatobiliary phase (B), a collection of contrast media is appreciated at the
same level of the fluid collection (*), indicating a bile leak.

d. Diffusion Weighted Imaging (DWI) is a technique which investigates the water
content of organs and tissues, establishing the random motion of water molecules in a
single voxel called Brownian motion. This technique is able to distinguish water protons
free to diffuse in a tissue from others which are not, and the mechanism is due to a different
microscopic spread of water molecules. In vivo, tissue structures such as cell membranes
prevent the motion of water molecules through the interstitial space; then, high-cellularity
tissues can be sorted from those with lower packed cells, or from free fluid. Moreover,
according to the molecular structure in which water protons are embedded, the diffusion
of water protons can be different; proteins, blood and other structures impair the diffusion
of water molecules, thus showing a restricted diffusion [9].

Technically, a DWI sequence is based on the application of two temporally spaced
gradient pulses with the same strength but opposite direction; water protons which freely
diffuse in the tissue lose the signal and thus are not visible in the resulting image, while
water protons with restricted diffusion still maintain the signal and appear hyperintense in
the resulting image. The intensity of each voxel’s image element reflects the estimated rate
of water diffusion at that location.

The level of water restriction can be quantified by means of the Apparent Diffusion
Coefficient (ADC) map, obtained with at least two different b values in a DWI sequence,
which is a parameter of the sequence, whose value starts at 0 and can be widened up to
2000 (depending on the external magnetic field), modifying the gradient amplitude and
duration by widening the interval between paired gradient pulses.

DWI has been proposed as a useful tool in several conditions [10]:
- Identification of focal liver lesions: DWI with a b value < 100 shows the highest

sensitivity in the identification of focal liver lesions [10] (Figure 7). DWI has the best
sensitivity to detect liver metastases, especially small lesions. A combination of DWI and
contrast-enhanced T1w images shows the best performance in the detection of liver lesions
compared to each sequence alone [11]. In patients who cannot receive a gadolinium-based
contrast agent (GBCA), DWI is a reasonable alternative.

- Characterization of focal liver lesions: The ADC map is useful to distinguish lesions
with restricted diffusion, such as malignant lesions (e.g., metastases) (Figure 7), from lesion
without restricted diffusion, such as benign lesions (e.g., hemangiomas) [10] (Figure 8),
but up to now DWI with ADC quantification cannot reliably discern between solid benign
and malignant lesions or between different malignant lesions. Although DWI is not very
helpful in the detection of small HCCs, it can be useful in characterizing small atypical
nodules in a cirrhotic liver, whose restricted diffusion can be a predictor of a premalignant
condition [12]. DWI with ADC quantification, moreover, is highly helpful in distinguishing
necrotic lesions (Figure 9) from abscesses (Figure 10), whose morphological appearances
can be indistinguishable [13].
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at the VII segment. On DWI b50 (B), the lesion is clearly visible. In the ADC map (C), the lesion
appears hypointense due to its malignant nature.
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Diagnostics 2024, 14, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 9. (A–F) Metastasis from colon carcinoma. On T2w (A), the lesion is slightly hyperintense 
and hypointense on T1w (B). On DWI b800 (C), the lesion is hyperintense but shows a central hy-
perintense area on the ADC map (D) due to necrotic changes, appreciable in the arterial (E) and 
venous (F) phases. 

 
Figure 10. (A–F) Liver abscess. On T2w (A), the lesion is slightly hyperintense with some foci mark-
edly hyperintense and hypointense on T1w (B). On DWI b800 (C), the lesion is hyperintense but 
shows a central hypointense area on the ADC map (D) due to coagulative necrosis, appreciable on 
the arterial (E) and venous (F) phases. 

- Assessment of therapeutic response: DWI is a promising non-invasive tool for as-
sessing therapy response in liver metastases [14] and HCC [15]. Changes in ADC values 
are related to tumor necrosis and anticipate changes in the size or enhancement of lesions 
(Figure 11). Moreover, some studies suggest that initial ADC values can be a predictor of 
treatment response, although further studies are necessary to validate these results [16]. 
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- Assessment of therapeutic response: DWI is a promising non-invasive tool for
assessing therapy response in liver metastases [14] and HCC [15]. Changes in ADC values
are related to tumor necrosis and anticipate changes in the size or enhancement of lesions
(Figure 11). Moreover, some studies suggest that initial ADC values can be a predictor of
treatment response, although further studies are necessary to validate these results [16].
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Figure 11. (A–H) Metastasis from GIST before (A–D) and after (E–H) therapy. Before therapy,
the lesion shows cystic changes (A) but with areas of restricted diffusion (B,C) and with internal
enhancement (D). After therapy, the lesion is enlarged (E) but with no restricted diffusion (F,G) and
no enhancement (H).

- Evaluation of diffuse liver disease: although different studies have attempted to cor-
relate non-alcoholic fatty liver disease (NAFLD), fibrosis and cirrhosis to DWI parameters,
no definitive or clear results have been proved; thus, at present, DWI cannot be used as a
biomarker for diffuse liver disease [17].

e. T1 and T2 mapping: T1/T2 mapping are parametric maps which exploit the
longitudinal (T1) or transversal (T2) relaxation time, i.e., the time required for longitudinal
magnetization to return to equilibrium after an inversion or saturation pulse (T1) and the
time required for the loss of phase coherence of transverse magnetization after an excitation
pulse (T2).

- T1 is related to water concentration in the tissue, the level of protein concentration
(higher the level, shorter the T1), iron and rough endoplasmic reticulum. Moreover, the
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presence of GBCA greatly influences the T1: after I.V. injection, GBCA distributes in the
interstitial and intravascular space, reducing tissue T1. Thus, T1 mapping in unenhanced
images can provide information about tissue composition, such as water, collagen, protein,
lipid and even iron content. T1 mapping acquired before and after GBCA injection can
provide information on extracellular volume (ECV), an index of fibrosis and edema [18].
The extracellular volume fraction (ECV) represents the extracellular compartment. ECV is
strongly related with the extracellular matrix and can be used as an important diagnostic
biomarker for fibrosis and edema [19]. Moreover, T1 mapping can be acquired after the
injection of liver-specific MR contrast agents, such as Gadobenate Dimeglumine (Multi-
hance, Bracco, Milano) and Gadoxetate disodium (Primovist, Bayer, Berlin) during the
hepatobiliary phase of excretion. Furthermore, several studies have found a correlation
between epatobiliary contrast-enhanced T1 mapping and ECV with the histological amount
of hepatic fibrosis, liver function tests and Child–Pugh scores [20].

- T2 mapping generates a parametric map which is related to water concentration and
the presence of superparamagnetic substances such as iron and deoxyhemoglobin, which
generate local field heterogeneity, thus reducing tissue T2.

f. Liver-specific MR contrast agents (LSCAs): these compounds are injected via I.V.
after an initial distribution in the vascular-interstitial compartment; similar to other GBCAs,
part of the injected dose is collected by hepatocytes, with an enhancement of the liver
parenchyma due to the paramagnetic effect.

Two molecules belong to this group.
- Gadobenate dimeglumine (Gd-BOPTA, Multihance®, Bracco, Milan, Italy) is a

gadolinium chelate with a slight and transient protein bonding and an elimination profile
with approximately 96 per cent of the injected dose eliminated via glomerular filtration,
while the remaining 2–4 per cent is taken up by functioning hepatocytes and eliminated
through the hepatobiliary pathway. The interaction with albumin gives Gd-BOPTA double
the relaxivity than a conventional paramagnetic MDC, while the uptake by the hepatocytes
leads to an increased enhancement of the liver parenchyma 1 h to 3 h after administration.

- Gadoxetic Acid (Gd-EOB-DTPA, Primovist®, Bayer, Berlin, Germany), similarly
to Gd-BOPTA, after bolus injection, is initially distributed in the vasculo-interstitial com-
partment; thereafter, 50 per cent of the injected dose is carried by hepatocytes through an
organic anion transporter and eliminated via the biliary pathway. The increase in hepatic
parenchymal enhancement is earlier, starting as early as 5 min after injection, and at 20 min
optimal liver signal enhancement is obtained, which lasts about 2 h.

While Gd-BOPTA, thanks to its high relaxivity, has a better signal during the dynamic
phase, Gd-EOB-DTPA offers a better enhancement in the hepatobiliary phase thanks to its
50% elimination route via the biliary system [21].

Both LSCAs during the dynamic phase behave similarly to conventional paramagnetic
MDC, while in the late phase they improve the sensitivity of MRI in identifying focal liver
lesions and increase its specificity, contributing to a better characterization of lesions [22].

Intracellular uptake of these CMs occurs via the organic anion transport polypeptide
(OATP), and then they are excreted in the bile with an ATP-dependent system. The presence
of such transport systems and a normal representation of the biliary canalicular system
within the lesions are necessary conditions to uptake these CMs.

In principle, benign hepatocytic lesions such as FNH are able to pick up such MDC,
thus appearing hyperintense in the hepatobiliary phase [23] (Figure 12). On the other
hand, in borderline/malignant hepatocellular lesions, from hepatic adenomas to HCC, the
presence of such transporter systems is very poor, so that on average these lesions appear
hypointense in the hepatobiliary phase [24–26] (Figures 2 and 13). All non-hepatocytic
lesions, whether benign (e.g., angiomas) or malignant, whether primary (cholangiocar-
cinoma) or secondary (metastases), are unable to pick up such MDC, thus appearing
hypointense in the hepatobiliary phase (Figure 14). In solid hypervascular liver lesions, a
liver-specific MR contrast agent is crucial for the differential diagnosis [27].
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Figure 12. (A–D) FNH. A large lesion with a central scar and no significant restriction (A,B) is
appreciable at the left lobe. After injection of liver-specific MR contrast agent Multihance (Bracco,
Milano), the lesion is hypervascular (C) with uptake of contrast agent in the hepatobiliary phase (D).
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Figure 13. (A–D) HCC, well differentiated. On T2w (A), a round slightly hyperintense lesion is
appreciable in the left lobe. After injection of liver-specific MR contrast agent Multihance (Bracco,
Milano), the lesion shows a slight enhancement in the arterial phase (B) with no washout in the
venous phase (C) but is markedly hypointense in the hepatobiliary phase (D).

- Biliary imaging with positive contrast media: with both Gd-BOPTA and Gd-EOB-
DTPA, it is possible to visualize the biliary system during the biliary excretion phase. By
using GRE 3D sequences, MIP images can subsequently be generated. In such a way, both
a morphological and functional analysis of the biliary tract can be performed. T1-enhanced
MRCP is useful for assessing the patency of a biliary anastomosis or a bile leak after surgical
procedure or trauma (Figure 6).

In Table 1, different practical protocols of MR hepatic imaging in different clinical
situations are offered, together with the most useful indications of MRI in different clini-
cal situations.
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Figure 14. (A–D) Metastases from breast carcinoma. On T2w (A), a large hyperintense lesion is
appreciable in the right lobe as well as other small slightly hyperintense lesions better appreciable on
DWI b800 (B). After injection of liver-specific MR contrast agent Primovist (Bayer, Berlin), the lesions
are hypovascular (C) with no contrast uptake in the hepatobiliary phase (D).

Table 1. Practical hepatic MR protocols in different clinical indications with indication of the useful-
ness of MRI.

Clinical Indication Sequence Plane CM Delay HB Phase (Only after
LS-MRCA) Note

Healthy liver: characterization of FLL HASTE T2 AXIAL -- -- Anatomy and liquids analysis

INDICATIONS: MRI is the technique
of choice in young patients and
pregnant women after a unclear US
finding. Moreover, it is useful even
after a CT with undefined diagnosis
for all patients.

HASTE T2 CORONAL -- -- Anatomy and liquids analysis

DWI b
0–50–400–800 AXIAL -- -- Restricted diffusion most likely

malignant
GRE T1 IN/OUT AXIAL -- -- Steatosis

GRE T1 3D
DYNAMIC AXIAL

PRE-ART
25′′-PORTAL

70′′-LATE 180′′
YES (if the lesion is

hypervascular)

Benign hypervascular
hepatocitic lesions appear
hyperintense in HBP

Cirrhotic liver: characterization of
FLL/Follow-up after treatment

HASTE T2 AXIAL -- -- Anatomy and liquids analysis

INDICATIONS: MRI is the technique
of choice in young patients and
pregnant women after a unclear US
finding. Moreover, it is useful even
after a CT with undefined diagnosis
for all patients.

HASTE T2 CORONAL -- -- Anatomy and liquids analysis

DWI b
0–50–400–800 AXIAL -- -- High signal in b 800 suspicious

for HCC
GRE T1 IN/OUT AXIAL -- -- Steatosis

GRE T1 3D
DYNAMIC AXIAL

PRE-ART
25′′-PORTAL

70′′-LATE 180′′
YES (if the lesion shows
atypical enhancement)

Hypointensity in HBP
suspicious for HCC

Follow-up oncological Patient HASTE T2 AXIAL -- -- Anatomy and liquids analysis

INDICATIONS: MRI is the technique
of choice in young patients and
pregnant women after a unclear US
finding. Moreover, it is useful even
after a CT with undefined diagnosis
for all patients. It can be alternated to
CT in young patients with a long
follow-up.

HASTE T2 CORONAL -- -- Anatomy and liquids analysis

DWI b
0–50–400–800 AXIAL -- -- DWI b50 increases the

sensitivity of mets detection

GRE T1 IN/OUT AXIAL -- -- Steatosis

GRE T1 3D
DYNAMIC AXIAL

PRE-ART
25′′-PORTAL

70′′-LATE 180′′
YES HBP increases the sensitivity of

metastases detection

Liver abscess/Biliary
inflammation/Follow-up in biliary
diseases (e.g.,
PSC)/cholangiocarcinoma

HASTE T2 AXIAL -- -- Anatomy and liquids analysis

INDICATIONS: MRI is the technique
of choice in follow-up of PSC or
secondary sclerosing cholangitis.
Useful for dd between abscess and
necrotic malignant lesions. In case of
hilar cholangiocarcinoma, it is useful
to assess the involvement of biliary
ducts as well as the evaluation of
biliary anatomy and variants.

HASTE T2 CORONAL -- -- Anatomy and liquids analysis

DWI b
0–50–400–800 AXIAL -- -- Abscess in ADC map is

hypointense
GRE T1 IN/OUT AXIAL -- -- Steatosis

GRE T1 3D
DYNAMIC AXIAL

PRE-ART
25′′-PORTAL

70′′-LATE 180′′
NO For better characterization of

abscess and cholangitis

MRCP 3D OBLIQUE
CORONAL

Biliary anatomy and calculi or
stenosis
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Table 1. Cont.

Clinical Indication Sequence Plane CM Delay HB Phase (Only after
LS-MRCA) Note

Biliary calculi HASTE T2 AXIAL -- -- Anatomy and liquids analysis

Indications: MRI is the technique of
choice to detect biliary calculi either in
the hepatic parenchyma or in the
choledocus. Useful to confirm/exclude
biliary calculi in patients with acute
pancreatitis.

HASTE T2 CORONAL -- -- Anatomy and liquids analysis

GRE T1 IN/OUT AXIAL -- -- Steatosis

MRCP 3D OBLIQUE
CORONAL -- -- use MIP and sub MIP for better

detection of calculi

Biliary leak after surgery or trauma HASTE T2 AXIAL -- -- Anatomy and liquids analysis

INDICATIONS: MRI, thanks to the use
of liver-specific MR contrast agents,
can easily detect the site of bile leak.

HASTE T2 CORONAL -- -- Anatomy and liquids analysis

MRCP 3D OBLIQUE
CORONAL -- -- Biliary anatomy and calculi

GRE T1 IN/OUT AXIAL -- -- Steatosis
GRE T1 3D
DYNAMIC AXIAL Not necessary YES high resolution Useful for leak

Iron/fat quantification HASTE T2 AXIAL -- -- Anatomy and liquids analysis

Indications: MRI is the technique of
choice to quantify the amount of fat or
iron overload.

HASTE T2 CORONAL -- -- Anatomy and liquids analysis
GRE T1 IN/OUT AXIAL -- -- Steatosis

GRE Multi echo AXIAL -- -- For the quantification of fat and
iron content

3. Pancreas

Although Endoscopic Ultrasound (EUS) is the technique which shows the best accuracy
in the detection and characterization of pancreatic diseases, thanks also to the possibility
to perform fine needle biopsy, it is limited by low availability and operator dependency.
For this reason, MRI plays a leading role in the imaging of the pancreas, especially with
recent technical innovations such as breath hold T1- and T2-weighted images and respiratory
triggered T2-weighted images, as well as dynamic imaging after injection of contrast agent
and the administration of secretin. MR shows a great capability to explore pancreatic ducts,
vessels and parenchyma with a non-invasive approach. The most specific and useful MR
sequences which can offer an added value to the analysis of the pancreas are:

a. Fast spin-echo (HASTE, RARE) sequence: These are single-shot turbo spin-echo
sequences with half acquisition of the K space, with an acquisition time for each slice of
1 s. The goal of this sequence is a low sensitivity to movement artifacts, which is more
suitable for non-cooperative patients. A great sensitivity to fluids, which appear highly
hyperintense, leads to a better visualization of the pancreatic duct and all the cystic lesions,
the peripancreatic area such as stomach and duodenal content, and peripancreatic fluid
collection. On the other hand, low sensitivity in the detection of small and low-contrast
solid lesions is one of its disadvantages. A normal pancreas demonstrates a similar or
higher signal compared to liver parenchyma, whereas biliary and pancreatic ducts appear
highly hyperintense (Figure 15).
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b. GRE T1-weighted 2D sequence with fat saturation: The normal parenchyma of 
the pancreas appears homogeneously hyperintense, which is related to the presence of 
aqueous protein in the acini, the abundance of endoplasmic reticulum within the acinar 
cells and the content of manganese. On unenhanced imaging of the pancreas, those fea-
tures make this sequence the one which better differentiates normal from pathological 
parenchyma. Indeed, fibrosis and fatty infiltration reduce the high signal of the pancreas 
that appears hypointense. This sequence shows a great sensitivity to depicting pancreatic 
disease but cannot differentiate various pancreatic lesions. (Figures 16 and 17). 

Figure 15. (A,B) Chronic calcifying pancreatitis. On HASTE T2w coronal (A), a small defect in the
prepapillary wirsung duct (arrow) due to a calculi. On MRCP (B), a diffuse dilatation of the wirsung
duct with side branch ectasia is clearly appreciable.

b. GRE T1-weighted 2D sequence with fat saturation: The normal parenchyma of the
pancreas appears homogeneously hyperintense, which is related to the presence of aqueous
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protein in the acini, the abundance of endoplasmic reticulum within the acinar cells and
the content of manganese. On unenhanced imaging of the pancreas, those features make
this sequence the one which better differentiates normal from pathological parenchyma.
Indeed, fibrosis and fatty infiltration reduce the high signal of the pancreas that appears
hypointense. This sequence shows a great sensitivity to depicting pancreatic disease but
cannot differentiate various pancreatic lesions. (Figures 16 and 17).
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c. GRE T1-weighted 3D sequence: As already discussed in the liver chapter, special
multiphasic contrast-enhanced MRI allows for the acquisition of multiple arterial subphases
within a single breath-hold. This sequence facilitates the timing of the arterial phase
and leads to more dynamic information of focal lesion vascularization [4]. Considering
pancreatic pathology, it is valuable in the detection of hypervascular tumors such as
neuroendocrine ones.

d. Diffusion Weighted Imaging (DWI): In recent years, long acquisition time and
upper abdomen physiological artifacts such as bowel peristalsis, blood flow and respiratory
movements prevented the application of DWI sequences. Nowadays, parallel imaging and
respiratory triggering allow for the routine application of DWI in the upper abdomen [28].
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A recent meta-analysis demonstrated a sensitivity of 83%, a specificity of 87% and
an AUC of 0.92 for quantitative DWI and ADC in distinguishing benign from malignant
lesions [29]. However, another meta-analysis showed poor results for ADC in differentiat-
ing pancreatic adenocarcinoma from autoimmune pancreatitis, with four studies reporting
lower ADC values in AIP than in PDAC, but three reporting the opposite result [30]
(Figures 16 and 17).

DWI play a crucial role in the identification of worrisome feature in pancreatic cystic
lesions and, according to some authors, high b-value DWI may help in the detection
and classification of solid lesions in IPMN [31,32] (Figure 18), thus contributing to the
differentiation between benign and malignant IPMNs [33]. On unenhanced MRI, DWI with
MRCP could improve the diagnosis of malignant IPMN with a better prediction of invasive
IPMN [34,35]. According to some authors, DWI can be useful in differentiating serous
from mucinous cystic lesions; a threshold value of 3 × 10 − 3 mm2/sec on the ADC maps
could help to distinguish mucinous from serous lesions (the latter with lower ADC values)
with an accuracy rate of 77–81% and a good correspondence with anatomo-pathological
outcomes [36,37] (Figures 19 and 20). Finally, DWI is a non-invasive tool that allows the
detection of infection in acute pancreatitis-associated collections; an infected collection
shows restricted diffusion and ADC values in the central parts significantly different from
non-infected groups [38]. Finally, DWI offers important information in the assessment of
the onset of small pancreatic carcinoma by using short protocols [39].
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Figure 20. (A–D). Serous cystoadenoma. On HASTE T2w coronal (A), a cystic lesion with lobulated
margins is appreciable in the head of the pancreas, better appreciable on MRCP (B). On DWI b800, no
restriction is appreciable and at the ADC map the value is 2.5.

e. T1 mapping: myocardial fibrosis and myocardial deposition disease were inves-
tigated with T1 mapping and, in the latter years, the availability of fast volumetric T1
mapping techniques has led to its application in other organs, such as the liver, with the
aim to identify and quantify liver fibrosis [40]. Recently, an added value of T1 mapping is
represented by the detection of early fibrotic changes in mild chronic pancreatitis. Thus, T1
mapping could be able to distinguish a normal pancreas from mild chronic pancreatitis,
opening a possibility of CP early diagnosis [41].

f. MR cholangiopancreatography (MRCP): The same sequences used for T2-weighted
biliary imaging can also be applied in the visualization of pancreatic ducts as well as cystic
lesions of the pancreas. A better image quality can be reached after the oral administration
of contrast material, which significantly reduces the signal of the fluid within the stomach
and duodenum such as some fruit juices (pineapple, blueberry, cranberry, etc.) [42]. A
superior image quality of MRCP can be assessed with a prior injection of paramagnetic
contrast agent; the T2* effect of gadolinium suppresses the signal from the vessel and fluid
within the interstitial compartment of the pancreas, sparing the signal from the pancreatic
and bile ducts [43].

MRCP is part of a standard protocol of MRI of the pancreas thanks to its fast and
accurate visualization of the pancreatic duct and its alteration. MRCP is an important
imaging tool to identify alterations of the pancreatic duct, from benign (e.g., chronic
pancreatitis) (Figure 15) to border line (IPMN) (Figure 18) to malignant, which can show the
presence of a pancreatic carcinoma even before it is visible on other sequences (Figure 21),
and it is useful in the evaluation of cystic tumors of the pancreas [44].

g. Secretin MRCP (S-MRCP) consists in the application of MRCP after the injection
of secretin, a hormone which stimulates the exocrine pancreas to produce fluid and bicar-
bonate [45]. The advantages of secretin-enhanced MRCP are therefore both morphological
and functional:

- Morphological: Offers better visualization of the MPD and easier establishment of
the duct anatomical variants, such as the pancreas divisum, discerning stenosis, dilatation,
obstruction and irregular borders of the duct. As a whole, S-MRCP increases the negative
predictive value of MR imaging of the pancreas [46].

- Functional: A sign of early chronic pancreatitis is the visualization of side branches
at body-tail after secretin injection; a hindered pancreatic juice outflow is related to a
prolonged and abnormal dilatation of the MPD (>3 mm 10 min after secretin injection);
the parenchymogram (parenchymal enhancement) is a sign of recurrent acute pancreatitis
(Figure 22); a decrease in pancreatic exocrine reserve is explained by a reduced duodenal
filling [47]. Secretin-stimulated MRCP images are improved in comparison to standard
MRCPs in many aspects; moreover, S-MRCP could support diagnosis and clinical decision
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making, especially in patients with acute, acute recurrent or chronic pancreatitis, yielding a
better identification of patients in need of therapeutic ERCP [48]. Finally, S-MRCP can help
in differentiating a malignant from a benign focal stenosis of the wirsung duct [49].
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the stenosis is appreciable at DWI b800 (red arrow) (E) with no other evidence of mass on T1w (F).

Diagnostics 2024, 14, x FOR PEER REVIEW 16 of 21 
 

 

 
Figure 21. (A–F) Early detection of pancreatic cancer. (A–C): a stenosis of the wirsung duct is appre-
ciable with no evidence of mass. (D–F): after 4 months a small hyperintense foci at the level of the 
stenosis is appreciable at DWI b800 (red arrow) (E) with no other evidence of mass on T1w (F). 

g. Secretin MRCP (S-MRCP) consists in the application of MRCP after the injection 
of secretin, a hormone which stimulates the exocrine pancreas to produce fluid and bicar-
bonate [45]. The advantages of secretin-enhanced MRCP are therefore both morphological 
and functional: 

- Morphological: Offers better visualization of the MPD and easier establishment of 
the duct anatomical variants, such as the pancreas divisum, discerning stenosis, dilatation, 
obstruction and irregular borders of the duct. As a whole, S-MRCP increases the negative 
predictive value of MR imaging of the pancreas [46]. 

- Functional: A sign of early chronic pancreatitis is the visualization of side branches 
at body-tail after secretin injection; a hindered pancreatic juice outflow is related to a pro-
longed and abnormal dilatation of the MPD (>3 mm 10 min after secretin injection); the 
parenchymogram (parenchymal enhancement) is a sign of recurrent acute pancreatitis 
(Figure 22); a decrease in pancreatic exocrine reserve is explained by a reduced duodenal 
filling [47]. Secretin-stimulated MRCP images are improved in comparison to standard 
MRCPs in many aspects; moreover, S-MRCP could support diagnosis and clinical decision 
making, especially in patients with acute, acute recurrent or chronic pancreatitis, yielding 
a better identification of patients in need of therapeutic ERCP [48]. Finally, S-MRCP can 
help in differentiating a malignant from a benign focal stenosis of the wirsung duct [49]. 

 

Figure 22. (A,B) Sphincter of Oddi dysfunction. (A) MRCP: no significant alterations are visible.
(B) After secretin injection, diffuse parenchymal enhancement (*) of the pancreas is visible.

In Table 2, different practical protocols of MR pancreatic imaging in different clini-
cal situations are offered, together with the most useful indications of MRI in different
clinical situations.
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Table 2. Practical pancreatic MR protocols in different clinical indications with indication of the
usefulness of MRI.

Clinical Indication Sequence Plane CM Delay Note

Acute pancreatitis (AP) HASTE T2 AXIAL -- Anatomy and analysis of the content
of collections

Indications: MRI is the technique of choice
to detect biliary calculi either in the hepatic
parenchyma or in the choledocus. It is useful
to confirm/exclude biliary calculi in patients
with AP. Moreover, MRI is able to better
characterize the content of collections, thus
allowing an appropriate management, either
percutaneous/endoscopic or surgical. MRI
can be used to follow-up AP in young and
child-bearing patients. Finally, with DWI it
is possible to better identify an infected
collection.

HASTE T2 CORONAL -- Anatomy and analysis of the content
of collections

T1 GRE FS AXIAL -- Pancreatic parenchima assessment

DWI b 0–50–400–800 AXIAL -- Infected collections appear
hypointense in the ADC map

GRE T1 3D DYNAMIC AXIAL Pre- 25′′–70′′–180′′ Not always necessary

MRCP 3D/2D OBLIQUE CORONAL Anatomy of wirsung duct

Recurrent Acute pancreatitis (RAR) HASTE T2 AXIAL -- Anatomy and liquids analysis

Indications: MRI is the technique of choice
to detect pancreatic abnormalities which can
cause episodes of recurrent pancreatitis.
Moreover, the use of secretin is able to
provide functional information useful for the
identification of the causes of RAR not
otherwise available.

HASTE T2 CORONAL -- Anatomy and liquids analysis

GRE T1 FS AXIAL -- Pancreatic parenchima assessment

DWI b 0–50–400–800 AXIAL -- Not necessary if pancreatic
parenchima is normal at GRE T1 FS

MRCP 3D/2D OBLIQUE CORONAL Anatomy of wirsung duct

MRCP 2D with secretin OBLIQUE CORONAL Functional information

Chronic pancreatitis (CP) HASTE T2 AXIAL -- Anatomy and liquids analysis

Indications: MRI is complementary to CT in
the diagnosis and management of CP.
Although it is not able to visualize
calcifications, with MRCP it is able to detect
early changes of CP, especially after secretin.
Lack of ionizing radiation makes MRI the
technique of choice in cases with long
follow-up.

HASTE T2 CORONAL -- Anatomy and liquids analysis

GRE T1 FS AXIAL -- Pancreatic parenchima assessment

DWI b 0–50–400–800 AXIAL -- Restriction within pancreas can
suggest an abnormal condition

GRE T1 3D DYNAMIC AXIAL Pre- 25′′–70′′–180′′ In case of suspicious mass

MRCP 3D/2D OBLIQUE CORONAL Anatomy of wirsung duct

MRCP 2D with secretin OBLIQUE CORONAL For the early diagnosis of CP

Differential diagnosis pancreatic cancer
(PC) from mass forming pancreatitis
(e.g., paraduodenal pancreatitis-PDP,
autoimmune pancreatitis-AIP)

HASTE T2 AXIAL -- Anatomy and liquids analysis

Indications: The use of multiparametric
imaging (DWI, contrast enhanced) allows
one to differentiate with substantial accuracy
a mass forming pancreatis from a
pancreatic carcinoma.

HASTE T2 CORONAL -- Anatomy and liquids analysis

GRE T1 FS AXIAL -- Pancreatic parenchima assessment

DWI b 0–50–400–800 AXIAL -- Restricted diffusion most likely to be
PC or AIP

GRE T1 3D DYNAMIC AXIAL Pre- 25′′–70′′–180′′
PC is most likely hypovascular; mass
forming pancreatitis usually shows
delayed homogeneous enhancement

MRCP 3D/2D OBLIQUE CORONAL Anatomy of wirsung duct

MRCP 2D with secretin OBLIQUE CORONAL
For the differential diagnosis of
pancreatic duct stenosis (“duct
penetrating sign”)

Neuroendocrine tumor of the pancreas
(PNEN) HASTE T2 AXIAL -- Anatomy and liquids analysis

Indications: MRI is useful for the detection
of PNENs thanks to DWI and contrast
enhancement. DWI can suggest the degree
of differentiation of PNENs as high grade
PNENS (G2-G3) usually show a marked
restriction of DWI. Useful for the follow-up
of small low-grade PNENs which cannot
be resected.

HASTE T2 CORONAL -- Anatomy and liquids analysis

GRE T1 FS AXIAL -- pancreatic parenchima assessment

DWI b 0–50–400–800 AXIAL -- Restricted diffusion tipical of PNEN.
Useful for multifocal PNENs

GRE T1 3D DYNAMIC AXIAL Pre- 25′′–70′′–180′′ PNEN is most likely hypervascular

MRCP 3D/2D OBLIQUE CORONAL Anatomy of wirsung duct
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Table 2. Cont.

Clinical Indication Sequence Plane CM Delay Note
Cystic lesion of the pancreas (CPL) HASTE T2 AXIAL -- Anatomy and cysts morphology
Indications: MRI is the technique of choice
in the diagnosis and management of CPL.
T2, MRCP, DWI and contrast enhancement
allow one to differentiate the different
lesions and suggest an optimal management.
As a rule of thumb, benign cystic lesions
(serous cystosadenoma) do not require
surgical resection or follow-up; border line
or malignant lesions (mucinous
cystoadenoma; main duct IPMN, BD-IPM
with high-risk stigmata) require surgical
resection if the patient is fit for surgery,
while low-risk cystic lesions (BD-IPMN with
no worrisome or high-risk stigmata) require
follow-up (see below).

HASTE T2 CORONAL -- Anatomy and cysts morphology

GRE T1 FS AXIAL -- Pancreatic parenchima assessment

DWI b 0–50–400–800 AXIAL --

Restricted diffusion inside the CPL
can be considered a worrisome
feature and injection of contrast is
indicated

GRE T1 3D DYNAMIC AXIAL Pre- 25′′–70′′–180′′
Useful for the characterization of
worrisome features (thick walls,
septa, nodules, restricted diffusion)

MRCP 3D/2D OBLIQUE CORONAL Relationship between the wirsung
duct and the cystic lesion

Follow-up of IPMN HASTE T2 AXIAL -- Anatomy and cysts morphology

Indications: in case of BD-IPMN with no
worrisome or high risk stigmata.

HASTE T2 CORONAL -- Anatomy and cysts morphology

GRE T1 FS AXIAL -- Pancreatic parenchima assessment

DWI b 0–50–400–800 AXIAL --
Restriction inside the IPMN can be
considered a worrisome feature, and
injection of contrast is indicated

GRE T1 3D DYNAMIC AXIAL Pre- 25′′–70′′–180′′
In case of worrisome features (thick
walls, septa, nodules, restricted
diffusion inside the cyst), otherwise
not necessary

MRCP 3D/2D OBLIQUE CORONAL Comprehensive evaluation of the
wirsung duct and cystic lesions

4. Conclusions

MR imaging of the liver and pancreas is a powerful tool which helps in managing
complex cases. Its multiparametric approach, lack of ionizing radiation, high sensitivity
to contrast media and availability of functional sequences able to give quantitative non-
morphological information make MRI an important technique able to solve many problems.

The lack of ionizing radiations makes this technique an important alternative to CT
in case of repeated follow-up, especially in children or young patients, while the multi-
parametric approach, either morphological or functional, make it the final non-invasive
approach in cases where other imaging techniques such as US, CEUS and CT are not able
to give useful information.
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